JPS60160659A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS60160659A
JPS60160659A JP59015186A JP1518684A JPS60160659A JP S60160659 A JPS60160659 A JP S60160659A JP 59015186 A JP59015186 A JP 59015186A JP 1518684 A JP1518684 A JP 1518684A JP S60160659 A JPS60160659 A JP S60160659A
Authority
JP
Japan
Prior art keywords
base body
output circuit
signal output
substrate
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59015186A
Other languages
Japanese (ja)
Inventor
Takeshi Ogino
武 荻野
Toshiyuki Akiyama
俊之 秋山
Kenji Ito
健治 伊藤
Norio Koike
小池 紀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59015186A priority Critical patent/JPS60160659A/en
Publication of JPS60160659A publication Critical patent/JPS60160659A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76816Output structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To increase the gains of a signal output circuit by isolating a second base body from a second base body for forming a shift register group for scanning in order to shape an MOS type transistor and connecting a source electrode to the second base body for the MOS type transistor. CONSTITUTION:A P type second base body formed in an N type first base body 18 is isolated into a second base body 19 for a CCD section and a second base body 26 for a signal output circuit section, and a source 25 in an MOSFET22 is connected to the second base body 26 for the signal output circuit. Since the potential of a second base body 27 also changes at the same time with the change of the potential of a source 28 in the signal output circuit, voltage between the source 28 and the second base body 27 is made constant at all times. Consequently, ideal gains can be obtained because the MOSFET22 functions as if it has no substrate effect. Accordingly, the gains of the signal output circuit section can be increased largely, and picture signals in which an SN ratio to noises from an external circuit hardly deteriorates can be acquired.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は・固体撮像装置に関し、特に光゛1換素子と光
信号電荷を転送するための電荷結合素子(以下CODと
記す)からなる電荷結合型固体撮像装置の信号出力回路
に関するものである◎〔発明の背景〕 電、荷拮合型固体撮像装置は、例えば垂直方向に500
11、!it、水平方向に800〜1000i11i1
を配列した光電変換素子のマトリックスと7それらの光
電変換素子に蓄積された光信号電荷を信号出力回路に増
出すだめの垂直CODシフトレジスタ群と水平CCDシ
フトレジスタ群から構成される。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a solid-state imaging device, and in particular, a charge-coupled device consisting of a photoconverter and a charge-coupled device (hereinafter referred to as COD) for transferring optical signal charges. This relates to a signal output circuit for a type solid-state imaging device. [Background of the Invention] A charge-balanced solid-state imaging device has, for example, 500 pixels in the vertical direction.
11,! it, horizontally 800-1000i11i1
It consists of a matrix of photoelectric conversion elements arranged in a matrix, and a group of vertical COD shift registers and a group of horizontal CCD shift registers for increasing the optical signal charges accumulated in these photoelectric conversion elements to a signal output circuit.

第1図は、従来の電荷結合型固体撮像装置の出力回路の
断面構造図である。
FIG. 1 is a cross-sectional structural diagram of an output circuit of a conventional charge-coupled solid-state imaging device.

第1図において、1はn型の第1基体22は第1基体1
内に形成されたp型の第2基体、3はn型半導体のCO
D転送チャネル、4はn型半導体のCCDCD刃出カド
レインる。破、線で示す5は!般像素子の信号出力回路
を構成するMOSFETであり、そのゲート6は上記C
CDCD刃出カドレイン接続されている。また2このM
OSFET5のドレイン7は電源1oに、ソース8は負
荷抵抗9の一端に接続されている。なお、11は、第1
基体lにバイアス尾圧を加えるための電源である。
In FIG. 1, 1 is an n-type first substrate 22 is a first substrate 1.
3 is an n-type semiconductor CO
D transfer channel, 4, is a CCDCD blade drain of an n-type semiconductor. Broken, the 5 indicated by the line is! This is a MOSFET that constitutes the signal output circuit of the general image element, and its gate 6 is connected to the above C
CDCD blade drain is connected. Also 2 this M
The drain 7 of the OSFET 5 is connected to a power supply 1o, and the source 8 is connected to one end of a load resistor 9. Note that 11 is the first
This is a power source for applying bias tail pressure to the substrate l.

第2図は、第1図を回路図に表したものであり・第2図
中の12.13,14,15.16はそれぞれ第1図に
おけるMOS F ET 5のゲート6゜ソース8.ド
レイン7、ドレイン7に電圧を加えるための電源10.
負荷抵抗9に相当する。17は・第2基体2に相当する
。信号はこの負荷抵抗9の両端子間の電圧として出力さ
れる。ところで。
FIG. 2 is a circuit diagram of FIG. 1. 12.13, 14, 15.16 in FIG. 2 are the gate 6° source 8. Drain 7, power supply 10 for applying voltage to the drain 7.
Corresponds to load resistance 9. 17 corresponds to the second base body 2. A signal is output as a voltage between both terminals of this load resistor 9. by the way.

第2図に示す回路は・いわゆるソース・フォロア回路で
あり、そのゲインは、第1図に示す第2基体2に対する
ソース電圧Vsの変化による閾値■thの変化(基板効
果)が十分に小さくて無視できるときには、近似的に次
式で表わされる。
The circuit shown in FIG. 2 is a so-called source follower circuit, and its gain is such that the change in the threshold th (substrate effect) due to the change in the source voltage Vs with respect to the second substrate 2 shown in FIG. 1 is sufficiently small. When it can be ignored, it can be approximately expressed by the following equation.

几 G= □ (1) 1/gm+R ただし、gIIIはMOSFETのgmであり。几 G= □ (1) 1/gm+R However, gIII is the gm of MOSFET.

Rtl負荷抵抗16の抵抗値である。This is the resistance value of the Rtl load resistor 16.

上式(1)において・特にRが十分に大きいとき(R>
> 1/g、11)・ゲインGはほぼ1になる。
In the above formula (1), especially when R is sufficiently large (R>
> 1/g, 11) - Gain G is approximately 1.

しかし・実際のMOSFETでは、上記基板効果は大き
くこれを無視することはできない。一般に基板効果は、
基板効果定数をK(通常K>O)とするとき、閾値Vt
hの第2゛基体を基準とするソース電位V8の依存性は
次式で表わされる0Vth(Vs)=Vtho+K(ハ
τ「Yh−42石’)・・・・・・(2) ただし、VtboはVs=0のときの閾値でありφFは
フェルミレベル電位中0.6V である。
However, in an actual MOSFET, the substrate effect is large and cannot be ignored. Generally, the substrate effect is
When the substrate effect constant is K (usually K>O), the threshold value Vt
The dependence of the source potential V8 with respect to the second substrate of h is expressed by the following formula: 0Vth (Vs) = Vtho + K (τ ``Yh - 42 stones'') (2) However, Vtbo is the threshold value when Vs=0, and φF is 0.6V in the Fermi level potential.

このように・基板効果があると、閾値vthの大きさは
、出力信号によりソース電位Vsの変化に伴って変化し
・ソースフォロアのゲインGの低下の原因となる。実際
に、この基板効果がある場合、第2図のソースフォロア
のゲインGは+1)式と異なり・次の式によって決まる
In this way, when the substrate effect exists, the magnitude of the threshold value vth changes with the change in the source potential Vs due to the output signal, causing a decrease in the gain G of the source follower. Actually, when this substrate effect exists, the gain G of the source follower shown in FIG. 2 is determined by the following equation, which is different from the equation +1).

G″″GoX□ ・・・・・・ (3)几+G o /
 g m しかし、基板効果が大きいと(Kが大きい)、たとえR
を十分に大きくしても、ゲインGは次式したがって・利
得は1以下の小さな値になる。
G″″GoX□ ・・・・・・ (3) 几+G o /
g m However, if the substrate effect is large (K is large), even R
Even if G is made sufficiently large, the gain G will be a small value of 1 or less.

例えば、MOSFETをデプレッション屋のMO8で構
成したとき、基板効果定数には1〜2になるが、このと
きソース電圧Vsを1■に設定すると。
For example, when the MOSFET is configured with MO8 of a depression shop, the substrate effect constant will be 1 to 2, but if the source voltage Vs is set to 1.

ゲインGは基板効果がない場合の約半分となり、出力電
圧が低下する。このため、後段回路の雑音によって、S
N比の劣化を招く。
The gain G is approximately half of that without the substrate effect, and the output voltage decreases. Therefore, due to noise in the subsequent circuit, S
This causes deterioration of the N ratio.

〔発明の目的〕[Purpose of the invention]

本発明の目的は・このような従来の欠点を除去するため
、信号出力回路の利得を上げて、後段回路の雑音に対す
るSN比の劣化が少ない固体撮像装置を提供することに
ある。
An object of the present invention is to provide a solid-state imaging device in which the gain of the signal output circuit is increased and the S/N ratio is less degraded by noise in the subsequent circuit, in order to eliminate such conventional drawbacks.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために・本発明の固体撮像装置は、
第1の基体と、該第1の基体中に形成され、第1の基体
と異なる導電型を有する第2の基体を備え、該第2の基
体中に走査用シフトレジスタ群および該シフトレジスタ
群で読み出された光信号電荷を検出し、増幅するMos
型トランジスタからなる信号出方回路を集積化した固体
撮像素子において、上記MO8型トランジスタを形成す
るための第2の基体を・上記走査用シフトレジスタ群等
を形成するための第2の基体と分離し・がり上記MO8
型トランジスタを形成テる第2の基体に・該トランジス
タのソース電極を接続することに特徴がある。
In order to achieve the above object, the solid-state imaging device of the present invention includes:
a first base; a second base formed in the first base and having a conductivity type different from that of the first base; a scanning shift register group and a shift register group in the second base; Mos detects and amplifies the optical signal charge read out by
In a solid-state imaging device that integrates a signal output circuit consisting of MO8 type transistors, the second base body for forming the MO8 type transistors is separated from the second base body for forming the scanning shift register group, etc. MO8 above
The method is characterized in that the source electrode of the transistor is connected to the second substrate on which the transistor is formed.

〔発明の実施例〕[Embodiments of the invention]

以下・本発明の実施例を2図面により説明する・m3図
は1本発明による固体撮像装置の信号出力回路部の断面
構造図であり、第4図は第3図を回路図に書き表わした
ものである。
Embodiments of the present invention will be explained below with reference to two drawings. Figure 1 is a cross-sectional structural diagram of the signal output circuit section of the solid-state imaging device according to the present invention, and Figure 4 is a circuit diagram of Figure 3. It is something.

第3図において・2oと21は、第1図のCOD転送チ
ャンネル3とCCD部出方ドレイン4と同一の構造を備
え九ものである。また・23,24゜25は、それぞれ
MO8FET22のゲート、ドレイン、ソースである0 第3図の構造が、第1図の従来の構造と異なる点は2n
型の第1基体18内に形成されたp型の第2基体(第1
図の第2基体2に相当する)を・CCD部の第2基体1
9と、信号出力回路部の第2基体26に分離したこと、
およびMO8FET22のソース25を信号出力回路部
の第2基体26に接続したことである。この違いを回路
図で示すと、第2図の第2基体17がアース電位に設定
されているのに対して、第4図の第2基体27はソース
28に接続されていることで表わされている。
In FIG. 3, 2o and 21 have the same structure as the COD transfer channel 3 and the CCD section output drain 4 in FIG.・23, 24° 25 are the gate, drain, and source of the MO8FET 22, respectively. The difference between the structure in FIG. 3 and the conventional structure in FIG. 1 is 2n.
A p-type second substrate (first
・Second base 1 of the CCD section (corresponding to the second base 2 in the figure)
9, and separation into the second base 26 of the signal output circuit section;
and that the source 25 of the MO8FET 22 is connected to the second base 26 of the signal output circuit section. This difference is shown in a circuit diagram by the fact that the second base 17 in FIG. 2 is set to the ground potential, whereas the second base 27 in FIG. 4 is connected to the source 28. has been done.

本実施例の信号出力回路では、第2図の従来の回路と異
なり、ソース28の電位の変化に伴なって第2基体27
も同時に変化するため、ソース28と第2基体270間
の電圧■8は常に一定(Vs=0)になる。
In the signal output circuit of this embodiment, unlike the conventional circuit shown in FIG.
2 also changes at the same time, so the voltage (2)8 between the source 28 and the second substrate 270 is always constant (Vs=0).

したがって・画成(2)において、V!+=0を代入す
ると、閾1直vthは常に一定となり、MO8FET2
2はあたかも基板効果のないMOSFETとして動作す
るため、画成(りでめられる理想的なゲインGを得るこ
とができる。
Therefore, in definition (2), V! If +=0 is substituted, the threshold 1 voltage vth will always be constant, and MO8FET2
2 operates as if it were a MOSFET with no substrate effect, so it is possible to obtain an ideal gain G that can be defined.

m5図は、第3図において第1基体をp型にした場合の
信号出力回路部の断面構造図である。
Figure m5 is a cross-sectional structural diagram of the signal output circuit section in the case where the first substrate in Figure 3 is made of p-type.

すなわち、第5図に示すように、第1基体18′がp型
半導体、第2基体19’、26’がn型半導体、COD
転送チャンネル20′とCCD部出カ出力イン21′が
p型半導体−MO8FET22′のドレイン24′とソ
ース25′がp型半導体である場合にも、その動作は第
3図の場合と全く同じである。MO8FET22’がp
np)ランジスタとして動作し、ドレイン24′に接続
される電源電圧の極性が逆向きになる点が異なるだけで
ある。
That is, as shown in FIG. 5, the first substrate 18' is a p-type semiconductor, the second substrates 19' and 26' are n-type semiconductors, and COD
Even when the transfer channel 20' and the CCD output output input 21' are p-type semiconductors and the drain 24' and source 25' of the MO8FET 22' are p-type semiconductors, the operation is exactly the same as in the case of FIG. be. MO8FET22' is p
np) operates as a transistor, and the only difference is that the polarity of the power supply voltage connected to the drain 24' is reversed.

なお、第3図、第5図の実施例では、電荷結合型固体撮
像装置の信号出力回路部に適用される場合を述べたが・
光信号電荷を読み出す走査回路部の形式はCCD型に限
定されることなく・固体撮像装置の信号出力回路がMO
SFETで構成されるソースフォロアであれば、すべて
のものに適用することができる。例えば・垂直読出し部
にMO8型トランジスタスイッチを・また水平読出し部
にもMOB型トランジスタスイッチをそれぞれ用い。
Although the embodiments shown in FIGS. 3 and 5 are applied to a signal output circuit section of a charge-coupled solid-state imaging device,
The format of the scanning circuit section that reads out the optical signal charge is not limited to the CCD type; the signal output circuit of the solid-state imaging device is MO.
It can be applied to any source follower made of SFET. For example, an MO8 type transistor switch is used in the vertical readout section, and an MOB type transistor switch is used in the horizontal readout section.

光電変換素子の光信号電荷を垂直読出し部のMO8型ト
ランジスタスイッチにより垂直信号線に読出し、この垂
直出力線の光信号電荷を水平読出し部のMO8型トラン
ジスタスイッチにより出力するような固体撮像装置にも
適用できる。
It is also applicable to a solid-state imaging device in which the optical signal charge of the photoelectric conversion element is read out to a vertical signal line by an MO8 type transistor switch in a vertical readout section, and the optical signal charge on this vertical output line is outputted by an MO8 type transistor switch in a horizontal readout section. Applicable.

〔発明の効果〕〔Effect of the invention〕

以上説明したように5本発明によれば、固体撮像装置の
信号出力回路部の第2基体をCCD部第2基体と分離し
・信号出力回路部第2基体とMOSFETのソースを接
続したので、信号出力回路部の利得を大幅に向上させる
ことができ、外部回路の雑音に対するSN比劣化の少な
い映像信号を得ることができる。
As explained above, according to the present invention, the second base of the signal output circuit section of the solid-state imaging device is separated from the second base of the CCD section, and the second base of the signal output circuit section and the source of the MOSFET are connected. The gain of the signal output circuit section can be significantly improved, and a video signal with little deterioration in SN ratio due to external circuit noise can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電荷結合型固体撮像装置の出力回路部の
断面構造図・第2図は第1図の構造の等価回路図、第3
図は本発明の一実施例を示す電荷結合型固体撮像装置の
出力回路部の断面構造図。 第4図は第3図の構造の等価回路図・第5図は第3図の
構造における第1基体をp型半導体にした場合の変形例
断面図である。 1.18.18’・・・第1基体・2,19.19’。 26.26’・・・第2基体、3,20.20’・・・
COD転送チャンネル、4,21.21’・・・CCD
CD刃出カドレイン、22.22’・・・M 08 F
ETのゲート、7,24.24’・・・MOSFETの
ドレイン、8,25.25’・・・MOSFETのソー
ス、10.10’・・・MOSFETのドレインに接続
する電源〇 fJ 1 m 第 3 n ■ 4 図
Figure 1 is a cross-sectional structural diagram of the output circuit section of a conventional charge-coupled solid-state imaging device. Figure 2 is an equivalent circuit diagram of the structure in Figure 1.
The figure is a cross-sectional structural diagram of an output circuit section of a charge-coupled solid-state imaging device showing an embodiment of the present invention. 4 is an equivalent circuit diagram of the structure shown in FIG. 3, and FIG. 5 is a sectional view of a modification of the structure shown in FIG. 3 in which the first substrate is made of a p-type semiconductor. 1.18.18'...first base 2,19.19'. 26.26'...second base, 3,20.20'...
COD transfer channel, 4, 21.21'...CCD
CD blade length, 22.22'...M 08 F
Gate of ET, 7, 24.24'... Drain of MOSFET, 8, 25.25'... Source of MOSFET, 10.10'... Power supply connected to drain of MOSFET 〇fJ 1 m 3rd n ■ 4 Figure

Claims (1)

【特許請求の範囲】 1、第1の基体と、該第1の基体中に形成され。 第1の基体と異なる導電型を有する第2の基体を備え、
該第2の基体中に走査用回路および該走査用回路により
読み出された光信号電荷を増幅するMO8型トランジス
タからなる信号出力回路を集積化した固体撮像素子にお
いて、上記MO8型トランジスタを形成するだめの第2
の基体を、上記走査用回路を形成するための第2の基体
と分離し、かつ上記MO8型トランジスタを形成する第
2の基体に、該MO8型トランジスタのソース電極を接
続することを特徴とする固体撮像素子。
[Scope of Claims] 1. A first substrate; and a device formed in the first substrate. a second base having a conductivity type different from that of the first base;
In a solid-state imaging device in which a scanning circuit and a signal output circuit consisting of an MO8 transistor that amplifies optical signal charges read out by the scanning circuit are integrated in the second substrate, the MO8 transistor is formed. No. 2
The substrate is separated from the second substrate for forming the scanning circuit, and the source electrode of the MO8 transistor is connected to the second substrate for forming the MO8 transistor. Solid-state image sensor.
JP59015186A 1984-02-01 1984-02-01 Solid-state image pickup device Pending JPS60160659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59015186A JPS60160659A (en) 1984-02-01 1984-02-01 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015186A JPS60160659A (en) 1984-02-01 1984-02-01 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS60160659A true JPS60160659A (en) 1985-08-22

Family

ID=11881798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015186A Pending JPS60160659A (en) 1984-02-01 1984-02-01 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS60160659A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605958A1 (en) * 1992-12-28 1994-07-13 Sharp Kabushiki Kaisha Solid state imaging device having high-sensitivity and low-noise characteristics by reducing electrostatic capacity of interconnection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605958A1 (en) * 1992-12-28 1994-07-13 Sharp Kabushiki Kaisha Solid state imaging device having high-sensitivity and low-noise characteristics by reducing electrostatic capacity of interconnection
JPH06252374A (en) * 1992-12-28 1994-09-09 Sharp Corp Solid-state image pickup device
US5357129A (en) * 1992-12-28 1994-10-18 Sharp Kabushiki Kaisha Solid state imaging device having high-sensitivity and low-noise characteristics by reducing electrostatic capacity of interconnection

Similar Documents

Publication Publication Date Title
US7110030B1 (en) Solid state image pickup apparatus
JP2965777B2 (en) Solid-state imaging device
KR100678981B1 (en) Solid-state image pickup device
US6064431A (en) Photoelectric conversion device
US6323479B1 (en) Sensor pixel with linear and logarithmic response
US8471189B2 (en) CMOS linear voltage/current dual-mode imager
JP3667186B2 (en) Signal transfer device and solid-state imaging device using the same
JP2000077642A (en) Solid-state image pickup element
KR20000071486A (en) Amplification type solid states imaging device output circuit capable of stably operating at a low voltage
US6862041B2 (en) Circuit for processing charge detecting signal having FETS with commonly connected gates
JP3624042B2 (en) Photoelectric conversion device
JP3069373B2 (en) Driving method of solid-state imaging device
JPS60160659A (en) Solid-state image pickup device
US7468500B2 (en) High performance charge detection amplifier for CCD image sensors
JP3084034B2 (en) Semiconductor device
JP3548244B2 (en) Photoelectric conversion device
JP2000152090A (en) Solid-state image pickup device
US7362364B2 (en) Solid-state image pickup device with photoelectric charge transferrer to a floating diffusion region
JPS63142781A (en) Solid-state image pickup device
JPH0965215A (en) Solid-state image pickup device
JP4618170B2 (en) Solid-state imaging device
JPH03297287A (en) Solid-state image pickup element
JP2828124B2 (en) Charge transfer device
JPH09237887A (en) Semiconductor device
JPH08163311A (en) Image sensor