JPS60158392A - High-temperature filter element for light-water reactor - Google Patents

High-temperature filter element for light-water reactor

Info

Publication number
JPS60158392A
JPS60158392A JP59014702A JP1470284A JPS60158392A JP S60158392 A JPS60158392 A JP S60158392A JP 59014702 A JP59014702 A JP 59014702A JP 1470284 A JP1470284 A JP 1470284A JP S60158392 A JPS60158392 A JP S60158392A
Authority
JP
Japan
Prior art keywords
reactor
filter element
water
light
water reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59014702A
Other languages
Japanese (ja)
Inventor
山科 泰之
新一 中村
正夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59014702A priority Critical patent/JPS60158392A/en
Publication of JPS60158392A publication Critical patent/JPS60158392A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、軽水炉の一次冷却水中に微量に含オれるCo
を選択的に吸着除去する軽水炉用高温フィルター要素に
関するもめである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field of the invention] The present invention is directed to reducing the amount of Co contained in the primary cooling water of a light water reactor.
This is a dispute regarding high-temperature filter elements for light water reactors that selectively adsorb and remove.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、軽水炉の運転年数の増大とともに、−次冷却系配
管の各所に放射性核種が沈積し、炉停止時の放射線線量
率が次第に増大している。
In recent years, as the number of years of operation of light water reactors has increased, radionuclides have been deposited in various parts of the secondary cooling system piping, and the radiation dose rate during reactor shutdown has gradually increased.

このような放射能蓄積は、定期検査などのために炉停止
した時の点検作業において、検査要員の被曝線量の増大
を招き、ひいては稼動率の低下などの悪影響を与える。
Such accumulation of radioactivity leads to an increase in the radiation dose of inspection personnel during inspection work when the reactor is shut down for periodic inspections, etc., and has negative effects such as a decrease in operating efficiency.

このような放射能蓄積における炉停止時の線量率の増大
は、炉の形式、維持管理方法によって千差万別であるが
、例えばEPRI (Electric Power 
Re5each In5titute +USA )の
まとめによれば、米国のいくつかの沸騰水型軽水炉(B
WR)の再循環ラインの表面線量率は実効有効運転期間
1年(I EFRY : I EffectiveFu
ll Povrer Year )当p 100〜15
0 mR/hの上昇を見せている。
The increase in dose rate during reactor shutdown due to radioactivity accumulation varies widely depending on the reactor type and maintenance management method, but for example, EPRI (Electric Power
According to a summary by Re5each Institute +USA, several boiling water reactors (B
The surface dose rate of the recirculation line (WR) is determined by the effective operating period (IEFRY: I EffectiveFu) of one year.
ll Povrer Year) Current page 100-15
It shows an increase of 0 mR/h.

この放射能蓄積を招く放射性核種のうち、半減期の長い
 Co、Coは特に放射線線量率に与える影響が大きく
問題となる。この放射能蓄積の原因は、構造材の構成元
素であるCoが該構造材の腐食によって冷却水系に溶出
してイオン化し、このイオン化したCoが金属酸化物に
吸着したり、或はイオン交換反応を起して金属酸化物中
に取り込まれる。そしてこの金属酸化物が炉心に運び込
まれることによって取シ込まれているCoが放射能化さ
れるものである。
Among the radionuclides that cause this accumulation of radioactivity, Co and Co, which have long half-lives, pose a particular problem because of their large influence on radiation dose rates. The cause of this accumulation of radioactivity is that Co, which is a constituent element of the structural material, is ionized by elution into the cooling water system due to corrosion of the structural material, and this ionized Co is adsorbed to metal oxides, or due to ion exchange reactions. and is incorporated into metal oxides. When this metal oxide is carried into the reactor core, the Co taken in is made radioactive.

現在、実機においては放射能化されたCoを含む金属酸
化物の除去を、炉水温度を一旦室温まで下げることによ
り行っている。しかしながら、このようなCoの除去方
法は、炉水を一旦冷却して除去した後、再度加熱して循
環させるため、プラントの熱損失が大きい問題がある。
Currently, in actual equipment, metal oxides containing radioactive Co are removed by once lowering the reactor water temperature to room temperature. However, in this method of removing Co, since reactor water is once cooled and removed, it is heated again and circulated, which causes a problem of large heat loss in the plant.

これを改善するため、軽水炉の水炉環境のよう力高温(
270〜290℃)、高圧(56〜76 atm )の
条件下でのCo除去を効率的かつ有効に行えるものとし
て、耐熱度の高い無機質イオン交換体が注目されている
In order to improve this, we developed a system that uses high temperatures (such as the water reactor environment of light water reactors).
Inorganic ion exchangers with high heat resistance are attracting attention as they can efficiently and effectively remove Co under conditions of high pressure (56 to 76 atm).

この無機質イオン交換体としては例えばマグネタイト、
酸化アルミニウム、二酸化ゾルコニウムなどのセラミッ
クの粉末、または焼結体の形で炉水の流通路に充填して
用いられるものである。
Examples of this inorganic ion exchanger include magnetite,
It is used by filling the reactor water passage in the form of ceramic powder such as aluminum oxide or zorconium dioxide, or in the form of a sintered body.

しかしながら、粉末のものは炉水の流速が規定値以上に
増大したり、脈流等の流速変動が生じると、炉水中に流
出する虞れがあり、また焼結体も亀裂の発生により粉末
が流出してしまう虞れがある。更にこれら無機質イオン
交換体はセラミックであるので、その形状が限定され、
しかもフィルター要素として別個に形成し、とれを流通
路に組み込まなければならず加工、組立がめんどうで、
現在のところ実用化には至っていない。
However, if the flow rate of the reactor water increases beyond the specified value or if flow rate fluctuations such as pulsation occur, there is a risk that the powder will flow into the reactor water, and the powder may also leak into the reactor water due to the occurrence of cracks in the sintered body. There is a risk that it may leak out. Furthermore, since these inorganic ion exchangers are ceramic, their shapes are limited,
Moreover, the filter element must be formed separately and the receptacle must be incorporated into the flow path, making processing and assembly cumbersome.
It has not yet been put into practical use.

〔発明の目的〕[Purpose of the invention]

本発明はかかる点に鑑み彦されたもので、軽水炉の炉水
中に含まれるCoに対する吸着能力が大きく、炉水中へ
の流出の虞れもなく、シかもフィルターとして任意の形
状に加工することができる上、高温高圧炉水中において
もフィルター材の生成が可能な軽水炉用高温フィルター
要素を提供するものである。
The present invention has been developed in view of these points, and has a large adsorption capacity for Co contained in the reactor water of a light water reactor, and there is no risk of Co being leaked into the reactor water, and it can be processed into any shape as a filter. The object of the present invention is to provide a high-temperature filter element for a light water reactor that is capable of producing a filter material even in high-temperature, high-pressure reactor water.

〔発明の概要〕[Summary of the invention]

本発明者らは、各種無機質イオン交換体のCo吸着能力
を比較検討した結果、Mnを含むスピネル型酸化物が最
も優れていることを見い出したものである。
As a result of comparative studies on the Co adsorption ability of various inorganic ion exchangers, the present inventors have found that a spinel type oxide containing Mn is the most excellent.

即ち本発明は、V量パーセントでCr9〜20%、Mn
 9〜25 %、C0,5%以下、N1%以下、Sl 
2%以下、残部F’eよ如なる合金の表面を酸化して、
この酸化物にCoを選択的に吸着させることを特徴とす
るものである。
That is, in the present invention, Cr9 to 20%, Mn
9-25%, C0.5% or less, N1% or less, Sl
2% or less, the balance F'e, by oxidizing the surface of any alloy,
This method is characterized by selectively adsorbing Co to this oxide.

以下本発明の詳細な説明する。先ず本発明に係る軽水炉
用高温フィルター要素を形成する素材合金の組成につい
て説明する。
The present invention will be explained in detail below. First, the composition of the material alloy forming the high temperature filter element for a light water reactor according to the present invention will be explained.

Crは鋼の耐食性を向上させるために有効であり、9チ
未満では、添加効果が少なく、20%を越える過剰の添
加は加工性を害するので、上記範囲に規定し、望ましく
は11〜18%が良い。
Cr is effective for improving the corrosion resistance of steel, and if it is less than 9%, the effect of addition is small, and if it is added in excess of 20%, it impairs workability, so it is defined in the above range, preferably 11 to 18%. is good.

Mnは本発明において合金表面にCo吸着能を有する(
 Mn 、F e )304を形成させる最も重要な元
素で、9チ未満ではその効果が少なく、また25チを越
える過剰の添加は加工性、耐食性を害するので、上記範
囲に規定し、望ましくは11〜20チが良い。
In the present invention, Mn has Co adsorption ability on the alloy surface (
Mn, Fe) is the most important element for forming 304, and if it is less than 9 thi, its effect will be small, and if it is added in excess of 25 thi, it will impair workability and corrosion resistance. ~20 inches is good.

Cは鋼を成形・加工するために必要々強度を与えると共
にフィルター基体を維持するだめの強度を与える作用を
なすものである。0.5チを越える過剰添加は耐食性、
靭性を害することから、これ以下とし、望ましくは02
%以下とする。
C functions to provide the necessary strength for forming and processing the steel, and also to provide sufficient strength to maintain the filter base. Excessive addition of more than 0.5 inch will result in corrosion resistance.
Since it impairs toughness, it should be less than this, preferably 02
% or less.

Nは強度および耐食性を向上させる作用をなすもので、
1チを越えて過剰に添加するとミクロ・ボアを発生する
ので、これ以下とし、望ましくは0.6チ以下とする。
N acts to improve strength and corrosion resistance,
If it is added in excess of 1 inch, micro-bores will occur, so the amount should be less than this, preferably 0.6 inch or less.

Slは鋼溶製時の揚泥れを良くすると共に、脱酸剤とし
て必要な元素で、2%を越える過剰の添加は靭性を害す
るのでこれ以下とする。
Sl is an element necessary as a deoxidizing agent and improves sludge during steel production. Excessive addition of more than 2% impairs toughness, so it should be kept below this value.

上記組成の合金表面にCo吸着能を有する酸化物を形成
する方法として大別しての高温水中処理、■大気中酸化
処理、■湿窒素処理等の方法により、マンガンフェライ
ト(Mn t Fe ) 304に代表されるスピネル
型酸化物を形成させる。
Manganese ferrite (MntFe) 304 is a typical method for forming an oxide having Co adsorption ability on the surface of an alloy having the above composition, which can be roughly divided into high-temperature water treatment, (1) atmospheric oxidation treatment, (2) wet nitrogen treatment, etc. A spinel-type oxide is formed.

高温水中処理法としては、上記合金をフィルター形状に
形成し、これを炉水の流路中に配置することにより高温
高圧炉水中で合金表面が使用中に酸化されて、Co吸着
能を有するマンガンフェライトで代表されるスぎネル型
酸化物が形成される。この方法によれば、フィルター材
を別個に炉外で形成させること力<、炉運転中に炉水と
の接触により形成されるので、従来のセラミックのもの
に比べて加工、組込みが極めて容易である。また高温水
中処理法としては炉外のオートクレーブ中で、250〜
500℃、40〜100 atmの水または水蒸気中に
放置して表面を酸化させる方法でも良い。
In the high-temperature underwater treatment method, the above alloy is formed into a filter shape and placed in the flow path of reactor water, so that the alloy surface is oxidized during use in high-temperature, high-pressure reactor water, and manganese having Co adsorption ability is produced. A Suginel type oxide, typified by ferrite, is formed. According to this method, the filter material is not formed separately outside the furnace, but is formed by contact with reactor water during furnace operation, so it is extremely easy to process and assemble compared to conventional ceramic materials. be. In addition, as a high-temperature underwater treatment method, in an autoclave outside the furnace,
Alternatively, the surface may be oxidized by leaving it in water or steam at 500° C. and 40 to 100 atm.

また合金表面に形成する酸化物は、マンガンフェライト
に代表される(Mn + F e ) 504のスピネ
ル型酸化物以外の酸化物が混在しても良く、例えば(M
n、Fe)203などコランダム型酸化物はCo吸着能
が少ないが、酸化雰囲気によっては混在しても良い。ま
た(Mn 、F e ) s 04のFeが他の元素、
例えば合金中に含まれているCr、Tl +At+Zr
+M。
In addition, the oxide formed on the alloy surface may be mixed with an oxide other than the (Mn + Fe) 504 spinel type oxide represented by manganese ferrite; for example, (M
Although corundum type oxides such as n, Fe) 203 have a low Co adsorption ability, they may be mixed depending on the oxidizing atmosphere. Moreover, Fe in (Mn, Fe) s 04 is another element,
For example, Cr, Tl + At + Zr contained in the alloy
+M.

などの少なくとも一種もしくは数種が、一部Feと置換
した(Mn、Fe、CrlTilAtlZrlMO)3
04のスピネル型酸化物でも良い。
(Mn, Fe, CrlTilAtlZrlMO)3
04 spinel type oxide may also be used.

また本発明のフィルター要素の形状は、メツシュ状、?
−ル状、切粉状など任意の形状に成型でき、従来のセラ
ミック吸着体の如く、その形状が限定されない。
Furthermore, the shape of the filter element of the present invention may be mesh-like or ?
- It can be molded into any shape such as a round shape or a chip shape, and unlike conventional ceramic adsorbents, the shape is not limited.

本発明の軽水炉用高温フィルター要素は、従来のセラミ
ックフィルターに比べてCo吸着能が数段も向上してい
るが、その原理は合金表面に形成されたマンガンフェラ
イトに代表されるスピネル型酸化物が何らかの作用によ
り優れた吸着作用を発揮するものであると考えられる。
The high-temperature filter element for light water reactors of the present invention has improved Co adsorption ability by several orders of magnitude compared to conventional ceramic filters.The principle behind this is that spinel-type oxides, typified by manganese ferrite, formed on the alloy surface. It is thought that it exhibits an excellent adsorption effect due to some action.

また本発明のフィルター要素は、基材となる合金組成中
に放射能化される虞れのあるNi、およびその不純物で
あるcoを含まず、軽水炉中にこれを設置しても、オー
ステナイト系ステンレス鋼のように腐食生成物としての
Ni、C,を炉水中に放出することが々く、低CO化が
進められている現状にも沿うものである。
In addition, the filter element of the present invention does not contain Ni, which may be radioactive, and Co, which is an impurity thereof, in its base alloy composition, and even when installed in a light water reactor, it is made of austenitic stainless steel. Like steel, corrosion products such as Ni and C are often released into the reactor water, and this is in line with the current trend toward lower CO2 emissions.

〔発明の実施例〕[Embodiments of the invention]

(実施例1) 第1表に示す組成の合金試料A、B、Cを用意し、これ
をエメリーナ600で表面湿式研摩した後、夫々Coイ
オンを約220 PPb含む溶液中に別個に浸漬して、
これを静置式オートクレーブに挿入し、290℃、飽和
蒸気圧下で24時間保持した。この後、オートクレーブ
より取り出して、溶液中に残留しているCo濃度イオン
を測定し、その濃度とCo吸着率を第2表に示した。な
おこの吸着試験は3回縁す返して行い、その平均値を示
した。
(Example 1) Alloy samples A, B, and C having the compositions shown in Table 1 were prepared, and after surface wet polishing with Emelina 600, each sample was immersed separately in a solution containing about 220 PPb of Co ions. ,
This was inserted into a stationary autoclave and maintained at 290°C under saturated vapor pressure for 24 hours. Thereafter, the solution was taken out from the autoclave, and the Co concentration ions remaining in the solution were measured, and the concentration and Co adsorption rate are shown in Table 2. This adsorption test was repeated three times and the average value is shown.

壕だ比較のためにSUS 304鋼についても、同様に
Co吸着試験を行い、その結果を第2表に併記した。
For comparison, a Co adsorption test was also conducted on SUS 304 steel, and the results are also listed in Table 2.

第 1 表 第2表 上表の結果から明らかな如く本発明の実施例品は何れも
Co吸着率が87チ以上と極めて優れ、SUS 304
に比べてCo吸着量が5倍程度である。
As is clear from the results shown in Table 1 and Table 2, all of the example products of the present invention had an extremely excellent Co adsorption rate of 87 cm or more, and SUS 304
The amount of Co adsorption is about 5 times that of .

またオートクレーブによる酸化処理後の試料の表面状態
をX線回析によって調べたところ、実施例品試料A、B
、Cとも、表面にAmを含む(Mn、Fe)504が形
成され、またSUS 304鋼の表面にはCr 、 F
eを主成分とする酸化物が形成されていた。
In addition, when the surface condition of the samples after oxidation treatment in an autoclave was investigated by X-ray diffraction, it was found that Example product samples A and B
, C, (Mn, Fe) 504 containing Am is formed on the surface, and Cr, F is formed on the surface of SUS 304 steel.
An oxide containing e as a main component was formed.

(実施例2) 第1表に示す組成の試料A、B、Cを用意して、これら
な予めオートクレーブ中に浸漬して、酸化物を表面に生
成させた。次にこの試料を上記実施例1と同様にCoイ
オンを2 Q OPPbを含む溶液中に浸漬し、オート
クレーブ中で24時間放置した。この後、残留している
Co濃度イオンを測定し、その結果を第3表に示した。
(Example 2) Samples A, B, and C having the compositions shown in Table 1 were prepared and immersed in an autoclave in advance to generate oxides on the surfaces. Next, this sample was immersed in a solution containing 2Q OPPb with Co ions in the same manner as in Example 1 above, and left in an autoclave for 24 hours. After this, the remaining Co concentration ions were measured, and the results are shown in Table 3.

なお、比較のために、無機質イオン交換体であるマグネ
タイト(pa3o4)を用いて、CO吸着能を同様に測
定し、その結果を第3表に併記した1第 3 表 〔発明の効果〕
For comparison, the CO adsorption capacity was similarly measured using magnetite (PA3O4), which is an inorganic ion exchanger, and the results are also listed in Table 3.Table 3 [Effects of the Invention]

Claims (1)

【特許請求の範囲】 M量ノ?−セントで、クロム(Cr)9〜20%。 マンガン(Mn) 9〜25 % 、炭素(C) 0.
5 %以下、窒素(N)1チ以下、ケイ素(81)2−
以下。 残部実質的に鉄(Fe)よりなる合金の表面を酸化して
、この酸化物にコパル)(Co)を選択的に吸着させる
ことを特徴とする軽水炉用高温フィルター要素。
[Claims] M amount? -St, chromium (Cr) 9-20%. Manganese (Mn) 9-25%, Carbon (C) 0.
5% or less, nitrogen (N) 1 t or less, silicon (81) 2-
below. A high-temperature filter element for a light water reactor, characterized in that the surface of an alloy, the remainder of which is essentially iron (Fe), is oxidized to selectively adsorb copal (Co) to the oxide.
JP59014702A 1984-01-30 1984-01-30 High-temperature filter element for light-water reactor Pending JPS60158392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59014702A JPS60158392A (en) 1984-01-30 1984-01-30 High-temperature filter element for light-water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59014702A JPS60158392A (en) 1984-01-30 1984-01-30 High-temperature filter element for light-water reactor

Publications (1)

Publication Number Publication Date
JPS60158392A true JPS60158392A (en) 1985-08-19

Family

ID=11868508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59014702A Pending JPS60158392A (en) 1984-01-30 1984-01-30 High-temperature filter element for light-water reactor

Country Status (1)

Country Link
JP (1) JPS60158392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164093A (en) * 1991-11-29 1992-11-17 Motorola, Inc. Apparatus and method for removing metallic contamination from fluids using silicon beads

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5164093A (en) * 1991-11-29 1992-11-17 Motorola, Inc. Apparatus and method for removing metallic contamination from fluids using silicon beads

Similar Documents

Publication Publication Date Title
Cubicciotti Potential-pH diagrams for alloy-water systems under LWR conditions
JPH04232220A (en) Corrosion-resistant zirconium alloy with improved extensibility
EP0105498B1 (en) Inorganic adsorbent, production thereof and use thereof
JPS60158392A (en) High-temperature filter element for light-water reactor
Honda et al. Radiation buildup on stainless steel in a boiling water reactor environment
US4282092A (en) Process for preparing inorganic particulate adsorbent and process for treating nuclear reactor core-circulating water
Gromov et al. Physical—chemical principles of lead—bismuth coolant technology
Murray et al. Dilute chemical decontamination process for pressurized and boiling water reactor applications
JPS58184593A (en) Method of processing water contact portion surface of water contact portion structure of water reactor
JPS6110797A (en) High-temperature cobalt adsorbent material
JPH03153858A (en) Stainless steel having elution resistance in high temperature water
DE2703975C3 (en) Tritium permeation barrier for highly heat-resistant materials
Velmurugan et al. The passivation effects of magnesium ion on PHWR primary heat transfer system structural materials
JPS59164994A (en) Cobalt removable device for light water reactor
Shih et al. Characterization of solid particles sampled from condensates in boiling water reactor
JPS62233796A (en) Method of reducing radioactivity of nuclear power plant
JPS60128393A (en) Purifier for furnace water of nuclear reactor
JPH0424434B2 (en)
Umeki et al. CORROSION CHARACTERISTIC OF TYPE 410 STAINLESS STEEL IN PWR PRIMARY COOLANT SYSTEM CIRCUMSTANCE
JPS61102597A (en) Boiling water type nuclear power plant
JPS6022928A (en) Inorganic adsorbent and its preparation
Breden et al. Summary of Corrosion Investigations on High-Temperature Aluminum Alloys. Period Covered: February 1955-October 1956
JPS61220785A (en) Production of sintered filter medium for adsorbing inorganic ion
Turner et al. Factors affecting the consolidation of steam generator sludge
JPH037916B2 (en)