JPS60157072A - Tritium permeation preventive structure of core structure material of fusion reactor - Google Patents

Tritium permeation preventive structure of core structure material of fusion reactor

Info

Publication number
JPS60157072A
JPS60157072A JP59013062A JP1306284A JPS60157072A JP S60157072 A JPS60157072 A JP S60157072A JP 59013062 A JP59013062 A JP 59013062A JP 1306284 A JP1306284 A JP 1306284A JP S60157072 A JPS60157072 A JP S60157072A
Authority
JP
Japan
Prior art keywords
tritium
liquid metal
core
plasma
fusion reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59013062A
Other languages
Japanese (ja)
Other versions
JPH0246918B2 (en
Inventor
鈴木 達志
岡崎 士郎
慎吾 平田
三角 昌弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP59013062A priority Critical patent/JPS60157072A/en
Publication of JPS60157072A publication Critical patent/JPS60157072A/en
Publication of JPH0246918B2 publication Critical patent/JPH0246918B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、核融合炉の第1壁、ダイバータ/リミタ−等
の炉心管造材において、液体金属を使用したトリチウム
透過防止構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tritium permeation prevention structure using liquid metal in core tube construction materials such as the first wall and diverter/limiter of a nuclear fusion reactor.

核融合炉、例えば円周方向に沿って作ったプラズマ中に
電流を流して、この電流によって発生するポロイダル磁
場の力によってプラズマをトーラス状に閉じ込めて核融
合反応を起させるトカマク型核融合炉では、第1図に示
すごとく、ドーナツ状のプラズマ1の周囲に内側ブラン
ケット2、外側ブランケット2′、内側遮蔽体3、外側
遮蔽体3′、トロイダル磁場コイル4、ポロイダル磁場
コイル5等が配置されている。その他高いエネルギーを
持つ庭電気的に中性の粒子をプラズマに入射して、その
エネルギーをプラズマ1に与えることによって、プラズ
マ1の温度を上げる役目をはたす中性粒子入射加熱装置
(図示省略)、プラズマ1中に混入してくる放電ガス以
外のイオンや原子9分子等の不純物を系外に排出する排
気装置7、プラズマの周辺の磁力線の形状に工夫して、
外に逃げ出したプラズマが内側ブランケット2の壁に直
接蟲らないように排気装置7に導くダイバータ/す5ル
)タロ等が設置されている。
A nuclear fusion reactor, for example, a tokamak-type fusion reactor, in which a current is passed through the plasma created along the circumference, and the force of the poloidal magnetic field generated by this current confines the plasma in a torus shape to cause a fusion reaction. As shown in FIG. 1, an inner blanket 2, an outer blanket 2', an inner shield 3, an outer shield 3', a toroidal magnetic field coil 4, a poloidal magnetic field coil 5, etc. are arranged around a doughnut-shaped plasma 1. There is. In addition, a neutral particle injection heating device (not shown) serves to raise the temperature of the plasma 1 by injecting electrically neutral particles with high energy into the plasma and giving the energy to the plasma 1; The exhaust device 7 exhausts impurities such as ions and atoms 9 molecules other than the discharge gas mixed into the plasma 1 out of the system, and the shape of the magnetic field lines around the plasma is devised.
A diverter or the like is installed to guide the escaped plasma to the exhaust device 7 so that it does not directly impinge on the wall of the inner blanket 2.

トカマク型核融合炉は概略上記のように構成されている
が、このうち内側及び外側プランケラ) 2 、2’は
容器内のリチウム化合物と融合反応によシ発生した中性
子とを反応せしめて核融合炉の燃料であるトリチウム(
三重水素)を生産する機能と、その中性子のもつエネル
ギーを能を備えておシ、トカマク型核融合炉の重要な機
器の一つでおる。この内側及び外側ブランケット2,2
′のプラズマ側の壁面を形成する第1壁及びダイバータ
/リミタ6等のプラズマ1をとり囲む炉心構造材表面は
プラズマから漏洩する高速中性子、荷電/中性子トリチ
ウム粒子。
A tokamak-type fusion reactor is roughly configured as described above, and the inner and outer planchers (2 and 2') react with neutrons generated by a fusion reaction with the lithium compound in the container to perform nuclear fusion. Tritium, the fuel for the furnace (
It has the ability to produce tritium (tritium) and the energy of its neutrons, making it an important piece of equipment in tokamak-type fusion reactors. This inner and outer blanket 2,2
The surfaces of core structural materials surrounding the plasma 1, such as the first wall forming the wall surface on the plasma side of ' and the diverter/limiter 6, contain fast neutrons and charged/neutron tritium particles leaking from the plasma.

重水素粒子、及びヘリウム粒子などの厳しい粒子負荷、
熱負荷を受ける。特に荷電/中性トリチウム粒子は高温
の構造材中では高透過性を有すること、放射性核種であ
ること、通常の構造材の冷却材であるH2O、D20 
の同位体であるため冷却材からの分離除去が困難である
こと等によυ極力冷却劇中に漏入することを防止するこ
とが必要である。
Severe particle loads such as deuterium particles and helium particles,
Subject to heat load. In particular, charged/neutral tritium particles have high permeability in high-temperature structural materials, are radionuclides, and are commonly used as coolants for structural materials such as H2O and D20.
It is difficult to separate and remove it from the coolant because it is an isotope of

従来、第1壁などの炉心構造材は、第2図に示すように
プラズマ側の壁8の後面部にH2OあるいはD20等の
冷却材9を通し、炉心プラズマから放射される14M8
Vの高速中性子束と荷電/中性トリチウム束の高熱流束
下で・のプラズマ側の壁8の材料温度を許容温度以下に
保持するための冷却材流路10を設けたものである。
Conventionally, as shown in FIG. 2, core structural members such as the first wall pass a coolant 9 such as H2O or D20 through the rear surface of the wall 8 on the plasma side, and the 14M8 radiated from the core plasma is heated.
A coolant flow path 10 is provided to maintain the material temperature of the plasma-side wall 8 below an allowable temperature under the high heat flux of the high-speed neutron flux of V and the charged/neutral tritium flux.

しかしながら、本方式では炉心構造材の温度が許容値以
下になるが、反面炉心構造材表面に入射した荷電/中性
トリチウム粒子の1部が直接冷却材9側へ拡散漏入する
ため、冷却材9中のトリチウム濃度が運転と共に上昇し
、安全上の問題が生じていた。
However, in this method, although the temperature of the core structural material falls below the allowable value, on the other hand, some of the charged/neutral tritium particles incident on the surface of the core structural material directly diffuse and leak into the coolant 9 side. The tritium concentration in 9 increased with operation, creating a safety problem.

本発明は斯かる問題を解消すべくなされたものであシ、
構造材温度の上昇を防止でき且つ冷却系へのトリチウム
透過漏入量を低減できる核融合炉の炉心構造材のトリチ
ウム透過防止構造を提供せんとするものである。
The present invention has been made to solve such problems.
It is an object of the present invention to provide a structure for preventing tritium permeation of a core structural material of a nuclear fusion reactor, which can prevent a rise in the temperature of the structural material and reduce the amount of tritium permeated and leaked into a cooling system.

本発明のトリチウム透過防止構造は、炉心構造材のプラ
ズマ表面と冷却材流路間に狭い一定の空間を設け、該空
間内にNa、Pb 等の液体金属を充填し、該液体金属
層によって、荷電/中性トリチウム粒子を炉心構造材冷
却用の冷却材中に拡散漏入する前に捕捉し、該粒子をプ
レナム部に拡散移行せしめ、Pd薄膜等よりなる透過性
隔膜を介してプラズマ側へ再放出して、構造材冷却系へ
のトリチウム透過漏入量を低減するようにしたものであ
る。
The tritium permeation prevention structure of the present invention provides a narrow fixed space between the plasma surface of the core structural material and the coolant flow path, fills the space with a liquid metal such as Na or Pb, and uses the liquid metal layer to Captures charged/neutral tritium particles before they diffuse into the coolant for cooling core structural materials, diffuses them into the plenum, and transfers them to the plasma side through a permeable diaphragm made of a thin Pd film, etc. It is designed to reduce the amount of tritium that permeates and leaks into the structural material cooling system by re-releasing it.

以下本発明の一実施例について詳細に説明する。第3図
に於いて8は第1壁あるいはダイバータ/リミタ等の炉
心ffW造材のプラズマ側の壁であり、その背面で冷却
材流路10との間に狭い空間からなる液体金属層11を
設け、該液体金属11側内にはN、、Pb等の液体金R
12が充填されでいる。液体金M≦JPfllの上部に
プレナム部13を設置し、該プレナム部13のプラズマ
側に透過性隔膜工4を設けている。又冷却HJ流路10
の中に)120又はD20 等の冷却材9を流し、構造
材を冷却している。
An embodiment of the present invention will be described in detail below. In FIG. 3, 8 is the plasma side wall of the core ffW material such as the first wall or diverter/limiter, and a liquid metal layer 11 consisting of a narrow space is formed between it and the coolant channel 10 on the back side. The liquid metal 11 is provided with liquid gold R such as N, Pb, etc.
12 has been filled. A plenum part 13 is installed above liquid gold M≦JPfl, and a permeable diaphragm 4 is provided on the plasma side of the plenum part 13. Also cooling HJ flow path 10
A coolant 9 such as ) 120 or D20 is flowed into the structure to cool the structural material.

次に上記措成の本実施例の作用について説明する。炉心
474造栃のプラズマ側の壁8′の表面から入射して来
る荷電/中性トリチウム粒子は、構造材の構成金屑の原
子と衝突を繰り返えしてエネルギーのすべてを失うまで
飛行する。この飛行距離に到達した該トリチウムは、そ
の飛行距離到達部と液体金属層11のトリチウム濃度差
により、濃度の低い液体金属層11側に拡散し、そこで
捕捉される。液体金属はトリチウム溶解度が小さく、且
つトリチウム拡散係数が大きいため、液体金属層11に
捕捉されたトリチウムは液体金属層11の上部に設けら
れたプレナム部13に拡散移行する。プレナム部13に
移行したトリチウムは、透過係数の大きいPd薄膜など
から成る透過性隔膜14を介して高真望であるプラズマ
側へ再放出される。
Next, the operation of this embodiment of the above arrangement will be explained. Charged/neutral tritium particles that enter from the surface of the plasma-side wall 8' of the reactor core 474 chestnut repeatedly collide with the atoms of the gold scraps that make up the structural material and fly until they lose all of their energy. . The tritium that has reached this flight distance is diffused to the liquid metal layer 11 side where the concentration is lower due to the difference in tritium concentration between the part where the flight distance has been reached and the liquid metal layer 11, and is captured there. Since the liquid metal has a low tritium solubility and a large tritium diffusion coefficient, the tritium captured in the liquid metal layer 11 diffuses into the plenum section 13 provided above the liquid metal layer 11. The tritium that has migrated to the plenum section 13 is re-emitted to the plasma side, which has a high visibility, through a permeable diaphragm 14 made of a Pd thin film or the like having a large permeability coefficient.

以上詳述した通り本発明のトリチウム透過防止構造によ
れば、炉心4:l’?造材中に入射して来るム拡散係数
が大きいことを利用して、直接冷却材側に拡散漏入する
のを防止できるので、炉運転中における冷却材中のトリ
チウム濃度の上昇を抑止することができ、更に液体金属
の熱伝導率が大きいことを利用して構造月の除熱性能の
低「を防止できるので、機能上、安全上すぐれた炉心構
造材が得られるという効果がある。
As detailed above, according to the tritium permeation prevention structure of the present invention, the core 4:l'? By taking advantage of the large diffusion coefficient of tritium that enters the building material, it is possible to prevent the tritium from diffusing and leaking directly into the coolant, thereby suppressing the increase in tritium concentration in the coolant during furnace operation. In addition, the high thermal conductivity of liquid metal can be used to prevent poor heat removal performance from the structure, resulting in a core structural material that is superior in terms of functionality and safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はトカマク型核融合炉の概略を示す断面図、第2
図は従来の炉心構造材の概略断面図、第3図は本発明の
炉心構造+4のトリチウム透過防止構造の一実施例を示
1桓略断面図である。 8・・・炉心′41・7造材のプラズマ(11すの壁9
・・・冷却月 10・・・冷却材流路11・・・液体金
属層 12・・・液体全屈J3・・・プレナノ一部 1
4・・・透過性隔膜用 願 人 川崎重工業株式会社 代 倶1・ 人 弁理士 高 雄次(ト“ゝ・)第1図 第2図 第3図
Figure 1 is a cross-sectional view showing the outline of a tokamak-type fusion reactor, Figure 2
The figure is a schematic cross-sectional view of a conventional core structural material, and FIG. 3 is a schematic cross-sectional view of one embodiment of the tritium permeation prevention structure of the core structure +4 of the present invention. 8...Plasma of reactor core '41.7 material (11th wall 9
...Cooling month 10...Coolant channel 11...Liquid metal layer 12...Liquid total bending J3...Pre-nano part 1
4...For permeable diaphragms Applicant: Kawasaki Heavy Industries Co., Ltd. Patent attorney: Yuji Taka (T"ゝ・) Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 炉心構造材のプラズマ表面と冷却材流路間に狭い一定の
空間を設け、該空間内に液体金属を充填した液体金属層
と、該液体金属層の上部にプレナム部を設け、該プレナ
ムの炉心側の表面に透過性隔膜を設置して、構造材冷却
系へのトリチウム透過漏入量を低減するようにしたこと
を特徴とする核融合炉の炉心措造月のトリチウム透過防
止構造。
A narrow fixed space is provided between the plasma surface of the core structural material and the coolant channel, a liquid metal layer filled with liquid metal is provided in the space, and a plenum is provided above the liquid metal layer, and the core of the plenum is provided with a liquid metal layer filled with liquid metal. A tritium permeation prevention structure for a nuclear fusion reactor core structure, characterized in that a permeable diaphragm is installed on the side surface to reduce the amount of tritium permeated and leaked into the structural material cooling system.
JP59013062A 1984-01-27 1984-01-27 Tritium permeation preventive structure of core structure material of fusion reactor Granted JPS60157072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59013062A JPS60157072A (en) 1984-01-27 1984-01-27 Tritium permeation preventive structure of core structure material of fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59013062A JPS60157072A (en) 1984-01-27 1984-01-27 Tritium permeation preventive structure of core structure material of fusion reactor

Publications (2)

Publication Number Publication Date
JPS60157072A true JPS60157072A (en) 1985-08-17
JPH0246918B2 JPH0246918B2 (en) 1990-10-17

Family

ID=11822646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59013062A Granted JPS60157072A (en) 1984-01-27 1984-01-27 Tritium permeation preventive structure of core structure material of fusion reactor

Country Status (1)

Country Link
JP (1) JPS60157072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309288A (en) * 1989-05-24 1990-12-25 Hitachi Ltd Nuclear fusion reactor
CN112682585A (en) * 2020-12-18 2021-04-20 合肥工业大学 Welding assembly for manufacturing square-tube-array cooling water channel and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02309288A (en) * 1989-05-24 1990-12-25 Hitachi Ltd Nuclear fusion reactor
CN112682585A (en) * 2020-12-18 2021-04-20 合肥工业大学 Welding assembly for manufacturing square-tube-array cooling water channel and preparation method thereof

Also Published As

Publication number Publication date
JPH0246918B2 (en) 1990-10-17

Similar Documents

Publication Publication Date Title
US2832733A (en) Heavy water moderated neutronic reactor
US3053743A (en) Method of making a compartmented nuclear reactor fuel element
US3449208A (en) Small nuclear reactor heat source
JPS60157072A (en) Tritium permeation preventive structure of core structure material of fusion reactor
US2982709A (en) Neutronic reactor design to reduce neutron loss
JPH0666978A (en) Fuel assembly and nuclear reactor core
US3440140A (en) Protection of zirconium alloy components against hydriding
JPH038714B2 (en)
Woolstenhulme et al. Irradiation Testing Methods for Fast Spectrum Reactor Fuels and Materials in DOE’s Thermal Spectrum Test Reactors
US3088891A (en) Fuel elements for neutronic reactors
Trauger Some major fuel-irradiation test facilities of the oak ridge national laboratory
JPS62263979A (en) Structural material preventing permeation of hydrogen
US3974028A (en) Reactor and method of operation
Holland et al. Accidental tritium release from solid breeding blankets
Pedersen et al. PRTR Calandria fabrication report
JPH0252235B2 (en)
GB1056305A (en) Radiation reactor
JPS60157075A (en) Gas cooling type tritium breeding blanket for fusion reactor
JPS6131834B2 (en)
Miles Neutronic Reactor Design to Reduce Neutron Loss
Palladino et al. The engineering design of power reactors
JP2911058B2 (en) Fast reactor core
JPS5971000A (en) Incore tube for reactor fuel test
Shane Nuclear power plant core materials and fabrication
JPS63151895A (en) Manufacture of nuclear fuel coated tube