JPS60157071A - Cooling structure of first wall for fusion reactor - Google Patents

Cooling structure of first wall for fusion reactor

Info

Publication number
JPS60157071A
JPS60157071A JP59013058A JP1305884A JPS60157071A JP S60157071 A JPS60157071 A JP S60157071A JP 59013058 A JP59013058 A JP 59013058A JP 1305884 A JP1305884 A JP 1305884A JP S60157071 A JPS60157071 A JP S60157071A
Authority
JP
Japan
Prior art keywords
wall
coolant
blanket
cooling
fusion reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59013058A
Other languages
Japanese (ja)
Other versions
JPH0246919B2 (en
Inventor
武司 小林
黒田 敏公
誠一郎 山崎
藤井 政治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP59013058A priority Critical patent/JPS60157071A/en
Publication of JPS60157071A publication Critical patent/JPS60157071A/en
Publication of JPH0246919B2 publication Critical patent/JPH0246919B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Plasma Technology (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、核融合炉用ブランケットのプラズマ対向面を
構成する第1壁の冷却構造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the cooling structure of a first wall forming a plasma facing surface of a blanket for a nuclear fusion reactor.

先ず、トカマク型核融合炉の概略f:説明する。First, an outline of a tokamak-type fusion reactor will be explained.

トカマク型核融合炉は、円周方向に宿って作ったプラズ
マ中に電流を流して、この電流によって発生する磁場の
力でプラズマ忙閉込めるもので、第1図に示す如くプラ
ズマ1を囲むように内側ブランケット2、外側ブランケ
ット2′、内気装置7等が配置されている。トカマク型
核融合炉は概ね上記のような機器で構成されているが、
これらの中で内側、外側ブランケット2゜2′は容器内
で核融合反応によって発生した中性子のもつ核エネルギ
ーを熱エネルギーに変換する機能と、該中性子と容器内
の酸化リチウムとが反応して核融合炉の燃料となるトリ
チウム(三重水素)全生産する機能、遮蔽体と共に中性
子の放射線遮蔽する機能を備えており、核融合炉の重要
な機器の一つである。第1壁はこのブランケット2,2
′のプラズマ対向面を構成する構造物で、直接プラズマ
1からの大きな熱負荷。
A tokamak-type fusion reactor is one in which an electric current is passed through the plasma generated in the circumferential direction, and the plasma is confined by the force of the magnetic field generated by this electric current. An inner blanket 2, an outer blanket 2', an internal air device 7, etc. are arranged in the inner blanket 2, outer blanket 2', and internal air device 7. A tokamak-type fusion reactor is generally composed of the equipment described above.
Among these, the inner and outer blankets 2゜2' have the function of converting the nuclear energy of neutrons generated by a nuclear fusion reaction in the container into thermal energy, and the reaction of the neutrons with lithium oxide in the container to generate nuclear energy. It is an important piece of equipment in a nuclear fusion reactor, as it has the ability to fully produce tritium (tritium), which is the fuel for the fusion reactor, and, together with a shield, to shield neutron radiation. The first wall is this blanket 2,2
A structure that constitutes the plasma facing surface of 1, which receives a large heat load directly from plasma 1.

粒子負荷を受ける厳しい条件下にあるため、十分な冷却
性能を有することが要求される。
Since it is under severe conditions where it is subjected to a particle load, it is required to have sufficient cooling performance.

従来第2図に示すごとくトカマク炉の第1壁8は冷却材
をポロイダル方向即ち矢印Aの方向に流す方式を採用し
冷却しているが、その形状がトーラス状をなしているた
め、冷却流路のピンチが流れ方向で変化すると言う問題
が生じる。
Conventionally, as shown in Fig. 2, the first wall 8 of a tokamak reactor is cooled by a method in which the coolant flows in the poloidal direction, that is, in the direction of arrow A. However, since the first wall 8 has a torus shape, the cooling flow is limited. A problem arises in that the channel pinch varies in the flow direction.

即ち、最も厳しい熱負荷を受けるプラズマ中心平面Bで
冷却流路のビッナが最大となり、比較的熱負荷の小さい
上部あるいは下部でピッチが最小となるので冷却むらが
起り、構造材最高温度と構造材内部での熱応力を許容値
以下に抑えることが難しいこと、更らに、第1壁8を増
殖ブランケット容器とは独立の構造物として該ブランケ
ット容器の前方に設置しているため、第1壁8とブラン
ケット容器壁との両方で中性子の減速吸収が起り、中性
子経済が悪くブランケットのトリチウム増殖性能に悪影
響を与えること、第1壁8の支持が厳しい熱負荷1粒子
負荷の条件下であるので難しい等の問題があり、その解
決がいそがれていた。
In other words, the pitch of the cooling channel is maximum at the plasma center plane B, which receives the severest heat load, and the pitch is minimum at the upper or lower part, where the heat load is relatively small, resulting in uneven cooling, and the maximum temperature of the structural material and It is difficult to suppress internal thermal stress below the allowable value, and furthermore, since the first wall 8 is installed in front of the blanket container as a structure independent of the growth blanket container, the first wall 8 and the wall of the blanket vessel, neutron economy is poor and the tritium breeding performance of the blanket is adversely affected, and the support of the first wall 8 is under severe heat load and single particle loading conditions. There were difficult and other problems, and it was difficult to solve them.

本発明は上記技術的な問題に鑑み、冷却性能と中性子経
済に優れた核融合炉の第1壁の冷却構造を提供せんとす
るものである。
In view of the above technical problems, the present invention aims to provide a cooling structure for the first wall of a nuclear fusion reactor that is excellent in cooling performance and neutron economy.

即ち、本発明は、冷却材をブランケット容器壁に沿って
ドーナツ状のプラズマと平行方向、即ちトライダル方向
に流す箱型ブランケットの容器壁と第1壁を兼ねる一体
型の第1壁の冷却構造に於いて、プラレケット容器の補
強フランジを兼ね、且つ複数の平行する伝熱管群で構成
する第1壁冷却材流路を分配・集合するための冷却材マ
ニホルドをブラケット容器の後方に設置し、・該マニホ
ルドの内部をポロイダル方向に所定の冷却材出口温度、
熱負荷の大きさ、ブランケット容器の大きさ等により適
当な数に分割して仕切り、冷却材を該マニホルドを介し
て折り返して第1壁冷却材流路に送り込み冷却するよう
にしたことを特徴とするものである。
That is, the present invention provides a cooling structure in which the first wall is integrated with the container wall of a box-shaped blanket and serves as the first wall, in which the coolant flows along the blanket container wall in a direction parallel to the donut-shaped plasma, that is, in a tridal direction. A coolant manifold, which also serves as a reinforcing flange of the Plarequet container and which distributes and collects the first wall coolant flow path composed of a plurality of parallel heat transfer tube groups, is installed at the rear of the bracket container. A predetermined coolant outlet temperature in the poloidal direction inside the manifold,
It is characterized by being divided into an appropriate number of partitions depending on the size of the heat load, the size of the blanket container, etc., and the coolant is folded back through the manifold and sent into the first wall coolant flow path for cooling. It is something to do.

以下本発明の一実施例について詳細に説明する。第3図
はブランケットの前壁と第1壁とを一体化した第1壁を
もつ箱型ブランケットの新開を示すもので、10はブラ
ンケット外周壁を兼ねる第1壁で、11は該第1壁1を
冷却するための冷却材流路であり、ブランケットの後方
に設けらnた補強74ランジ12を兼ねる左右のマニホ
ルド12a、12bK接続されている。
An embodiment of the present invention will be described in detail below. Fig. 3 shows a new box-shaped blanket having a first wall that integrates the front wall of the blanket and the first wall, 10 is the first wall that also serves as the outer peripheral wall of the blanket, and 11 is the first wall. 1, and is connected to left and right manifolds 12a and 12bK which also serve as reinforcement 74 flange 12 provided at the rear of the blanket.

第1壁10と一体化されたブランケット容器の内部には
、トリチウム増殖材13と中性子減速材14が収納され
ており、該減速材14の間には適当な間隔でボロイダル
方向に冷却材が流れるブランケット冷却用の冷却流路1
5が配置されている。第1filOの冷却材流路11内
に尋人された冷却構は第4図の冷却概念図に示すごとく
、冷却材入口16における右側のマニホルド12aから
、冷却材流路11の部分番号を示す■から■、■を進っ
て左側マニホルド12b内の■に至る。マニホルド内部
をボロイダル方向に適当に分割しているので、該冷却材
はここで折り曲げられ、■、■を通ってのに至る。この
ようにして冷却材はマニホルド12a、LZb内で図示
省略したヘッダを介してUターンし、第1壁10を通過
するときは、常にトロイダル方向に流れるように冷却流
路11を設置し、該流路11内の市却材流速をtAf:
するためにアニホルド12a、12bにつながる冷却材
流路11の本数を谷分割されたマニホルドごとにボロイ
ダル方向で変化させている。即ち冷却材入口16側では
平行する冷却材流路11の本数を多くとり冷却材出口1
7側で少なくしている。−次に上記の如く構成した本実
施例の作用について説明する。該融合炉におけるブラン
ケットの第1壁10はプラズマからの厳しい熱負荷を受
けるため、該第1i10を冷却する冷却材温度は、入口
16から出口17に向って第1壁10を冷却して流れる
間に上昇し、液体冷却材が沸騰する危険があるので、そ
の対策として、冷却材出口170111で特に大きな熱
伝尋率を確保するために、冷却材温度の比較的低い冷却
材入口16側で冷却材流路数を多くとり、冷却材出口1
7側では流路数を少なくして流量調整を行っている。こ
れにより熱伝達率が比較的小さくて良い冷却材入口16
側では各流路での冷却材流速が小さくなり、大きな熱伝
達率が必をとする冷却材出口17側では十分大きな流速
を確保することができるので、ブランケット冷却の必須
条件である全体としての熱伝達係数が大きく、且つ圧力
損失を小さく抑えることができるのである。
A tritium breeder material 13 and a neutron moderator 14 are housed inside the blanket container integrated with the first wall 10, and a coolant flows in a voloidal direction at appropriate intervals between the moderators 14. Cooling channel 1 for blanket cooling
5 is placed. The cooling structure installed in the coolant flow path 11 of the first filO is as shown in the cooling conceptual diagram in FIG. From there, proceed through ■ and ■ until you reach ■ in the left manifold 12b. Since the inside of the manifold is appropriately divided in the voloidal direction, the coolant is bent here and passes through (1) and (3). In this way, the coolant makes a U-turn in the manifolds 12a and LZb via headers (not shown), and when passing through the first wall 10, the cooling flow path 11 is installed so that it always flows in a toroidal direction. The municipal waste material flow velocity in the flow path 11 is tAf:
In order to achieve this, the number of coolant channels 11 connected to the anifolds 12a and 12b is varied in the voloidal direction for each valley-divided manifold. That is, on the coolant inlet 16 side, the number of parallel coolant channels 11 is increased, and the coolant outlet 1
It is reduced on the 7 side. -Next, the operation of this embodiment configured as described above will be explained. Since the first wall 10 of the blanket in the fusion reactor is subjected to a severe heat load from the plasma, the temperature of the coolant for cooling the first wall 10 is lower than that while cooling the first wall 10 from the inlet 16 to the outlet 17. As a countermeasure, in order to ensure a particularly high heat transfer coefficient at the coolant outlet 170111, cooling is performed on the coolant inlet 16 side where the coolant temperature is relatively low. Increase the number of material flow paths, and set 1 coolant outlet.
On the 7 side, the flow rate is adjusted by reducing the number of channels. This allows the coolant inlet 16 to have a relatively small heat transfer coefficient.
On the side, the coolant flow velocity in each flow path becomes smaller, and on the coolant outlet 17 side, where a large heat transfer coefficient is required, a sufficiently large flow velocity can be secured. It has a large heat transfer coefficient and can keep pressure loss low.

更に、トカマク型核融合炉では第1壁10に対する熱負
荷はプラズマ中心平面で最も大きく第1壁10の上下で
はかなり小さくなる分布を示しているが、このような分
布に対応して、ポロイダル方向での第1壁構造材の温匿
を平均化するよう冷却材流路11の本数を選択している
ので、熱変形や熱応力の発生も少ない。向、冷却材流路
11の断面形状は円形とは限らず、心安に応じて楕円、
牛円、矩形等の形状を採用することもでき、更には熱負
荷分布によってこれらの形状の流路管を適当に組合せて
使用することもできる。
Furthermore, in a tokamak-type fusion reactor, the thermal load on the first wall 10 is greatest at the plasma center plane and becomes considerably smaller above and below the first wall 10. Since the number of coolant flow paths 11 is selected so as to equalize the thermal protection of the first wall structural material, thermal deformation and thermal stress are less likely to occur. The cross-sectional shape of the coolant flow path 11 is not necessarily circular, but may be elliptical,
Shapes such as a circular shape and a rectangular shape can also be adopted, and furthermore, flow pipes having these shapes can be appropriately combined and used depending on the heat load distribution.

以上詳述した辿り、本発明の第l壁の冷却構造によれば
、第1壁とブランケットの外囲壁とを一体化し、冷却材
流路をトライダル方向に設け、且つ該流路数をプラズマ
からの熱負荷に対応して設定しであるので、冷却性能と
中性子経済の向上をはかることができるという効果があ
る。
As detailed above, according to the cooling structure of the first wall of the present invention, the first wall and the outer surrounding wall of the blanket are integrated, the coolant channels are provided in the tridal direction, and the number of channels is separated from the plasma. Since the settings are made in accordance with the heat load of

【図面の簡単な説明】[Brief explanation of drawings]

第1図はトカマク型核融合炉の概略を示す断圓図、第2
図は内側ブランケット/第1壁の概略形状を示す斜視図
、第3図は本発明による核融合炉用第1鬼の冷却構造の
一実施例を示す箱型ブランケットの断面図、第4図はそ
の第1mの冷却構造の冷却概念図である。 10・・・第1壁 11・・・冷却材流路 12・・・
補強フランジ 12a、12b・・・マニホルド 出願人 川崎重工業株式会社 第1図 第2図 第3図 箪ム図
Figure 1 is a cross-section diagram showing the outline of a tokamak-type fusion reactor, Figure 2
The figure is a perspective view showing the general shape of the inner blanket/first wall, FIG. 3 is a sectional view of a box-shaped blanket showing an embodiment of the first cooling structure for a fusion reactor according to the present invention, and FIG. It is a cooling conceptual diagram of the 1mth cooling structure. 10... First wall 11... Coolant channel 12...
Reinforcement flanges 12a, 12b... Manifold applicant: Kawasaki Heavy Industries, Ltd. Figure 1 Figure 2 Figure 3 Comprehensive view

Claims (1)

【特許請求の範囲】[Claims] 箱形ブランケットの容器壁と第1壁とを一体化して、冷
却材をトライダル方向に流す第1壁の冷却構造において
、複数の平行する伝熱管群で構成する第1壁冷却材流路
と該冷却材流路を分配・集合し、且つブランケットの補
強フランジを兼ねる冷却材マニホルドをブランケットの
後方に設置し、該マニホルドの内部をボロイダル方向に
所定の数に分割して区分し、冷却材を該分割マニホルド
を介して折り返して、第1壁冷却材流路内に送り込み冷
却するようにしたことを特徴とする核融合炉用第1壁の
作動構造。
In the first wall cooling structure in which the container wall of the box-shaped blanket and the first wall are integrated and the coolant flows in a tridal direction, the first wall coolant flow path is composed of a plurality of parallel heat transfer tube groups; A coolant manifold that distributes and collects the coolant flow paths and also serves as a reinforcing flange for the blanket is installed behind the blanket, and the interior of the manifold is divided into a predetermined number of sections in the voloidal direction, and the coolant is divided into sections. 1. An operating structure for a first wall for a fusion reactor, characterized in that the first wall is folded back through a divided manifold and sent into the first wall coolant flow path for cooling.
JP59013058A 1984-01-27 1984-01-27 Cooling structure of first wall for fusion reactor Granted JPS60157071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59013058A JPS60157071A (en) 1984-01-27 1984-01-27 Cooling structure of first wall for fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59013058A JPS60157071A (en) 1984-01-27 1984-01-27 Cooling structure of first wall for fusion reactor

Publications (2)

Publication Number Publication Date
JPS60157071A true JPS60157071A (en) 1985-08-17
JPH0246919B2 JPH0246919B2 (en) 1990-10-17

Family

ID=11822524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59013058A Granted JPS60157071A (en) 1984-01-27 1984-01-27 Cooling structure of first wall for fusion reactor

Country Status (1)

Country Link
JP (1) JPS60157071A (en)

Also Published As

Publication number Publication date
JPH0246919B2 (en) 1990-10-17

Similar Documents

Publication Publication Date Title
US4749540A (en) Demountable tokamak fusion core
JPS60157071A (en) Cooling structure of first wall for fusion reactor
Proust et al. Solid breeder blanket design and tritium breeding
US4921661A (en) Segmented saddle-shaped passive stabilization conductors for toroidal plasmas
Sako et al. Engineering aspects of the JAERI proposal for INTOR,(1)
CA1188825A (en) Packed fluidized bed blanket for fusion reactor
Parkins Engineering Limitations of Fusion Power Plants: Problems related to radiation damage and plant costs may prevent the practical application of fusion.
GB2082750A (en) Thermal Shield Plate Construction for Heat Exchanger
JPS60157075A (en) Gas cooling type tritium breeding blanket for fusion reactor
Sze et al. Gravity Circulated Solid Blanket Design for a Tokamak Fusion Reactor
GB2628580A (en) Improvements in and relating to the first wall and blanket in fusion power systems
JP2999278B2 (en) Structure of blanket for fusion reactor
RU2222062C2 (en) Nuclear reactor for space nuclear power plant
JPH10239472A (en) Radiation shield for nuclear fusion reactor
Gallix et al. Design and analysis of the DIII-D vacuum vessel
JPH0694866A (en) Blanket of nuclear fusion reactor
JPS61253799A (en) Low range mixed wave heater
Schultz et al. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. Addendum 1. Alternate concepts. 12-month progress report addendum, July 1, 1975--June 30, 1976
Baker et al. Toroidal magnet system
JPS61245499A (en) Lowpass mixed wave heater connection system
JPS60157074A (en) Tritium breeding blanket for fusion reactor
JP2739159B2 (en) Toroidal magnet
Hopkins et al. A low activation fusion reactor design
Kearney et al. Doublet demonstration fusion power reactor
Wong et al. The evolution of US helium-cooled blankets