JPH10239472A - Radiation shield for nuclear fusion reactor - Google Patents

Radiation shield for nuclear fusion reactor

Info

Publication number
JPH10239472A
JPH10239472A JP9037783A JP3778397A JPH10239472A JP H10239472 A JPH10239472 A JP H10239472A JP 9037783 A JP9037783 A JP 9037783A JP 3778397 A JP3778397 A JP 3778397A JP H10239472 A JPH10239472 A JP H10239472A
Authority
JP
Japan
Prior art keywords
shield
thickness
metal layer
radiation
radiation shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9037783A
Other languages
Japanese (ja)
Inventor
Koichi Koizumi
興一 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP9037783A priority Critical patent/JPH10239472A/en
Publication of JPH10239472A publication Critical patent/JPH10239472A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To make thin the thickness of a shielding wall through improvement in a shielding performance, thereby reducing a construction cost by setting the thickness of metal layer of a shield at a specified value that is several times average free stroke of neutrons passing through the material of the shield. SOLUTION: A shielding wall of a vacuum vessel 4 is divided into a vacuum side mixture layer provided with a cooling flow path 9 and an atmospheric side metal layer having no path 9. The path 9 is formed so that it may dominate 10% of capacity of the whole capacity of a shield and the thickness (c) of the metal layer is set 0.8-1.2 times the average free stroke of neutrons in the material of the shield. Accordingly, nuclear heat generation of neutrons and gamma rays can be restrained to the minimum and the radiation shielding performance is made optimum. Furthermore, when several steps of flow paths 9 are arranged in the thickness direction of the shield without substantial overrupped conditions, the shielding performance is improved still more. Also, when a flow path of a horizontal duct wall 8 is formed to be rectangular in the main radius direction, streaming of radiation is widely reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は核融合炉放射線遮蔽
体に関し、特に、真空容器を構成する遮蔽体の厚さを薄
くするために遮蔽性能を向上させた放射線遮蔽体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation shield for a nuclear fusion reactor, and more particularly to a radiation shield having improved shielding performance in order to reduce the thickness of a shield constituting a vacuum vessel.

【0002】[0002]

【従来の技術】現在、国際協力により設計が進められて
いる国際核融合炉(ITER)を例にとり説明する。I
TERの断面鳥瞰図を図2に示す。
2. Description of the Related Art An example of an international fusion reactor (ITER), which is currently being designed by international cooperation, will be described. I
FIG. 2 shows a bird's-eye sectional view of the TER.

【0003】ITERではプラズマ閉じこめ用の磁場を
発生するためのトロイダルコイル7、ポロイダルコイル
6、プラズマ電流を発生するためのセンターソレノイド
コイル1が真空容器4に近接した位置に設置されてい
る。これらのコイルは全て超電導コイルである。水平ダ
クト8は隣接したトロイダルコイル7間の近接した位置
から主半径方向に伸び、クライオスタット5まで貫通し
ており、水平ダクト壁はプラズマ3で発生した中性子か
ら超電導コイルを防護する放射線遮蔽体の役割を果た
す。水平ダクトはベローズを介して真空容器と接続され
るため真空容器の一部と考えられ、その構造については
真空容器4と同様のものが使用されている。
In the ITER, a toroidal coil 7 for generating a magnetic field for confining plasma, a poloidal coil 6, and a center solenoid coil 1 for generating a plasma current are installed at positions close to the vacuum vessel 4. These coils are all superconducting coils. The horizontal duct 8 extends in the main radial direction from a position adjacent to the adjacent toroidal coil 7 and penetrates to the cryostat 5, and the horizontal duct wall functions as a radiation shield for protecting the superconducting coil from neutrons generated by the plasma 3. Fulfill. Since the horizontal duct is connected to the vacuum vessel via the bellows, it is considered to be a part of the vacuum vessel, and the structure thereof is the same as that of the vacuum vessel 4.

【0004】核融合炉の超電導コイルに対しては、プラ
ズマ3で発生する中性子及び二次ガンマ線による超電導
コイルの巻線部(以後、巻線部と記す)の核発熱率を低
減しクエンチを防止すること、及び巻線部の安定化銅及
び電気絶縁材の放射線損傷を低減することが必要であ
る。そのため、超電導コイルに対しては必要かつ充分な
厚さの放射線遮蔽体を設置することが要請されている。
一方、核融合炉全体に対しては、建設コストを低減する
ために炉のコンパクト化が重要な課題となっている。そ
こで核融合炉の真空容器の放射線遮蔽性能を向上させる
ことにより、従来と同じ遮蔽性能を保ったまま真空容器
の厚さを低減する事が必要となる。このためには特に、
インボード側の真空容器壁2を薄くすることが必要にな
る。
For a superconducting coil of a fusion reactor, the nucleation heat rate of a winding portion (hereinafter referred to as a winding portion) of the superconducting coil due to neutrons and secondary gamma rays generated by the plasma 3 is reduced to prevent quench. And to reduce radiation damage to the stabilized copper and electrical insulation of the windings. Therefore, it is required to install a radiation shield having a necessary and sufficient thickness for the superconducting coil.
On the other hand, for the fusion reactor as a whole, downsizing of the reactor is an important issue in order to reduce construction costs. Therefore, it is necessary to reduce the thickness of the vacuum vessel while maintaining the same shielding performance as before by improving the radiation shielding performance of the vacuum vessel of the fusion reactor. In particular,
It is necessary to make the vacuum vessel wall 2 on the inboard side thin.

【0005】従来、遮蔽体は単一のステンレス鋼で出来
ており図3に示すような構造となっていた。遮蔽体の断
面を仮想の線aで二層に分けた場合、一方の層には冷却
流路が配置されていて冷却流路の少なくとも一本以上は
aに接するように配置されている。他方の層には冷却流
路が全く存在しない。この時、前者の層を混合層、後者
を金属層とすると、従来、遮蔽体の混合層厚さdは45c
m、金属層厚さcは 5cmであった。この構造だと遮蔽性
能の観点から冷却流路配置を最適化しておらず、遮蔽性
能を必要かつ十分に保った上で、その厚さが最小になっ
ておらず、そのため建設コストが高いという問題があ
る。
Conventionally, the shield is made of a single stainless steel and has a structure as shown in FIG. When the cross section of the shield is divided into two layers by a virtual line a, a cooling channel is arranged in one layer, and at least one of the cooling channels is arranged so as to be in contact with a. There are no cooling channels in the other layer. At this time, if the former layer is a mixed layer and the latter is a metal layer, conventionally, the mixed layer thickness d of the shield is 45c.
m, and the metal layer thickness c was 5 cm. With this structure, the layout of the cooling channel is not optimized from the viewpoint of shielding performance, and the shielding performance is necessary and sufficient, and the thickness is not minimized, which results in high construction cost There is.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、従来
の放射線遮蔽体の遮蔽性能を向上し、遮蔽壁厚さを薄く
し、核融合炉の建設コストを低減することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the shielding performance of a conventional radiation shield, reduce the thickness of the shielding wall, and reduce the construction cost of a fusion reactor.

【0007】[0007]

【課題を解決するための手段】本発明は、放射線遮蔽体
の遮蔽性能を向上することで遮蔽壁厚さを薄くするため
に、遮蔽体の金属層の厚さをその材質中を通過する中性
子の平均自由行程の0.8〜1.2 倍に設定する。そのため
遮蔽壁がステンレス鋼である場合には金属層は 8〜12cm
に設定することによって、上述の課題は達成できる。
SUMMARY OF THE INVENTION According to the present invention, there is provided a neutron passing through a metal layer of a shielding body through a material of the shielding body in order to reduce the thickness of the shielding wall by improving the shielding performance of the radiation shielding body. 0.8 to 1.2 times the mean free path of Therefore, if the shielding wall is stainless steel, the metal layer is 8-12cm
The above-mentioned problem can be achieved by setting to.

【0008】[0008]

【発明の実施の態様】本発明で放射線遮蔽性能を向上す
るための金属層の作用を以下に示す。今、放射線遮蔽壁
の厚さを一定にしておいて遮蔽壁全体が混合層という状
態から金属層を増やしていく事を考える。具体的にはス
テンレス鋼で出来た遮蔽体全体の厚さを50cmと一定の厚
さにし、横軸を金属層厚さ、縦軸は遮蔽壁全体が混合層
時の超伝導コイルの巻線部の核発熱を1とした場合の核
発熱率、として描いたグラフを図4に示す。縦軸は金属
層がない場合の巻線部の核発熱率で規格化した値であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The function of a metal layer for improving radiation shielding performance in the present invention will be described below. Now, it is considered that the thickness of the radiation shielding wall is kept constant and the number of metal layers is increased from a state where the entire shielding wall is a mixed layer. Specifically, the thickness of the entire shield made of stainless steel is fixed at 50 cm, the horizontal axis is the thickness of the metal layer, and the vertical axis is the winding part of the superconducting coil when the entire shield wall is a mixed layer. FIG. 4 shows a graph drawn as the nuclear heat generation rate when the nuclear heat generation of Example 1 is set to 1. The vertical axis is a value standardized by the nuclear heating rate of the winding portion when there is no metal layer.

【0009】金属層厚さが遮蔽体中のガンマ線の平均自
由行程(約 2cm)以上で中性子の平均自由行程(約10c
m)以下であれば金属層厚さの増加に伴うガンマ線の遮
蔽性能の向上分が、中性子の遮蔽性能の低下による核発
熱率の増加の効果を上回るため、全体の核発熱率は金属
層の厚さの増加に伴って低下する。
When the thickness of the metal layer is greater than the mean free path of gamma rays in the shield (about 2 cm) and the mean free path of neutrons (about 10 c
m) or less, the improvement in gamma-ray shielding performance due to an increase in metal layer thickness exceeds the effect of an increase in nuclear heating rate due to a decrease in neutron shielding performance. Decreases with increasing thickness.

【0010】しかし、金属層厚さが中性子の平均自由行
程よりさらに増加すると、金属層の奥の方に到着した中
性子がその場でガンマ線を発生させるため、金属層の厚
さを増加させることにより核発熱率が減少から増加に変
化する。
However, when the thickness of the metal layer further increases than the mean free path of the neutrons, the neutrons arriving at the back of the metal layer generate gamma rays in situ. Nuclear heating rate changes from decreasing to increasing.

【0011】以上から核発熱率を極小とする金属層の厚
さが存在し、遮蔽体の厚さが50cm程度の場合には金属層
は 8〜12cmの時最小となる。
From the above, there is a thickness of the metal layer that minimizes the nuclear heat generation rate. When the thickness of the shield is about 50 cm, the thickness of the metal layer becomes the minimum when the thickness is 8 to 12 cm.

【0012】[0012]

【実施例】本発明の実施例を図面に基ずいて説明する。
図1は本発明の放射線遮蔽体を真空容器4及び水平ダク
ト壁8に適用した時の容器及び水平ダクトの一部分の水
平断面図であって、図2の赤道面に相当する断面図であ
る。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a horizontal sectional view of a part of the container and the horizontal duct when the radiation shield of the present invention is applied to the vacuum container 4 and the horizontal duct wall 8, and is a sectional view corresponding to the equatorial plane of FIG.

【0013】真空容器4の壁面を構成する遮蔽壁全体の
厚さbは49.4cm、遮蔽体の材質はステンレス鋼であり、
放射線遮蔽体の全体の体積の少なくとも10%以上の容積
に冷却流路9が占めるようになっている。金属層の厚さ
cを金属層中の中性子の平均自由行程程度の厚さ、即ち
8〜12cmに設定する。つまり混合層の厚さdは 41.4〜3
7.4cmとなっている。
The thickness b of the entire shielding wall constituting the wall surface of the vacuum vessel 4 is 49.4 cm, and the material of the shielding body is stainless steel.
The cooling channel 9 occupies at least 10% or more of the entire volume of the radiation shield. The thickness c of the metal layer is set to a thickness about the mean free path of neutrons in the metal layer, that is,
Set to 8-12cm. That is, the thickness d of the mixed layer is 41.4-3.
It is 7.4cm.

【0014】従来から、ステンレス鋼の中に冷却流路を
設けた放射線遮蔽体は知られており、この遮蔽体は全体
の体積の80%から90%をステンレス鋼とし残りを冷却流
路としていた。そして冷却流路は遮蔽体の全体に均一に
分布するように配置されていたため遮蔽体全体が混合層
となっていた。この様な遮蔽体は、中性子による超伝導
コイルの巻線部の核発熱を最小に出来ることが知られて
いる。しかしながら、ガンマ線は遮蔽性体内の冷却流路
に中性子が当たって発生し、冷却流路が遮蔽体の大気側
近くにも存在するためにガンマ線の遮蔽性能は低下し、
全体として中性子、ガンマ線両方の遮蔽性能はそれ程良
くなかった。一方ガンマ線に対しては金属層の厚さを増
やしていくことによって遮蔽効果が上がる。しかし金属
層の厚さがステンレス鋼中の中性子の平均自由行程より
さらに増加すると金属層の奥の方に到着した中性子がそ
の場でガンマ線を発生させるため、金属層の厚さを増加
させることにより、かえってガンマ線による核発熱が増
加してしまう。そこで金属層の厚さをステンレス鋼中の
中性子の平均自由行程程度の8〜12cm とすることで中性
子及びガンマ線の核発熱を最小に抑えられる。核発熱は
中性子束及びガンマ線束に比例するため、核発熱率が減
少から増加に変化する金属層の厚さは金属層に入射する
直前の中性子とガンマ線との強度の比によって定まる。
遮蔽体全体のステンレス鋼と冷却流路内の水との体積比
が一定であれば、金属層に入射する直前の中性子とガン
マ線との強度の比は、混合層の厚さに依存せず、一定の
値になる。強度比が一定であれば遮蔽壁の厚さにかかわ
らず、8〜12cm が金属層の厚さの最適値となる。
Conventionally, a radiation shield provided with a cooling channel in stainless steel is known, and this shielding member has 80% to 90% of the entire volume of stainless steel and the remainder is a cooling channel. . Since the cooling channels were arranged so as to be uniformly distributed over the entire shield, the entire shield was a mixed layer. It is known that such a shield can minimize nuclear heating of the winding of the superconducting coil due to neutrons. However, gamma rays are generated when neutrons hit the cooling passage inside the shielding body, and the shielding passage of the gamma ray decreases because the cooling passage exists near the atmosphere side of the shield,
Overall, the shielding performance of both neutrons and gamma rays was not so good. On the other hand, for gamma rays, the shielding effect increases by increasing the thickness of the metal layer. However, if the thickness of the metal layer increases further than the mean free path of neutrons in stainless steel, neutrons arriving at the back of the metal layer will generate gamma rays in situ, so by increasing the thickness of the metal layer, On the contrary, nuclear heat generated by gamma rays increases. Therefore, by setting the thickness of the metal layer to about 8 to 12 cm, which is about the mean free path of neutrons in stainless steel, nuclear heating of neutrons and gamma rays can be minimized. Since nuclear heating is proportional to neutron flux and gamma ray flux, the thickness of the metal layer at which the nuclear heating rate changes from decreasing to increasing is determined by the ratio of the intensity of neutrons and gamma rays immediately before entering the metal layer.
If the volume ratio of stainless steel of the entire shield and water in the cooling channel is constant, the intensity ratio of neutrons and gamma rays immediately before entering the metal layer does not depend on the thickness of the mixed layer, It will be a constant value. If the strength ratio is constant, the optimum value of the metal layer thickness is 8 to 12 cm regardless of the thickness of the shielding wall.

【0015】遮蔽壁がステンレス鋼以外の金属であって
も、金属と冷却流路体積との比を前述の値に保ち、金属
層の厚さを遮蔽壁中の中性子の平均自由行程の0.8〜1.2
倍の長さにすることで放射線遮蔽性能を最適にすること
が出来る。
Even if the shielding wall is made of a metal other than stainless steel, the ratio of the metal to the cooling channel volume is maintained at the above-mentioned value, and the thickness of the metal layer is set to 0.8 to the mean free path of neutrons in the shielding wall. 1.2
The radiation shielding performance can be optimized by making the length twice as long.

【0016】図5は本発明の放射線遮蔽体を水平ダクト
壁8に適用した場合である。水平ダクト中の冷却流路9
を図5に示すように、主半径方向へ矩形状に曲げて構成
する。水平ダクトは図2に示す様に真空容器4からクラ
イオスタット5まで貫通している。クライオスタット5
は生体遮蔽を兼ねており、クライオスタット5の外側で
は人間が作業可能な放射線環境を実現するため、プラズ
マからの放射線(主に中性子及びガンマ線)を低減する
必要がある。このため、運転中には、計測用あるいはプ
ラズマ加熱、電流駆動用の一部のダクトを除いて、ダク
トの内部空間には充分な厚さの放射線遮蔽体が充填さ
れ、プラズマからの中性子、ガンマ線が遮蔽されてい
る。ダクト壁中には水、ヘリウムガスなどの冷却剤をダ
クト壁に供給し、ダクト壁から回収するための冷却流路
9が主半径方向に貫通している。放射線遮蔽壁の主半径
方向に、放射線が流れる方向に穴が開いていると、その
部分を放射線が減衰せずに通過する、いわゆる放射線ス
トリーミングという現象が生じる。将来的に発電に利用
するための核融合炉では、熱効率を高めるため高温で使
用可能なヘリウムガスを冷却材に採用する可能性が高
い。冷却剤にガスを用いた場合にはこのストリーミング
効果は顕著となり、従来の水平ダクト壁の構造では、ヘ
ッダ中を放射線がストリーミングし、クライオスタット
5の外側で人間が作業可能な環境を実現することが困難
になるという問題がある。そのためこのような冷却流路
を屈曲した図5のような構造にすることにより冷却流路
9内で放射線の散乱を増加することが出来、放射線のス
トリーミングを大幅に低減することが出来る。図6は図
5の他のもう一つの実施例である。図5の冷却管で矩形
型の角張ったところを滑らかに曲げることで冷却剤の壁
面損失を少なくできる。
FIG. 5 shows a case where the radiation shield of the present invention is applied to a horizontal duct wall 8. Cooling channel 9 in horizontal duct
Is bent in the main radial direction into a rectangular shape as shown in FIG. The horizontal duct extends from the vacuum vessel 4 to the cryostat 5 as shown in FIG. Cryostat 5
Also serves as a biological shield, and it is necessary to reduce radiation (mainly neutrons and gamma rays) from plasma in order to realize a radiation environment in which humans can work outside the cryostat 5. For this reason, during operation, except for some ducts for measurement, plasma heating, and current driving, the inner space of the duct is filled with a radiation shield of sufficient thickness, and neutrons and gamma rays from the plasma are filled. Is shielded. In the duct wall, a cooling channel 9 for supplying a coolant such as water or helium gas to the duct wall and recovering the coolant from the duct wall penetrates in the main radial direction. If a hole is formed in the main radial direction of the radiation shielding wall in the direction in which the radiation flows, a phenomenon called radiation streaming, in which the radiation passes through the portion without attenuating, occurs. There is a high possibility that helium gas, which can be used at a high temperature, will be used as a coolant in a fusion reactor to be used for power generation in the future. When gas is used as the coolant, this streaming effect becomes remarkable. With the conventional horizontal duct wall structure, radiation can be streamed through the header, and an environment where humans can work outside the cryostat 5 can be realized. There is a problem that it becomes difficult. Therefore, by arranging such a cooling channel as shown in FIG. 5 in which the cooling channel is bent, scattering of radiation in the cooling channel 9 can be increased, and streaming of radiation can be greatly reduced. FIG. 6 shows another embodiment of FIG. The wall loss of the coolant can be reduced by smoothly bending the rectangular corner with the cooling pipe of FIG.

【0017】次に本発明の放射線遮蔽壁中の冷却流路を
遮蔽壁の厚さ方向に二層以上実質的に重ならないように
配置した場合の実施例を図7に示す。
Next, FIG. 7 shows an embodiment in which two or more cooling channels in the radiation shielding wall of the present invention are arranged so as not to substantially overlap in the thickness direction of the shielding wall.

【0018】図7の例は冷却流路9を遮蔽体の厚さ方向
に重ならないように二段配置する。中性子は放射線遮蔽
体内での平均自由行程が荷電粒子、電磁波放射に比べて
長いため、放射線遮蔽体内の中性子束分布に比例して放
射線遮蔽体の厚さ方向全体に渡り発熱する。これに対し
て荷電粒子、電磁波は中性子に比べて放射線遮蔽体内で
の平均自由行程が短いため、放射線遮蔽体の真空側にお
いて発熱する。このことから発熱率の高い放射線遮蔽体
の真空側近傍に冷却流路9を配置することにより、放射
線遮蔽体の厚さ方向の温度勾配を低減することが出来、
放射線遮蔽体の熱応力を低減出来る。一方、放射線遮蔽
体の厚さ方向に冷却流路9の配列を複数設ける場合、ス
テンレス鋼がない部分即ち冷却流路9の部分では、高エ
ネルギー中性子がステンレス鋼との非弾性散乱反応によ
り減速されないため、特に高エネルギー中性子に対する
遮蔽性能が低い。このため、放射線遮蔽体の厚さ方向に
冷却流路9が重なっているとその部分を高エネルギー中
性子が浸透し遮蔽性能が低下するおそれがある。この場
合図8に示すように冷却流路9を遮蔽体厚さ方向に実質
的に重ならないように三段に配置すれば、高エネルギー
中性子がステンレス鋼との非弾性散乱反応により減速さ
れやすくなり、放射線遮蔽体の遮蔽性能を更に向上する
ことができる。
In the example of FIG. 7, the cooling channels 9 are arranged in two stages so as not to overlap in the thickness direction of the shield. Since neutrons have a longer mean free path in the radiation shield than charged particles and electromagnetic radiation, they generate heat in the entire thickness direction of the radiation shield in proportion to the neutron flux distribution in the radiation shield. In contrast, charged particles and electromagnetic waves have a shorter mean free path in the radiation shield than neutrons, and thus generate heat on the vacuum side of the radiation shield. From this, by disposing the cooling channel 9 near the vacuum side of the radiation shield having a high heat generation rate, the temperature gradient in the thickness direction of the radiation shield can be reduced,
Thermal stress of the radiation shield can be reduced. On the other hand, when a plurality of arrangements of the cooling channels 9 are provided in the thickness direction of the radiation shield, high energy neutrons are not decelerated by the inelastic scattering reaction with the stainless steel in the portion where there is no stainless steel, that is, in the portion of the cooling channel 9. Therefore, the shielding performance for high energy neutrons is particularly low. For this reason, if the cooling channels 9 overlap in the thickness direction of the radiation shield, high energy neutrons may penetrate the portion and the shielding performance may be reduced. In this case, as shown in FIG. 8, if the cooling channels 9 are arranged in three stages so that they do not substantially overlap in the thickness direction of the shield, high-energy neutrons can be easily decelerated by inelastic scattering reaction with stainless steel. In addition, the shielding performance of the radiation shielding body can be further improved.

【0019】[0019]

【発明の効果】本発明により放射線遮蔽壁の厚さが同一
である従来の構成に比べて遮蔽効果が上がる。又、遮蔽
効果を従来と同じにする場合には壁の厚さを薄く出来、
炉の建設コストを低減できる。
According to the present invention, the shielding effect is improved as compared with the conventional structure in which the thickness of the radiation shielding wall is the same. If the shielding effect is the same as before, the wall thickness can be reduced,
Furnace construction costs can be reduced.

【0020】具体的に本発明をインボード側の真空容器
遮蔽壁に適用した場合、混合層の厚さを0.6cm低減出来
るため12億円のコスト低減とすることが出来る。
Specifically, when the present invention is applied to the vacuum vessel shielding wall on the inboard side, the thickness of the mixed layer can be reduced by 0.6 cm, so that the cost can be reduced by 1.2 billion yen.

【図面の簡単な説明】[Brief description of the drawings]

【図1】厚肉構造水平ダクト壁の赤道面における水平断
面図
FIG. 1 is a horizontal sectional view of an equatorial plane of a thick-walled horizontal duct wall.

【図2】国際熱核融合実験炉(ITER)の断面鳥瞰図Figure 2 Bird's-eye view of the International Thermonuclear Experimental Reactor (ITER)

【図3】遮蔽壁断面模式図FIG. 3 is a schematic sectional view of a shielding wall.

【図4】放射線輸送計算の結果Fig. 4 Results of radiation transport calculation

【図5】冷却流路を屈曲させた水平ダクト壁FIG. 5 is a horizontal duct wall in which a cooling channel is bent.

【図6】冷却流路を屈曲させた水平ダクト壁FIG. 6 is a horizontal duct wall in which a cooling channel is bent.

【図7】冷却流路を厚さ方向に実質的に重ならないよう
に二層並べた水平ダクト壁
FIG. 7 is a horizontal duct wall in which cooling channels are arranged in two layers so as not to substantially overlap in the thickness direction.

【図8】冷却流路を厚さ方向に実質的に重ならないよう
に三層並べた水平ダクト壁
FIG. 8 is a horizontal duct wall in which cooling channels are arranged in three layers so as not to substantially overlap in the thickness direction.

【符号の説明】[Explanation of symbols]

1 : ソレノイドコイル 2 : インボード側の真空容器壁 3 : プラズマ 4 : 真空容器 5 : クライオスタット 6 : ポロイダルコイル 7 : トロイダルコイル 8 : 水平ダクト壁 9 : 放射線遮蔽体の冷却流路 a : 混合層及び金属層の境界線 b : 真空容器及び水平ダクト壁全体の厚さ c : 金属層厚さ d : 混合層厚さ 1: Solenoid coil 2: Vacuum vessel wall on inboard side 3: Plasma 4: Vacuum vessel 5: Cryostat 6: Poloidal coil 7: Toroidal coil 8: Horizontal duct wall 9: Cooling flow path of radiation shield a: Mixing layer and metal Layer boundary line b: Thickness of vacuum vessel and entire horizontal duct wall c: Thickness of metal layer d: Thickness of mixed layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内で生成されたプラズマからの
放射線を遮蔽するための核融合炉の放射線遮蔽体であっ
て、前記遮蔽体は 30〜100 cm の厚さを有するものにお
いて、前記遮蔽体は金属層と混合層から成り前記金属層
は大気側に位置し、かつ、その厚さを前記金属層を構成
する材質中の中性子の平均自由行程の0.8〜1.2倍に設定
したことを特徴とする放射線遮蔽体。
1. A radiation shield for a fusion reactor for shielding radiation from plasma generated in a vacuum vessel, wherein the shield has a thickness of 30 to 100 cm. The body is composed of a metal layer and a mixed layer, wherein the metal layer is located on the atmosphere side, and its thickness is set to 0.8 to 1.2 times the mean free path of neutrons in the material constituting the metal layer. Radiation shield.
【請求項2】 真空容器内で生成されたプラズマからの
放射線を遮蔽するための核融合炉の放射線遮蔽体であっ
て、前記遮蔽体は 30〜100cmの厚さを有するステンレス
鋼より構成されたものにおいて、前記遮蔽体は金属層と
混合層から成り前記金属層は大気側に位置し、かつ、そ
の厚さを 8〜12cmに設定したことを特徴とする放射線遮
蔽体。
2. A radiation shield of a fusion reactor for shielding radiation from plasma generated in a vacuum vessel, wherein the shield is made of stainless steel having a thickness of 30 to 100 cm. The radiation shield, wherein the shield comprises a metal layer and a mixed layer, the metal layer is located on the atmosphere side, and the thickness thereof is set to 8 to 12 cm.
【請求項3】 請求項1または請求項2記載の放射線遮
蔽体において、前記放射線遮蔽体は更に水平ダクト部を
有し、ダクト部を構成する壁部には冷却流路が主半径方
向に貫通しないように冷却流路を屈曲させることを特徴
とする放射線遮蔽体。
3. The radiation shield according to claim 1, wherein the radiation shield further has a horizontal duct part, and a cooling channel penetrates a wall part constituting the duct part in a main radial direction. A radiation shield characterized by bending a cooling flow path so as not to be bent.
【請求項4】 請求項1または請求項2記載の放射線遮
蔽体において、前記放射線遮蔽体の混合層を構成する冷
却媒体流路を前記遮蔽体の厚さ方向に少なくとも二層以
上に実質的に重ならないように配置したことを特徴とす
る放射線遮蔽体。
4. The radiation shield according to claim 1, wherein a cooling medium passage forming a mixed layer of the radiation shield is formed in at least two layers in the thickness direction of the shield. A radiation shield characterized by being arranged so as not to overlap.
JP9037783A 1997-02-21 1997-02-21 Radiation shield for nuclear fusion reactor Pending JPH10239472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9037783A JPH10239472A (en) 1997-02-21 1997-02-21 Radiation shield for nuclear fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9037783A JPH10239472A (en) 1997-02-21 1997-02-21 Radiation shield for nuclear fusion reactor

Publications (1)

Publication Number Publication Date
JPH10239472A true JPH10239472A (en) 1998-09-11

Family

ID=12507099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9037783A Pending JPH10239472A (en) 1997-02-21 1997-02-21 Radiation shield for nuclear fusion reactor

Country Status (1)

Country Link
JP (1) JPH10239472A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108257681A (en) * 2016-12-29 2018-07-06 核工业西南物理研究院 A kind of solid-state produces tritium cladding modular shielding slab

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108257681A (en) * 2016-12-29 2018-07-06 核工业西南物理研究院 A kind of solid-state produces tritium cladding modular shielding slab
CN108257681B (en) * 2016-12-29 2024-04-09 核工业西南物理研究院 Solid tritium production cladding module shielding block

Similar Documents

Publication Publication Date Title
Rapp et al. The development of the material plasma exposure experiment
KR102197522B1 (en) Active cooling of structures immersed in plasma
Miyazawa et al. Conceptual design of a liquid metal limiter/divertor system for the FFHR-d1
Kajiwara et al. Electron cyclotron heating assisted startup in JT-60U
JP2004514242A (en) Crusher for neutron generation
US4149931A (en) Divertor for use in fusion reactors
US4363773A (en) Superconductive electromagnet apparatus
US9941024B2 (en) Heating plasma for fusion power using electromagnetic waves
JPH10239472A (en) Radiation shield for nuclear fusion reactor
USH627H (en) Spherical torus fusion reactor
Stagey Jr et al. A Tokamak experimental power reactor
US9959941B2 (en) System for supporting structures immersed in plasma
Saito et al. Suppression of secondary electrons from an endplate of a tandem mirror by use of a biased mesh
US5398266A (en) Superconductive apparatus
Sanderson et al. A bundle divertor for a fusion reactor
JPH0570921B2 (en)
JP2739159B2 (en) Toroidal magnet
JPS628500A (en) High frequency heating antenna
JPH09230074A (en) Superconductive magnet protecting device of nuclear fusion apparatus
JPH0236153Y2 (en)
Sakasai et al. Engineering design study of JT-60 superconducting modification
JPS60157071A (en) Cooling structure of first wall for fusion reactor
Lehnert Some technological problems of the coil system of internal ring devices
JPH07318671A (en) Vacuum vessel for fusion reactor
JPS5952784A (en) Nuclear fusion device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208