JPS60155934A - Infrared ray detector - Google Patents

Infrared ray detector

Info

Publication number
JPS60155934A
JPS60155934A JP59012330A JP1233084A JPS60155934A JP S60155934 A JPS60155934 A JP S60155934A JP 59012330 A JP59012330 A JP 59012330A JP 1233084 A JP1233084 A JP 1233084A JP S60155934 A JPS60155934 A JP S60155934A
Authority
JP
Japan
Prior art keywords
infrared
infrared ray
container
transmitting window
ray detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59012330A
Other languages
Japanese (ja)
Inventor
Kenzo Ochi
謙三 黄地
Takeshi Nagai
彪 長井
Kazushi Yamamoto
一志 山本
Shuji Ito
修治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59012330A priority Critical patent/JPS60155934A/en
Publication of JPS60155934A publication Critical patent/JPS60155934A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • G01J5/045Sealings; Vacuum enclosures; Encapsulated packages; Wafer bonding structures; Getter arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Electric Ovens (AREA)
  • Burglar Alarm Systems (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

PURPOSE:To enhance the reliability of an infrared ray detector and to attain the enhancement of fabrication yield, by providing a projection to the cap part of a container having an infrared ray pervious window adhered thereto. CONSTITUTION:A projection 9 is provided to the cap 5 of a container receiving an infrared ray detection element 1 so as to correspond to the part having an infrared ray pervious window 4 adhered thereto by an adhesive 6 and air tightness becomes high and the reliability of the infrared ray detector is enhanced. Further, by the projection 9, the flowing-out of the adhesive 6 toward the window 4 at the time of adhesion is reduced to attain an enhancement of the fabrication yield of the infrared ray detector.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非接触温度計として火災報知器、侵入警報器
あるいは調理機器の食品温度制御などに用いられる赤外
線検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an infrared detector used as a non-contact thermometer in fire alarms, intruder alarms, food temperature control in cooking appliances, and the like.

従来例の構成とその問題点 従来の赤外線検出器について第1図によシ説明すると、
1はサーミスタ、サーモバイル、焦電素子あるいは弾性
表面波素子などからなる赤外線検出素子、2は熱絶縁の
ために容器の基台3に取り付けられた支柱、4は容器の
キャップ5にエポキシ樹脂などの接着層6を介して取り
付けられたシリコン、ゲルマニウムなどの赤外透過窓を
示す。
Conventional configuration and its problems A conventional infrared detector will be explained with reference to Fig. 1.
1 is an infrared detection element such as a thermistor, thermomobile, pyroelectric element, or surface acoustic wave element; 2 is a column attached to the base 3 of the container for thermal insulation; 4 is a cap 5 of the container made of epoxy resin, etc. An infrared transparent window made of silicon, germanium, etc. is shown attached via an adhesive layer 6.

7は端子8と素子1とを結線するだめのリード線である
Reference numeral 7 denotes a lead wire for connecting the terminal 8 and the element 1.

上記構成の赤外線検出器の動作を説明すると、赤外透過
窓4を透過した赤外線は、赤外線検出素子1に吸収され
、素子1に温度変化を発生させる。
To explain the operation of the infrared detector having the above configuration, infrared rays transmitted through the infrared transmitting window 4 are absorbed by the infrared detecting element 1, causing a temperature change in the element 1.

素子1は温度変化を、抵抗値の変化、熱起電力の発生な
ど電気信号に変換し、外部に伝達して赤外線検出器とし
て動作する。
The element 1 converts temperature changes into electrical signals such as changes in resistance and generation of thermoelectromotive force, transmits them to the outside, and operates as an infrared detector.

しかしながら上記の構成では、シリコン、ゲルマニウム
などの赤外透過窓4と、容器のキャップ5とをエポキシ
樹脂などからなる接着層6を介して接着していた。この
ため、接着層6の気密性が不充分でsb、容器の内部に
水分が侵入し、赤外線検出素子の特性が劣化するなどの
問題点を有していた。また、接着層6を形成する接着剤
が、接着工程において、赤外透過窓4上にはみ出し歩留
シを低下させていた。
However, in the above configuration, the infrared transmitting window 4 made of silicon, germanium, etc. and the cap 5 of the container are bonded together via an adhesive layer 6 made of epoxy resin or the like. For this reason, the adhesive layer 6 has insufficient airtightness, causing problems such as moisture entering the inside of the container and deteriorating the characteristics of the infrared detection element. Further, the adhesive forming the adhesive layer 6 protrudes onto the infrared transmitting window 4 during the bonding process, reducing the yield.

発明の目的 本発明は上記従来の問題点を解消するもので、信頼性の
向上した歩留シのよい赤外線検出器を提供することを目
的とする。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional problems, and aims to provide an infrared detector with improved reliability and good yield.

発明の構成 本発明は、内側に突起を有する貫通孔および前記突起に
接するよう接着された赤外透過窓からなる容器と、前記
容器に収納された赤外線を検出する素子とを備えた赤外
線検出器で1、前記貫通孔の周囲に突起を設けることに
よシ、接着層の厚みを、接着条件にかかわらず常に突起
量と同、じにして一定厚の接着層を確保することができ
信頼性が向上する。
Structure of the Invention The present invention provides an infrared detector comprising a container comprising a through hole having a projection on the inside and an infrared transmitting window bonded in contact with the projection, and an element for detecting infrared rays housed in the container. 1. By providing protrusions around the through holes, the thickness of the adhesive layer can always be the same as the amount of protrusions regardless of the bonding conditions, ensuring a constant thickness of the adhesive layer, resulting in reliability. will improve.

さらに、接着層の外部に露出する部分が前記突起によシ
保護されるため水分の侵入に対し、よシ信頼性が向上す
る。また、前記突起を設けることによシ、接着案件にか
かわらず、接着剤の赤外透過窓上への流出が大幅に減少
し、歩留シが向上する。
Furthermore, since the portion of the adhesive layer exposed to the outside is protected by the protrusion, reliability against moisture intrusion is improved. Further, by providing the projections, the outflow of the adhesive onto the infrared transmitting window is greatly reduced, regardless of the adhesive case, and the yield is improved.

実施例の説明 第2図は本発明の第1の実施例における赤外線検出器の
断面図を示す。同図において、従来例と共通の構成要素
は第1図と同じにしである。9は本発明に基づく貫通孔
の周囲に容器内部に向って設けた突起を示す。容器の基
台3、キャンプ5としてTo−5型を用いた。赤外透過
窓4としてダ6朋のシリコンウェハー(QJ3ffW厚
)を用いた。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows a sectional view of an infrared detector in a first embodiment of the present invention. In the figure, the components common to the conventional example are the same as in FIG. Reference numeral 9 indicates a protrusion provided around the through hole toward the inside of the container according to the present invention. To-5 type was used as the base 3 and camp 5 of the container. As the infrared transmitting window 4, a silicon wafer (QJ3ffW thickness) was used.

突起は、04πmの貫通孔の周囲に100μm以上 1
形成した。接着層6の接着剤として檀々の材料を検討し
た結果によシポリイミド系樹脂を用いた。
The protrusion is 100μm or more around the 04πm through hole 1
Formed. As the adhesive for the adhesive layer 6, polyimide resin was used as a result of examining various materials.

1突起部が100μmよシも少ないと、充分な量の接着
剤を確保することができないため、接着工程において赤
外透過窓4と容器キャップ5とを圧着した場合、接着層
に気泡が混入したシ、赤外透過窓4とのなじみが不充分
であったりするため実用上充分な接着強度が得られ々か
った。赤外線を検出する素子1として弾性表面波素子を
用いた。
If the diameter of each protrusion is less than 100 μm, a sufficient amount of adhesive cannot be secured, so when the infrared transmitting window 4 and the container cap 5 are pressure-bonded in the bonding process, air bubbles may be mixed into the adhesive layer. Secondly, the bonding strength with the infrared transmitting window 4 was insufficient, making it difficult to obtain a practically sufficient adhesive strength. A surface acoustic wave element was used as the element 1 for detecting infrared rays.

上記構成の赤外線検出器の気密性に関する信頼性を評価
するために煮沸試験を実施した。その結果を表1に示す
。なお、従来例は第1図の構成とし、エポキシ樹脂を用
いた。
A boiling test was conducted to evaluate the reliability of the airtightness of the infrared detector having the above configuration. The results are shown in Table 1. Note that the conventional example had the configuration shown in FIG. 1 and used epoxy resin.

表1 煮沸試験の結果 表1は、従来例のサンプ/I/10個を煮沸試験すると
、4時間後には2個故障し、8時間後には全て故障した
ことを示している。本発明の実施例において12時間の
煮沸においては10個のサンプル全てが正常であシ、2
4時間後においても半数以上の6個のサンプルが正常で
あったことを示している。ここでの正常、故障の判定は
、弾性表面波素子の特性の1つである挿入損失を測定し
て決めた。
Table 1 Results of boiling test Table 1 shows that when 10 sump/I/s of the conventional example were subjected to a boiling test, two failed after 4 hours, and all failed after 8 hours. In the example of the present invention, all 10 samples were normal after 12 hours of boiling, and 2
This shows that more than half of the 6 samples were normal even after 4 hours. The determination of normality and failure here was determined by measuring insertion loss, which is one of the characteristics of the surface acoustic wave element.

以上のように本発明に基づ〈実施例においては、全ての
サンプルが過酷な煮沸試験に12時間以上ももちこたえ
ることができ、従来のものに比べ、信頼性が大幅に向上
したことを示している。
As described above, in the examples based on the present invention, all samples were able to withstand the severe boiling test for more than 12 hours, indicating that reliability was significantly improved compared to conventional ones. There is.

次に、本発明の第2の実施例を第3図に示す。Next, a second embodiment of the present invention is shown in FIG.

同図において、第1の実施例と共通の構成要素には第2
図と同じにしである。6はポリイミド系樹脂の接着層を
示し、10はエポキシ樹脂の接着層を示す。この場合、
気密性、すなわち煮沸試験の結果は、第1の実施例と同
様であり、従来のものに比べ、信頼性が向上しているこ
とを確認した。
In the figure, common components with the first embodiment include the second embodiment.
It is the same as the picture. 6 indicates an adhesive layer of polyimide resin, and 10 indicates an adhesive layer of epoxy resin. in this case,
The airtightness, that is, the results of the boiling test, were the same as in the first example, and it was confirmed that the reliability was improved compared to the conventional one.

さらに、第2の実施例においては、赤外透過窓4の容器
のキャップ5への接着強度が著しく向上し、第1の実施
例に比べ1.2倍以上もち一フた。さらに、第2の実施
例におけるエポキシ樹脂を導電性エポキシ樹脂とするこ
とによシ、前記接着強度を損なうことなく、赤外線を検
出する素子1を有効に電磁シールドすることができる。
Furthermore, in the second example, the adhesive strength of the infrared transmitting window 4 to the cap 5 of the container was significantly improved, and the adhesive strength was 1.2 times longer than that of the first example. Furthermore, by using a conductive epoxy resin as the epoxy resin in the second embodiment, the element 1 that detects infrared rays can be effectively electromagnetically shielded without impairing the adhesive strength.

すなわち、容器のキャップ5と赤外透過窓4のシリコン
とを、導電性エポキシ樹脂で接着することによシ、電気
的に結線されたことになるためである。この場合、赤外
線を検出する素子としては、外部の電気的な。
That is, this is because the cap 5 of the container and the silicon of the infrared transmitting window 4 are electrically connected by adhering them with a conductive epoxy resin. In this case, the element for detecting infrared rays is an external electrical element.

雑音に弱いインピーダンスの高い焦電型素子、あるいは
サーモバイル型素子、あるいはサーミスタボロメータ型
素子々どに有効である。また高周波で動作する弾性表面
波型素子などにも有効である。
It is effective for pyroelectric elements with high impedance, thermoelectric elements, or thermistor bolometer elements that are susceptible to noise. It is also effective for surface acoustic wave elements that operate at high frequencies.

さらに、赤外線を検出する表子として数十MHz以上も
の高周波で動作する弾性表面波型素子を用いる場合、前
記赤外透過窓の抵抗率が10Ω・α以下であればより効
果がある。第4図に第2の実施例の効果を示す。この場
合、赤外透過窓材として抵抗率10Ω・α以下のシリコ
ンウェハ0.3朋厚を用いた。第4図に第2の実施例の
効果を示す測定結果を示す。第4図は弾性表面波素子を
用いた赤外線検出器の赤外入力に対する応答を示す。
Furthermore, when a surface acoustic wave element operating at a high frequency of several tens of MHz or higher is used as a front panel for detecting infrared rays, it is more effective if the resistivity of the infrared transmitting window is 10 Ω·α or less. FIG. 4 shows the effect of the second embodiment. In this case, a 0.3 mm thick silicon wafer with a resistivity of 10 Ω·α or less was used as the infrared transmitting window material. FIG. 4 shows measurement results showing the effects of the second embodiment. FIG. 4 shows the response of an infrared detector using a surface acoustic wave element to an infrared input.

同図において、(、)は赤外線入力強度をか)は第2の
実施例、(c)は第1の実施例に基づく赤外線検出器の
出力例を示す。この場合、弾性表面波素子の動作周波数
は174MHzであった。同図よシ明らかなように、第
2の実施例によれば、すなわち、10Ω・α以下の導電
性赤外透過窓を用い、容器との接着層の一部に導電性エ
ポキシ樹脂を用い、赤外線を検出する素子として弾性表
面波型素子を用いれば、第1の実施例の効果を損うこと
なく、赤外線検出器の雑音レベルを1/j以下に減少さ
せることかできた。この理由は、赤外線を検出する素子
としての弾性表面波素子の表面近傍に接地電位の低抵抗
の導電性平板が設けられるため、弾性表面波素子の人出
間の電磁的カップリングが抑えられるため、よシ前記累
子の動作が安定するためであると思われる。もちろん外
部の電気的雑音に対する電磁的シールド効果を損なうこ
とはない。
In the figure, (,) indicates the infrared input intensity, and (c) indicates an output example of the infrared detector based on the second embodiment. In this case, the operating frequency of the surface acoustic wave element was 174 MHz. As is clear from the figure, according to the second embodiment, a conductive infrared transmitting window of 10Ω·α or less is used, a conductive epoxy resin is used as part of the adhesive layer with the container, By using a surface acoustic wave element as an element for detecting infrared rays, it was possible to reduce the noise level of the infrared detector to 1/j or less without impairing the effects of the first embodiment. The reason for this is that electromagnetic coupling between the surfaces of the surface acoustic wave elements is suppressed because a conductive plate with low resistance at ground potential is provided near the surface of the surface acoustic wave element as an element for detecting infrared rays. This seems to be because the operation of the seiko is more stable. Of course, the electromagnetic shielding effect against external electrical noise is not impaired.

発明の効果 1 本発明の赤外線検出器によれば、素子を収納する容器の
赤外透過窓を接着する部分に突起を設けたことによシ気
密性に関する信頼性が向上し、また、接着剤の赤外透過
窓上への流出が減少し、歩留シが向上する効果を有する
Effects of the Invention 1 According to the infrared detector of the present invention, the reliability regarding airtightness is improved by providing a protrusion in the part where the infrared transmitting window of the container housing the element is bonded, and the reliability of airtightness is improved. The outflow onto the infrared transmission window is reduced, which has the effect of improving yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の赤外線検出器の断面図、第2図、第3図
は本発明の第1、第2の実施例における赤外線検出器の
断面図、第4図は第2の実施例の効果を示すための特性
図である。 1・・赤外線を検出する素子、3・・容器の基台、4・
赤外透過窓、5・・容器のキャップ、6・・・接着層、
9・・・キャップの突起。 代理人の氏名 弁理士 中 尾 敏 男 はが1名WA
I図 8 藁 2 rm 第 4 因 0 102θo sev 時間(S払) 1
FIG. 1 is a sectional view of a conventional infrared detector, FIGS. 2 and 3 are sectional views of infrared detectors in the first and second embodiments of the present invention, and FIG. 4 is a sectional view of the infrared detector in the second embodiment. It is a characteristic diagram for showing the effect. 1. Element that detects infrared rays, 3. Base of container, 4.
Infrared transmitting window, 5... Container cap, 6... Adhesive layer,
9...Protrusion of the cap. Name of agent: Patent attorney Toshio Nakao (1 person WA)
I figure 8 Straw 2 rm 4th factor 0 102θo sev Time (S payment) 1

Claims (1)

【特許請求の範囲】[Claims] (1)内側に突起を有する貫通孔および前記突起に接す
るよう接着された赤外透過窓からなる容器と、前記容器
に収納された赤外線を検出する素子とからなる赤外線検
出器。 ■ 突起を100mμ以上とし、かつ赤外透過窓と容器
とをポリイミド樹脂で接着してなる特許請求の範囲第1
項記載の赤外線検出器。 0)赤外透過窓を導電性材料とし、かつポリイミド樹脂
をポリイミド樹脂および導電性エポキシ樹脂とした特許
請求の範囲第2項記載の赤外線検出器。 4)赤外線透過窓の材料の抵抗率を10Ω・α以下とし
、かつ赤外線を検出する素子を弾性表面波素子とした特
許請求の範囲第3項記載の赤外線検出器。
(1) An infrared detector consisting of a container comprising a through hole having a protrusion on the inside and an infrared transmitting window bonded in contact with the protrusion, and an element for detecting infrared rays housed in the container. ■ Claim 1, in which the protrusion is 100 mμ or more, and the infrared transmitting window and the container are bonded with polyimide resin.
Infrared detector described in section. 0) The infrared detector according to claim 2, wherein the infrared transmitting window is made of a conductive material, and the polyimide resin is a polyimide resin and a conductive epoxy resin. 4) The infrared detector according to claim 3, wherein the resistivity of the material of the infrared transmitting window is 10Ω·α or less, and the element for detecting infrared rays is a surface acoustic wave element.
JP59012330A 1984-01-25 1984-01-25 Infrared ray detector Pending JPS60155934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012330A JPS60155934A (en) 1984-01-25 1984-01-25 Infrared ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012330A JPS60155934A (en) 1984-01-25 1984-01-25 Infrared ray detector

Publications (1)

Publication Number Publication Date
JPS60155934A true JPS60155934A (en) 1985-08-16

Family

ID=11802294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012330A Pending JPS60155934A (en) 1984-01-25 1984-01-25 Infrared ray detector

Country Status (1)

Country Link
JP (1) JPS60155934A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170214A (en) * 2002-11-19 2004-06-17 Denso Corp Sensor device and its manufacturing method
JP2015076128A (en) * 2013-10-04 2015-04-20 三菱電機株式会社 Cooking heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170214A (en) * 2002-11-19 2004-06-17 Denso Corp Sensor device and its manufacturing method
JP2015076128A (en) * 2013-10-04 2015-04-20 三菱電機株式会社 Cooking heater

Similar Documents

Publication Publication Date Title
US4800278A (en) Pyroelectric infrared sensor
US4110616A (en) Pyroelectric detectors
US4284888A (en) Pyroelectric detectors
US4367408A (en) Pyroelectric type infrared radiation detecting device
JPS60155934A (en) Infrared ray detector
JP2001174323A (en) Infrared ray detecting device
JP2001174324A (en) Infrared ray detector and infrared ray detecting device
JP3210795B2 (en) Infrared detector
JPH11142245A (en) Thermal infrared detector
WO2013099799A1 (en) Infrared detector
JPH08240480A (en) Detector of electromagnetic wave such as infrared ray
GB2133615A (en) Pyroelectric infra-red radiation detector
JPH0815007A (en) Infrared sensor and manufacture thereof
JP3047379B2 (en) Infrared detector
JPH09126883A (en) Infrared detector
JP2003149046A (en) Pyroelectric sensor
US4301431A (en) Miniature delay line having low direct coupling
JPS6140929B2 (en)
JPS60154125A (en) Infrared detector
JPS6039516A (en) Infrared radiation thermometer
JPS5937448B2 (en) Room temperature infrared detector
JPH1183633A (en) Thermal infrared detector
JP3300880B2 (en) Flame detector
JPH05284599A (en) Ultrasonic vibrator
JPH10197342A (en) Pyroelectric infrared detector