JPS60155579A - Ceramic-casted metal composite body and manufacture - Google Patents

Ceramic-casted metal composite body and manufacture

Info

Publication number
JPS60155579A
JPS60155579A JP1248584A JP1248584A JPS60155579A JP S60155579 A JPS60155579 A JP S60155579A JP 1248584 A JP1248584 A JP 1248584A JP 1248584 A JP1248584 A JP 1248584A JP S60155579 A JPS60155579 A JP S60155579A
Authority
JP
Japan
Prior art keywords
composite
ceramic
casting
sintered body
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1248584A
Other languages
Japanese (ja)
Inventor
猛雄 沖
杉本 公男
庄司 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP1248584A priority Critical patent/JPS60155579A/en
Publication of JPS60155579A publication Critical patent/JPS60155579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、セラミックス焼結体と鋳造金属との複合体及
びその製造方法に係シ、さらに詳しくは鋳物の少なくと
も一部分がセラミックス焼結体で構成されている複合体
であって、前記セラミックス焼結体が鋳物の外表面又は
内部を構成するセラミックス−鋳造金属複合体とその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite body of a ceramic sintered body and a cast metal, and a method for manufacturing the same, and more particularly to a composite body in which at least a portion of the casting is composed of a ceramic sintered body. The present invention relates to a ceramic-cast metal composite in which the ceramic sintered body constitutes the outer surface or inside of a casting, and a method for manufacturing the same.

近年、各種の使用目的に応じた諸性質を有する新材料を
得るために、各種の金属にセラミックス粉末を分散し又
は金属に無機繊維を混入補強して成る複合体が提案され
ている。
In recent years, composites made by dispersing ceramic powder in various metals or reinforcing metals by mixing them with inorganic fibers have been proposed in order to obtain new materials having various properties suitable for various purposes of use.

しかしながら、上記複合体は一般に全体が均質のもので
あって、高温領域や摺動部又は耐食性が特に要求される
部分以外にも高価なセラミックス材料を使用せざるを得
ないような場合が多く、これはむしろ過剰品位の材料を
余分な場所に使用するなどの不合理な点があった。
However, the above-mentioned composites are generally homogeneous as a whole, and in many cases expensive ceramic materials must be used in areas other than high-temperature areas, sliding parts, or areas where corrosion resistance is particularly required. This was rather unreasonable, such as using excessive quality materials in unnecessary places.

そこで本発明は、各種金属とセラミックスとの複合体に
おいて、これらの用途に応じて、特に耐熱性、耐摩耗性
、耐食性などが要求される部分には、主としてセラミッ
クスの特性を活かすべくセラミ・シクス焼結体のみが当
接し、他の部分は各種鋳造金属により構成されてお多金
属特有の延性や強度が優れ加工性が良好な性質がそのま
ま活かされるような、いわば適材適所にセラミックス焼
結体と金属とを使い分けられるような構造を有するセラ
ミ・ノクスー鋳造金属複合体とその製造方法を提供し、
従来の複合体の使用上の前記の不都合な点を解消するこ
とを目的とするものである。
Therefore, the present invention aims to utilize the characteristics of ceramics mainly for parts that require heat resistance, wear resistance, corrosion resistance, etc. in composites of various metals and ceramics, depending on the application. Only the sintered body is in contact with the other parts, and the other parts are made of various cast metals, so the ductility, strength, and workability characteristic of multimetallic materials are utilized as they are. To provide a ceramic-noxu cast metal composite having a structure that allows the use of ceramics and metals, and a method for manufacturing the same,
It is an object of this invention to overcome the above-mentioned disadvantages in the use of conventional composites.

以下、本発明の複合体とその製造方法について具体的に
説明する。
Hereinafter, the composite of the present invention and its manufacturing method will be specifically explained.

本発明によれば、鋳物の少なくとも一部分がセラミック
ス焼結体で構成されていることが必要である。
According to the present invention, it is necessary that at least a portion of the casting is made of a ceramic sintered body.

前記鋳物は、鉄、銅、ア/l/ミニウム、亜鉛、マグネ
シウム、錫のいずれかを母合金とする鋳鉄鋳物、鋼鋳物
、銅又は銅合金鋳物、アルミニウム又はアlレミニウム
合金鋳物、亜鉛又は亜鉛合金鋳物、マグネシウム又はマ
グネシウム合金鋳物、錫又は錫合金鋳物のいずれか1種
又は2種以上であることが好適である。これらの鋳物は
セラミックス材料に比べて比較的安価でしかも鋳造し易
い金属から得られるからである。なお、ここにいう母合
金とは、マトリックスとなる金属が50チ以上含有され
る合金をいう。
The castings include cast iron castings, steel castings, copper or copper alloy castings, aluminum or aluminum alloy castings, zinc or zinc alloy castings, and cast iron castings, steel castings, copper or copper alloy castings, aluminum or aluminum alloy castings, and zinc or zinc alloy castings. It is preferable to use one or more of alloy castings, magnesium or magnesium alloy castings, tin or tin alloy castings. This is because these castings can be obtained from metals that are relatively inexpensive and easy to cast compared to ceramic materials. Note that the term "master alloy" as used herein refers to an alloy containing 50 or more metals serving as a matrix.

なお、前記鋳鉄鋳物は炭素、珪素、マンガン、リン、硫
黄などを含む鉄合金であシ、最も代表的なものとして片
状黒鉛鋳鉄があシ、これらには普通鋳鉄やねずみ鋳物が
ありその他強a鋳鉄2合金鋳鉄9球状黒鉛鋳鉄、可鍛鋳
鉄、チpド鋳鉄などがある。このうち片状黒鉛鋳鉄であ
る普通鋳鉄やねずみ鋳鉄は顕微鏡的組織が他のフェライ
ト又はパーライトの中に黒鉛が片状に析出したものであ
り、成分中炭素と珪素との量が組織に大きな影響を与え
、その量と割合によっては黒鉛の大きさや形状並びに地
の状態が変わるものが好適である。その理由は、この鋳
物は通常鋳造性が良く比較的値段も安くしかもこの鋳物
が前述のように鋳造性が良いことと関連してセラミック
ス焼結体を熱収縮時に嵌め込み易いので強固な界面接合
が得られ易いからである。したがって、本発明において
はこの鋳物が最も多く使用されることになる。一方、強
靭鋳鉄は普通鋳鉄の強度を大きくするために炭素及び珪
素の量を少なくしたものであって、黒鉛の大きさが小さ
いのが特徴である。そのため、耐熱構造材として比較的
高い耐熱性と強度とが要求される用途などに好適の複合
材となシ得るが、前記普通鋳鉄よシもやや鋳造しにくい
欠点がある。
The above-mentioned cast iron is an iron alloy containing carbon, silicon, manganese, phosphorus, sulfur, etc. The most typical example is flake graphite cast iron, and these include ordinary cast iron and gray casting, and other strong iron alloys are used. There are 2 types of cast iron: 2) Alloy cast iron, 9) Spheroidal graphite cast iron, malleable cast iron, and chipped cast iron. Among these, ordinary cast iron and gray cast iron, which are flaky graphite cast irons, have a microscopic structure in which graphite is precipitated in flakes within other ferrite or pearlite, and the amount of carbon and silicon in the components has a large effect on the structure. It is preferable that the size and shape of the graphite as well as the condition of the ground change depending on the amount and proportion of the graphite. The reason for this is that this casting usually has good castability and is relatively cheap, and in conjunction with the above-mentioned good castability, it is easy to fit the ceramic sintered body during heat shrinkage, so a strong interfacial bond is created. This is because it is easy to obtain. Therefore, in the present invention, this casting is most often used. On the other hand, tough cast iron is made by reducing the amount of carbon and silicon in order to increase the strength of ordinary cast iron, and is characterized by having small graphite. Therefore, it can be used as a composite material suitable for applications requiring relatively high heat resistance and strength as a heat-resistant structural material, but it also has the drawback that it is difficult to cast compared to the above-mentioned ordinary cast iron.

そして、合金鋳鉄は合金元素を添加して黒鉛の微細化及
び地の安定化を図シ鋳物の性質を改善するものであって
、合金元素を数パーセント以下添加したものと多量に添
加したものとがある。ここでいう添加合金とはクロム、
ニッケM、銅、モリブデン、バナジウム、チタンなどを
いい、これらの元素が添加されることによシ複合体の耐
熱性、耐摩耗性、耐食性及び機械加工性などを向上でき
る。そのだめ、複合体の一部のみならず全体に耐熱性な
どが要求される用途、例えばタービンプV−ド、ターボ
チャージローターナトの一部分又はメカニカルシーM、
ノズIし。
Alloy cast iron is made by adding alloying elements to improve the properties of the cast material by refining graphite and stabilizing the ground. There is. The additive alloys mentioned here are chromium,
These elements include nickel M, copper, molybdenum, vanadium, titanium, etc., and by adding these elements, the heat resistance, abrasion resistance, corrosion resistance, machinability, etc. of the composite can be improved. Therefore, applications where heat resistance is required not only for a part of the composite but also for the whole, such as a part of a turbine blade, a part of a turbocharged rotor nut, or a mechanical seam,
Noz I.

ライニング材などに使用される複合体として好適である
。一方、球状黒鉛鋳鉄はその製造時に溶湯にマグネシウ
ム、カルシウム、セリウムなどを添加シて球状の黒鉛を
析出させたものであって、ダクタイMとも呼ばれてお9
強度が大きく靭性があシ耐熱、耐摩耗性などは片状黒鉛
鋳鉄よシ優れておシ、鋳造したままの複合体として使用
する場合のほか、可鍛鋳鉄のように焼なまして、更に靭
性を向上させることもできる。またチルド鋳鉄は表面は
白銑、内部は黒鉛が析出した組織であって、表面は耐摩
耗性があシ、内部は靭性がある。そのため、第1図及び
第2図の斜視図等に示すように、鋳物α)の内部にセラ
ミックス焼結体の棒状物已)又は管状物■が嵌装された
複合体とすることが有利である。その理由は、チルド鋳
鉄は内部組織に黒鉛が析出し九組織となるので、炭化物
系のセラミックス焼結体、例えば炭化珪素、炭化ホウ素
や炭素結晶の黒鉛などの表面とはなじみ易く、金属とセ
ラミックスとの界面の接合が良好となるからである。こ
のようにして得られる複合体は、内部に棒状物■が嵌装
されたものは芯部のセラミ・ソクス部分が炭化珪素や窒
化珪素のように高硬度でしかも耐摩耗性がよく、また炭
化ホウ素や黒鉛のように潤滑性や耐熱性が優れたもので
あれば摺動特性が良好であるため、軸受、メカ二カIレ
ジーM、ダイス。
It is suitable as a composite used for lining materials, etc. On the other hand, spheroidal graphite cast iron is manufactured by adding magnesium, calcium, cerium, etc. to the molten metal to precipitate spheroidal graphite, and is also called ductai M.
It has high strength and toughness, and is superior in heat resistance and wear resistance to flake graphite cast iron.In addition to being used as a composite as cast, it can be annealed like malleable cast iron to further improve its toughness. It can also be improved. Furthermore, chilled cast iron has a structure in which white pig iron is deposited on the surface and graphite is precipitated inside, and the surface is wear-resistant and the inside is tough. Therefore, as shown in the perspective views of Figures 1 and 2, it is advantageous to form a composite body in which a rod-shaped ceramic sintered body (2) or a tubular body (3) is fitted inside a casting α). be. The reason for this is that chilled cast iron has graphite precipitated in its internal structure, forming a nine-structure structure, so it is easily compatible with the surface of carbide-based ceramic sintered bodies, such as silicon carbide, boron carbide, and carbon crystal graphite, and is compatible with metals and ceramics. This is because the bonding at the interface with the material becomes better. In the composites obtained in this way, those with rod-shaped objects (■) fitted inside have a ceramic core part that has high hardness and wear resistance like silicon carbide or silicon nitride, and also has carbonized Materials with excellent lubricity and heat resistance, such as boron and graphite, have good sliding properties, so they are suitable for bearings, mechanics, and dies.

ノズlしなどの用途に好適のものとなシ、管状物(3)
が炭化珪素質のものは耐食性パイプなどの用途に好適で
ある。
A tubular object suitable for use as a nozzle etc. (3)
Those made of silicon carbide are suitable for applications such as corrosion-resistant pipes.

また、鋳鋼には大別して炭素鋼と特殊鋼とがあるが炭素
量の少ないものほど引張シ強さは低く、伸び、衡撃値が
大きくな9溶接性がよい。そのため、第3図の縦断面図
に示すように、片面すなわち炉の鉄皮側(a)や化学プ
ラントの鉄骨路側(b)を鋳鋼0)とし、他面すなわち
炉の内壁や化学反応槽の内部側を耐食性や耐熱性に優れ
た炭化珪素や窒化珪素などの板状物の焼結体構造(4)
とすれば有利である。その理由は、金属面側である鋳鋼
は溶接などの簡便な方法により接合し易く、位置決めや
取り付は固定が簡易迅速にできると共に、炉内部や槽内
部の高熱や化学薬品と直接接触する部分は耐熱性や耐化
学薬品性などの耐食性が優れ、特に炭化珪素焼結体を使
用した複合体の場合は、1400℃以上の高温域まで優
れた耐酸化性を有し、殆んどの強酸、強アVカリに対し
ても極めて安定な特性があるからである。したがって従
来の金属材料では得られない耐久性の優れた化学プラン
トのライニング施工が可能となる。そして、鋳鋼とセラ
ミックスとの複合体は比較的安価に得られるので機械部
品、例えば工作機器、各種モー〜ド、バルブなどの部品
にも好適であるが、鋳鉄に比べてやや鋳造性は悪い。そ
のため、このような複合体を製造するに当っては、第5
図の(イ)〜(ホ)の説明図に示すようにセラミックス
焼結体が鋳鋼鋳物と直接接触する部分には、各種形状の
凹凸部(C)を施こした板状物又は扁平状物を使用する
ことが、界面の機械的接合をよシ強固なものとすること
ができる。また前記凹凸部(C)の代シに気孔部を多く
したセラミックス焼結体を使用することもできる。この
ようにすれば凹凸によるアンカーリング効果としての機
械的嵌合力によって接合力を向上させることができると
共に、表面の粗さとぬれ接触角との関係によシ鋳造性が
改良され、金属の熱収縮時のはめ込み性や両者のなじみ
性が向上し、特に金属溶湯のぬれが毛管現象によシ良好
となふ。
Furthermore, cast steel can be broadly classified into carbon steel and special steel, and the lower the carbon content, the lower the tensile strength, the higher the elongation, the higher the equilibrium value, and the better weldability. Therefore, as shown in the longitudinal cross-sectional view of Figure 3, one side, that is, the steel shell side of the furnace (a) and the steel frame road side of the chemical plant (b), is made of cast steel, and the other side, that is, the inner wall of the furnace and the chemical reaction tank, is made of cast steel. The inside is made of a sintered body made of plate-like materials such as silicon carbide and silicon nitride with excellent corrosion resistance and heat resistance (4)
If so, it is advantageous. The reason for this is that cast steel, which has a metal surface, can be easily joined using simple methods such as welding, and positioning and installation can be done quickly and easily. has excellent corrosion resistance such as heat resistance and chemical resistance, and especially in the case of composites using silicon carbide sintered bodies, it has excellent oxidation resistance up to a high temperature range of 1400°C or higher, and is resistant to most strong acids, This is because it has extremely stable properties even against strong alkali. Therefore, it is possible to construct chemical plant linings with excellent durability that cannot be obtained with conventional metal materials. Since composites of cast steel and ceramics can be obtained relatively inexpensively, they are suitable for machine parts, such as machine tools, various modes, valves, etc., but castability is somewhat poorer than that of cast iron. Therefore, when manufacturing such a composite, it is necessary to
As shown in the explanatory diagrams (A) to (E) of the figure, the parts where the ceramic sintered body comes into direct contact with the cast steel are plate-shaped or flat-shaped objects with various shapes of uneven parts (C). The mechanical bond at the interface can be made even stronger by using . Furthermore, a ceramic sintered body having many pores may be used in place of the uneven portion (C). In this way, the bonding force can be improved by the mechanical fitting force as an anchoring effect due to the unevenness, and the relationship between the surface roughness and the wetting contact angle improves the castability, and the heat shrinkage of the metal The fitting performance and the compatibility between the two are improved, and the wetting of molten metal is particularly good due to capillary action.

そして本発明によれば、銅、アMミニウム、マグネシウ
ム、亜鉛、ニッケV、錫及びこれらの合金又はこれらの
2種以上を母合金とする複合合金と各種セラミックス焼
結体との複合体とすることもできる。
According to the present invention, it is a composite of copper, aluminum, magnesium, zinc, nickel V, tin, alloys thereof, or composite alloys having two or more of these as a mother alloy, and various ceramic sintered bodies. You can also do that.

銅合金鋳物には、青銅をはじめとして黄銅、アルミニウ
ム青銅があシ、これらは溶解温度が約1000℃位であ
るため、鉄合金に比べて低く鋳造性も前記普通鋳鉄と同
じく良好であシ、耐食性、耐摩耗性が優れ、各種の機械
部品、例えば、軸受、メカ二カMシー7L/、ノズル、
耐食性ポンプなどの部品として好適である。また、精密
測定器部品、工作機器、装飾品。
Copper alloy castings include bronze, brass, and aluminum bronze.Since these have a melting temperature of about 1000°C, they are lower than iron alloys and have good castability as well as ordinary cast iron. It has excellent corrosion resistance and wear resistance, and is suitable for various mechanical parts such as bearings, mechanical M sea 7L/, nozzles,
Suitable for parts such as corrosion-resistant pumps. Also precision measuring instrument parts, machine tools, and decorative items.

レジャ一部品などにも使用できる。It can also be used as a leisure item.

一方、MKアルミニウム、鉄、マンガン、ニッケIしな
どを加えて機械的性質を改良した合金、アルミニウム青
銅は銅とアルミニウムその他の合金で耐摩耗性や耐食性
の優れた合金であるため、炭化珪素質焼結体のように耐
摩耗性や耐食性の優れたセラミックス焼結体との複合体
は、特に軸受、メカニカルシーA/、ノズル、耐食性ラ
イニング、耐食性ノズMなどの各種用途に好適なもので
ある。
On the other hand, MK aluminum, an alloy with improved mechanical properties by adding iron, manganese, nickel metal, etc., and aluminum bronze are alloys of copper, aluminum, and other alloys that have excellent wear and corrosion resistance. Composites with ceramic sintered bodies with excellent wear resistance and corrosion resistance, such as sintered bodies, are particularly suitable for various uses such as bearings, mechanical seats A/, nozzles, corrosion resistant linings, and corrosion resistant nozzles M. .

この他に、軽合金鋳物としてのアンミニラム合金鋳物や
マグネシウム合金鋳物などがあシ、これらの軽金属合金
と比較的低密度の酸化アンミニラム焼結体(アルミナ質
焼結体)との複合体は、軽量で耐熱性に優れたものであ
るため、熱交換器、高温治具、インペラー反応管などの
用途に好適であシ、しかも寸法安定性が良好で加工性も
優れているため、複雑形状で高精度が要求される精密測
定器部品やタービン翼などの部品にも使用することがで
きる。この点、アルミナニウム単体の金属では鋳造性が
悪く機械的性質もよくないだめ、銅、珪素、マグネシウ
ム、マンガン、ニッケルなどの合金元素を添加して機械
的性質を改善したアルミナニウム合金鋳物とセラミック
スとの複合体とすることが有利である。
In addition, there are other light alloy castings such as amminilam alloy castings and magnesium alloy castings, and composites of these light metal alloys and relatively low-density amminiram sintered bodies (alumina sintered bodies) are lightweight. Because it has excellent heat resistance, it is suitable for applications such as heat exchangers, high-temperature jigs, and impeller reaction tubes.It also has good dimensional stability and excellent workability, so it can be used in complex shapes and high It can also be used for parts such as precision measuring instrument parts and turbine blades that require precision. In this regard, aluminum alloy castings and ceramics have improved mechanical properties by adding alloying elements such as copper, silicon, magnesium, manganese, and nickel, since aluminum alone has poor castability and poor mechanical properties. It is advantageous to form a complex with

また、マグネシウム合金は前記アルミナニウム合金よシ
もさらに軽量な複合体を製造するのに有利であり、一般
にアlレミニウム、マンガン、ベリリウムなどを添加し
た合金が使用される。
In addition, magnesium alloys are more advantageous than the aluminum alloys in producing lightweight composites, and generally alloys containing aluminum, manganese, beryllium, etc. are used.

その他の合金鋳物としては、亜鉛合金として亜鉛にアン
ミニラムを少量添加したダイカスト用合金があシ、また
ニッケル合金としてニッケルに銅を加えたモネlレメタ
1し、モリブデン、クロム、珪素ヲ加えたハステロイ、
さらには鉛に銅、錫を添加した合金。
Other alloy castings include a die-casting alloy made by adding a small amount of amminilum to zinc, a nickel alloy called Monel Remeta 1, which is made by adding copper to nickel, and Hastelloy, which is made by adding molybdenum, chromium, and silicon.
Furthermore, it is an alloy made by adding copper and tin to lead.

銅、アンチモンを加えた軸受合金や錫に銅又はアンチモ
ンを加えた合金を鋳物として使用することもできる。ま
だ、これらの合金の特性と各種セラミックス焼結体との
適宜の組合せによシ自動車部品としてのミッションケー
ス、シリンダーブロック、e入側マニホールドなどの用
途又はポンプ、カメラボディ。
A bearing alloy containing copper or antimony or an alloy containing copper or antimony added to tin can also be used as a casting. However, by combining the properties of these alloys with various ceramic sintered bodies, they can be used for automotive parts such as transmission cases, cylinder blocks, e-inlet manifolds, pumps, and camera bodies.

計器ケースやカバーなどの各種用途の複合体として使用
することができる。
It can be used as a composite for various purposes such as instrument cases and covers.

一方、本発明によれば、セラミックス焼結体として炭化
珪素、炭化ホウ素、窒化珪素、窒化アMミニウム、窒化
ホウ素、窒化チタン、酸化アンミニラム。
On the other hand, according to the present invention, silicon carbide, boron carbide, silicon nitride, aluminum nitride, boron nitride, titanium nitride, and amminilum oxide are used as the ceramic sintered body.

サイアロン、ジルコニア、フェライト、コージェライト
、黒鉛のいずれか1種又は2種以上の優れた特性を有す
る各種の材料を使用することが好適である。
It is preferable to use one or more of various materials having excellent properties such as sialon, zirconia, ferrite, cordierite, and graphite.

これらのセラミックス焼結体は耐熱構造材料、耐摩耗材
料、耐食性材料として好適の優れた特性を有するものだ
からである。しかしながら、本発明によれば、前記例示
のセラミックス焼結体以外のものも使用することができ
る。
This is because these ceramic sintered bodies have excellent properties that make them suitable as heat-resistant structural materials, wear-resistant materials, and corrosion-resistant materials. However, according to the present invention, ceramic sintered bodies other than those exemplified above can also be used.

すなわち、本発明において使用される各種セラミックス
焼結体としては各種のセラミックス原料微粉を使用した
焼結体である。
That is, the various ceramic sintered bodies used in the present invention are sintered bodies using various ceramic raw material fine powders.

前記セラミックス原料微粉としては種々のものが使用で
きるが、なかでも炭化物、窒化物、酸化物あるいはそれ
らの化合物のなかから選ばれる少なくとも1種を主成分
とするものであることが好ましく、炭化物としては例え
ば炭化珪素、炭化ホウ素、炭化アルミニウム、炭化タン
グステン、炭化チタン、炭化タンタル、炭化ジルコニウ
ム、窒化物としては例えば窒化珪素、窒化ホウ素、窒化
アルミニウム、窒化チタン、窒化タングIし、窒化ジI
レコニウム、酸化物トしては例えばステアタイト、フォ
ルスプライト。
Various materials can be used as the ceramic raw material fine powder, but among them, it is preferable that the main component is at least one selected from carbides, nitrides, oxides, or compounds thereof. For example, silicon carbide, boron carbide, aluminum carbide, tungsten carbide, titanium carbide, tantalum carbide, zirconium carbide, and nitrides include silicon nitride, boron nitride, aluminum nitride, titanium nitride, tungsten nitride, di-I nitride, etc.
Reconium, oxides such as steatite and forsprite.

アルミナ、ジルコン、ベリリア、マグネシア、ムライト
、コージェライト、チタン酸アMミニウム、ジルコニア
等を使用することができる。
Alumina, zircon, beryllia, magnesia, mullite, cordierite, aluminum titanate, zirconia, etc. can be used.

本発明において、前記セラミックス微粉は平均粒径が2
μm以下の微粉末であることが好ましい。
In the present invention, the ceramic fine powder has an average particle size of 2
It is preferable that the powder be a fine powder of μm or less.

平均粒径が2μmよシも大きいセラミックス粉末は粒子
相互の接触点が比較的少なく、従来公知の潤滑剤で十分
成形性を向上させることができるが、粉末の焼結性が劣
るため、高密度の焼結体を製造することが困難であるか
らである。
Ceramic powder with an average particle size as large as 2 μm has relatively few contact points between particles, and conventionally known lubricants can sufficiently improve the formability, but the powder has poor sinterability, so it is difficult to achieve high density. This is because it is difficult to manufacture a sintered body of.

次に、本発明のセラミックス−鋳造金属複合体の製造方
法の一例について説明する。
Next, an example of the method for manufacturing the ceramic-cast metal composite of the present invention will be described.

第6図は本発明の複合体を製造するのに適した鋳型の縦
断面図である。以下、本発明の複合体の製造方法の一例
を第6図に基づいて説明する。この図面において、鋳型
6)のいずれかの部分、例えば底面部にセラミックス焼
結体(4)を仮固定する。ここでいう仮固定とは、金属
の溶湯などを鋳込んだときに簡単に移動しない程度の固
定状態をいい、鋳造後は鋳型から分離できる程度の装着
状態をいう。仮固定の一例として各種形状のケレン(6
)を使用する方法があり、また鋳型にセラミックス焼結
体の一面を粘結剤で仮接着する方法もある。ケレンは中
子を支持する金具で型持ちとも称し、棒型、鼓型、とん
ぼ型、かご型又は帽子型のものなど各種の形状のものか
あシ、ケレンの形状や大きさは製作する鋳物の条件に適
合するものを選び、鋳物と同質の材質の金属のものが好
適である。また、ケレンの表面は常にきれいにみがいて
用いることが有利であ゛る。酸化物や水分がケレン表面
に付着していると溶着をさまたげるばかりでなく、巣の
原因ともなるからである。一方、鋳型の表面ニ水カラス
、セメント、フラン樹it、7二ノール樹脂、乾性油又
は粘土などの各種の粘結剤を介してセラミックス焼結体
の一部を仮接着することによシ鋳型に仮固定することも
できる。このようにして鋳型のいずれかの部分にセラミ
ックス焼結体を仮固定した後、湯口(7)より前記各種
の金属の溶湯を鋳込む。ここで湯口(7)の形状や大き
さは何ら限定されるものではないが、溶湯が静かに流れ
込むような形状とすることが有利である。一般には重力
を利用して注湯するが、特殊な方法として、注湯の際に
或いは注湯の後に溶湯に圧力をかける方法がある。なお
、ダイカスト法は、溶湯を金型内に高い圧力で注入する
方法であり、この方法は比較的厚さの薄い鋳物と板状物
のセラミックス焼結体とを接合した複合体を製作するの
に好適である。また、低圧鋳造法は大気よりわずかに高
い圧力を炉内の湯面にかけ、管を通じて溶湯を鋳型内に
押し上げる方法である。一方、遠心鋳造法は鋳型を回転
しなから溶湯を注ぎ、遠心力を利用して溶湯を加圧して
鋳物をつくる方法であシ、第1図又は第2図に示すよう
な鋳物の中心部にセラミックス焼結体を嵌装する複合体
であって、パイプや樋などのような長尺物の鋳造に好適
である。
FIG. 6 is a longitudinal cross-sectional view of a mold suitable for manufacturing the composite of the invention. An example of the method for manufacturing the composite of the present invention will be explained below based on FIG. 6. In this drawing, a ceramic sintered body (4) is temporarily fixed to any part of a mold 6), for example, to the bottom part. Temporary fixation here refers to a fixed state that does not easily move when molten metal is cast, and refers to a fixed state that allows it to be separated from the mold after casting. As an example of temporary fixation, various shapes of keren (6
), and there is also a method of temporarily bonding one side of the ceramic sintered body to the mold with a binder. Keren is a metal fitting that supports the core, and is also called a mold holder, and can be of various shapes such as rod, drum, dragonfly, basket, or hat shapes. Select one that meets the following conditions, and preferably one made of the same metal as the casting. Also, it is advantageous to always cleanly polish the surface of the keren before use. This is because if oxides or moisture adhere to the surface of the coating, it will not only hinder welding but also cause cavities. On the other hand, a part of the ceramic sintered body is temporarily bonded to the surface of the mold using various binders such as diacrylate, cement, furan resin, 7-dinol resin, drying oil, or clay. It can also be temporarily fixed. After the ceramic sintered body is temporarily fixed in any part of the mold in this way, molten metals of the various metals mentioned above are poured through the sprue (7). Here, the shape and size of the sprue (7) are not limited at all, but it is advantageous to have a shape that allows the molten metal to flow quietly into it. Generally, gravity is used to pour the molten metal, but as a special method, there is a method of applying pressure to the molten metal during or after pouring. The die casting method is a method in which molten metal is injected into a mold under high pressure, and this method is used to manufacture a composite body made by joining a relatively thin casting and a ceramic sintered body in the form of a plate. suitable for In addition, the low-pressure casting method is a method in which a pressure slightly higher than atmospheric pressure is applied to the molten metal surface in the furnace, and the molten metal is pushed up into the mold through a tube. On the other hand, the centrifugal casting method is a method in which molten metal is poured into a mold while it is rotating, and the molten metal is pressurized using centrifugal force to create a casting. It is a composite body in which a ceramic sintered body is fitted into a sintered body, and is suitable for casting long objects such as pipes and gutters.

このようにして鋳造した後は鋳物を鋳型から取シ出し、
鋳物に付着している砂又は汚れなどを取シ除き、また湯
口や鋳型の境目などから張り出したパリを取り去る。こ
のようにして、必要によシ各種の後処理をするほか、用
途又は使用目的に応じて複合体表面を研削し又は研摩し
たシ、各種形状に切断し仕上げ加工をする。最後に外観
の状態や欠陥の有無を目検しだシ、超音波探傷装置や放
射線装置で内部の欠陥の有無を調べる。
After casting in this way, remove the casting from the mold,
Remove any sand or dirt adhering to the casting, and remove any debris that overhangs from the sprue or the boundary between the molds. In this way, in addition to performing various post-treatments as necessary, the surface of the composite is ground or polished, cut into various shapes, and finished according to the purpose of use. Finally, we visually inspect the external appearance and presence of defects, and use ultrasonic flaw detection equipment and radiation equipment to check for internal defects.

なお、前記の各種金属の溶解には各種の炉を用い、例え
ば鋳鉄ではキーポラや低周波誘導電気炉、鋳鋼では電弧
加熱の電気炉、高周波誘導炉を用い、さらに銅合金や軽
合金鋳物ではMツボ炉を用いることが有利である。その
理由は、これらO枦)工各材質に最も経済的で良質の溶
湯を得ることができるからである。・ そして前記鋳型は一般に砂を粘結剤で固めてつくられる
が生型や自硬性型(フェノ−1し樹脂系)があシ、砂の
ほかに金属を用いることもできる。
Various types of furnaces are used to melt the above-mentioned metals, for example, Keepola or low-frequency induction electric furnaces are used for cast iron, electric arc heating electric furnaces and high-frequency induction furnaces are used for cast steel, and M is used for copper alloy and light alloy castings. It is advantageous to use a pot furnace. The reason for this is that it is possible to obtain the most economical and high-quality molten metal for each of these materials. - The mold is generally made by hardening sand with a binder, but it is also possible to use a green mold, a self-hardening mold (phenol resin type), or metal in addition to sand.

以下、本発明の最も代表的な実施例について説明する。The most typical embodiments of the present invention will be described below.

実施例 第6図に示すような生型又は自硬性温の鋳型(5)を組
立てた後、セラミックス焼結体(4)として、板状の厚
さが約3′Mkで、タテとヨコの寸法が60X43mの
炭化珪素質焼結体(商品名「イビセラム」)を鋳鉄製の
ケレン(6)によシ仮固定をし、鋳込み温度1400±
20℃でダクタイpを鋳込んだ。なお、鋳込みの際にセ
ラミックス焼結体のサーマル・ショックを緩和スるため
に約400℃で予熱しておくことが有効な手段であるこ
とを新規に知見した。
Example After assembling a green mold or self-hardening mold (5) as shown in Fig. 6, a ceramic sintered body (4) with a plate-like thickness of about 3'Mk and vertical and horizontal A silicon carbide sintered body (product name ``IBICERAM'') with dimensions of 60 x 43 m was temporarily fixed in a cast iron keren (6), and the casting temperature was 1400±.
Ductai p was cast at 20°C. It has been newly discovered that preheating the ceramic sintered body at about 400°C is an effective means of mitigating thermal shock during casting.

このようにして得られた炭化珪素焼結体とダクタイVと
から成るレンガ状の複合体を用いて、化学プラントの内
張シライナー施工をしたところ、この内ibは極めて優
れた耐熱性と耐食性並びに耐摩耗性を発揮し、ダクタイ
ル単体の内張シライナー施工の場合よシも数倍の耐久性
があった。
When a brick-like composite consisting of the silicon carbide sintered body and Ductai V thus obtained was used to construct a liner for lining a chemical plant, ib had extremely excellent heat resistance, corrosion resistance, and It exhibits wear resistance and is several times more durable than a single ductile liner.

以上述べた如く、本発明によれば各種のセラミックス焼
結体と金属との特性をそれぞれ活かした施工性と加工性
が優れ、しかも耐熱性、耐食性並びに耐摩耗性などの金
属特性だけでは得られない新規な複合体を得ることがで
き新規な用途を拡大することができると共に比較的安価
にしてかつ容易に各種特性を有する複合体を得ることが
できる。
As described above, the present invention has excellent workability and workability that take advantage of the characteristics of various ceramic sintered bodies and metals, and also has properties that cannot be obtained by metal properties alone such as heat resistance, corrosion resistance, and wear resistance. It is possible to obtain a novel composite material that has never been used before, thereby expanding new uses, and at a relatively low cost, it is possible to easily obtain a composite material having various properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は本発明の複合体の斜視図、第3図は本
発明の複合体を使用した炉内張シの縦断面図、第4図は
本発明の複合体を使用した化学プラントの内張シライナ
ー施工の切欠状態を示す斜視図、第5図はセラミックス
焼結体の各種の凹凸形状を示す説明図、第6図は本発明
の複合体の製造に用いる装置(鋳型)の−例を示す縦断
面図である。 1・・・・・・鋳造金属部、2・・・・・・セラミック
ス焼結体の棒状物、3・・・・・・セラミックス焼結体
の管状物。 4・・・・・・セリミックス焼結体の板状物、5・・・
・・・鋳型。 6・・・・・・ケレン、7・・・・・・湯口。 特許出願人の名称 イビデン株式会社 代表者 多賀潤一部 第5図 (イ) (ロ) (ハ) (ニ) (ホ)第6図
Figures 1 and 2 are perspective views of the composite of the present invention, Figure 3 is a longitudinal cross-sectional view of a furnace lining using the composite of the present invention, and Figure 4 is a diagram of a furnace lining using the composite of the present invention. A perspective view showing the cutout state of the lining sealer construction for a chemical plant, Fig. 5 is an explanatory diagram showing various uneven shapes of the ceramic sintered body, and Fig. 6 is an apparatus (mold) used for manufacturing the composite of the present invention. FIG. 1... Cast metal part, 2... Rod-shaped ceramic sintered body, 3... Tube-shaped ceramic sintered body. 4... Plate-shaped ceramic sintered body, 5...
···template. 6... Keren, 7... Spruce. Name of patent applicant: IBIDEN Co., Ltd. Representative: Jun Taga Figure 5 (a) (b) (c) (d) (e) Figure 6

Claims (1)

【特許請求の範囲】 1、鋳物の少なくとも一部分がセラミックス焼結体で構
成されていることを特徴とするセラミックス−鋳造金属
複合体。 2、鋳物の少なくとも一部分のうち外表面又は内部がセ
ラミックス焼結体表面で構成されていることを特徴とす
る特許請求の範囲第1項記載の複合体。 3、前記鋳物は鉄、銅、アIレミニウム、亜鉛、マグネ
シウム、錫のいずれかを母合金とする鋳鉄鋳物鋼鋳物、
銅又は銅合金鋳物、アルミニウム又はアMミニウム合金
鋳物、亜鉛又は亜鉛合金鋳物、マグネシウム又はマグネ
シウム合金鋳物、錫又は錫合金鋳物のいずれか1種又は
2種以上であることを特徴とする特許請求の範囲第1項
又は第2項記載の複合体。 A 始−I+1シ≦コ hツ艙妊鰺1謙巴lし吐出 巳
lしふ^素、窒化珪素、窒化アルミニウム、窒化ホウ素
。 窒化チタン、酸化アVミニウム、サイアロン、ジルコニ
ア、フェライト、コージニライト、黒鉛のいずれか1種
又は2種以上であることを特徴とする特許請求の範囲第
1項〜第3項記載の複合体。 5、前記セラミックス焼結体の形状は板状物、少なくと
も一部に平面を有する扁平状物、管状物、棒状物又はこ
れらの少なくとも背面もしくは側面の一部分に気孔、凹
凸部を有する各種形態のものであることを特徴とする特
許請求の範囲第1項〜第4項記載の複合体。 6 鋳物の鋳型のいずれかの部分にセラミックス焼、給
体を仮固定した後、湯口よシ金属の溶湯を鋳込み、鋳型
から鋳物の少なくとも一部分の表面又は内面にセラミッ
クス焼結体表面が露出したセラミックス焼結体と鋳造金
属とから構成された複合体を取シ出し、必要によυ該複
合体の後処理をすることを特徴とするセラミックス−鋳
造金属複合体の製造方法。 7、 前記セラミックス位枯体外舷枯和1vけ〃Vソか
介して鋳型に仮固定することを特徴とする特許請求の範
囲第6項記載の製造方法。
[Scope of Claims] 1. A ceramic-cast metal composite, characterized in that at least a portion of the casting is composed of a ceramic sintered body. 2. The composite body according to claim 1, wherein at least a portion of the cast material has an outer surface or an inner surface made of a ceramic sintered body surface. 3. The casting is a cast iron casting steel casting whose mother alloy is iron, copper, aluminum, zinc, magnesium, or tin;
A patent claim characterized in that it is any one or more of copper or copper alloy castings, aluminum or aluminum alloy castings, zinc or zinc alloy castings, magnesium or magnesium alloy castings, tin or tin alloy castings. The complex according to Scope 1 or 2. A start - I + 1 ≦ ko htsugu pregnant horse mackerel 1 humble discharge 巳l carbon, silicon nitride, aluminum nitride, boron nitride. 4. The composite according to claim 1, wherein the composite material is any one or more of titanium nitride, aluminum oxide, sialon, zirconia, ferrite, cordinilite, and graphite. 5. The shape of the ceramic sintered body may be a plate-like object, a flat object with at least a flat surface, a tubular object, a rod-like object, or various shapes having pores or uneven parts on at least a part of the back surface or side surface thereof. A composite according to any one of claims 1 to 4, characterized in that: 6 Ceramics in which the surface of the ceramic sintered body is exposed from the mold to the surface or inner surface of at least a portion of the casting, after sintering the ceramic and temporarily fixing the supply body to any part of the casting mold, and then pouring the molten metal through the sprue. 1. A method for producing a ceramic-cast metal composite, which comprises taking out a composite composed of a sintered body and a cast metal, and subjecting the composite to post-treatment if necessary. 7. The manufacturing method according to claim 6, characterized in that the ceramic is temporarily fixed to the mold via a V-type screw.
JP1248584A 1984-01-25 1984-01-25 Ceramic-casted metal composite body and manufacture Pending JPS60155579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1248584A JPS60155579A (en) 1984-01-25 1984-01-25 Ceramic-casted metal composite body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1248584A JPS60155579A (en) 1984-01-25 1984-01-25 Ceramic-casted metal composite body and manufacture

Publications (1)

Publication Number Publication Date
JPS60155579A true JPS60155579A (en) 1985-08-15

Family

ID=11806696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1248584A Pending JPS60155579A (en) 1984-01-25 1984-01-25 Ceramic-casted metal composite body and manufacture

Country Status (1)

Country Link
JP (1) JPS60155579A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932099A (en) * 1988-10-17 1990-06-12 Chrysler Corporation Method of producing reinforced composite materials
JPH03297549A (en) * 1990-04-16 1991-12-27 Isuzu Motors Ltd Heat insulating material for cast-in and manufacture thereof
US5172746A (en) * 1988-10-17 1992-12-22 Corwin John M Method of producing reinforced composite materials
US5199481A (en) * 1988-10-17 1993-04-06 Chrysler Corp Method of producing reinforced composite materials
CN102310183A (en) * 2011-09-06 2012-01-11 扬州电力设备修造厂 High wear resisting iron-based composite material and preparation method thereof
CN104001904A (en) * 2013-02-25 2014-08-27 阿尔斯通技术有限公司 Method for manufacturing a metal-ceramic composite structure and metal-ceramic composite structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331485A (en) * 1976-09-02 1978-03-24 Scott Paper Co Consumable compact waterrproof package of previously wetted paper
JPS544909A (en) * 1977-06-13 1979-01-16 Kyoto Ceramic Ceramiccmetal complex body and production thereof
JPS5549028A (en) * 1978-10-04 1980-04-08 Hitachi Ltd Radio receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331485A (en) * 1976-09-02 1978-03-24 Scott Paper Co Consumable compact waterrproof package of previously wetted paper
JPS544909A (en) * 1977-06-13 1979-01-16 Kyoto Ceramic Ceramiccmetal complex body and production thereof
JPS5549028A (en) * 1978-10-04 1980-04-08 Hitachi Ltd Radio receiver

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4932099A (en) * 1988-10-17 1990-06-12 Chrysler Corporation Method of producing reinforced composite materials
US5172746A (en) * 1988-10-17 1992-12-22 Corwin John M Method of producing reinforced composite materials
US5199481A (en) * 1988-10-17 1993-04-06 Chrysler Corp Method of producing reinforced composite materials
JPH03297549A (en) * 1990-04-16 1991-12-27 Isuzu Motors Ltd Heat insulating material for cast-in and manufacture thereof
CN102310183A (en) * 2011-09-06 2012-01-11 扬州电力设备修造厂 High wear resisting iron-based composite material and preparation method thereof
CN104001904A (en) * 2013-02-25 2014-08-27 阿尔斯通技术有限公司 Method for manufacturing a metal-ceramic composite structure and metal-ceramic composite structure
EP2769969A1 (en) * 2013-02-25 2014-08-27 Alstom Technology Ltd Method for manufacturing a metal-ceramic composite structure and metal-ceramic composite structure
JP2014162719A (en) * 2013-02-25 2014-09-08 Alstom Technology Ltd Method for manufacturing metal-ceramic composite structure and metal-ceramic composite structure
US9174275B2 (en) 2013-02-25 2015-11-03 Alstom Technology Ltd Method for manufacturing a metal-ceramic composite structure and metal-ceramic composite structure
CN104001904B (en) * 2013-02-25 2017-01-11 通用电器技术有限公司 Method for manufacturing a metal-ceramic composite structure and metal-ceramic composite structure

Similar Documents

Publication Publication Date Title
US6648055B1 (en) Casting tool and method of producing a component
US5228494A (en) Synthesis of metal matrix composites containing flyash, graphite, glass, ceramics or other metals
US5980792A (en) Particulate field distributions in centrifugally cast composites
Ervina Efzan et al. Fabrication method of aluminum matrix composite (AMCs): a review
US20100009163A1 (en) Method for producing a body of metal-ceramic composites
Goenka et al. Automobile parts casting-methods and materials used: a review
Gecu et al. Sliding wear of the Ti-reinforced Al matrix Bi-metal composite: a potential replacement to conventional SiC-reinforced composites for automotive application
Patel et al. Different techniques used for fabrication of aluminium metal matrix composites
WO2011089626A2 (en) Particulate aluminium matrix nano-composites and a process for producing the same
JPS60155579A (en) Ceramic-casted metal composite body and manufacture
CN103352978B (en) Al 3ti/Al 3ni particle is collaborative strengthens sial base composite piston and preparation method
JP2000225457A (en) Ceramic reinforced metallic compound material, and its manufacture
Goni et al. High performance automotive and railway components made from novel competitive aluminium composites
Rajeshkumar et al. A Comprehensive review on manufacturing methods and characterization of Al6061 composites
JPS59147769A (en) Production of composite casting
JPS6233730A (en) Wear resistant composite material
Yamauchi Development of SiC whiskers reinforced piston
YADAV et al. Fabrication and Structural Analysis of Aluminium Alloy (LM 16) Reinforced with Graphite and Granite Powder
Verma et al. Performance Characteristics of Metal‐Ceramic Composites Made by the Squeeze Casting Process
Reddy Microstructure and Mechanical Properties of AA2219 Alloy Turbine Impeller Manufactured by Investment Casting
CN113814377B (en) Production method of high-strength guide plate
JP3323396B2 (en) Cylinder liner, cylinder block, and method of manufacturing the same
Sivaprakash et al. Investigation of microstructure and mechanical properties of squeeze cast LM6 alloy with varying contents of Al2O3and Si3N4-a review
Mahadevan et al. Selectively reinforced squeeze cast pistons
Lim The production and evaluation of fibre preform-infiltrated metal matrix composite castings produced by a developed pressure-assisted investment casting process