JPS60155496A - Information-recording medium - Google Patents

Information-recording medium

Info

Publication number
JPS60155496A
JPS60155496A JP59012432A JP1243284A JPS60155496A JP S60155496 A JPS60155496 A JP S60155496A JP 59012432 A JP59012432 A JP 59012432A JP 1243284 A JP1243284 A JP 1243284A JP S60155496 A JPS60155496 A JP S60155496A
Authority
JP
Japan
Prior art keywords
film
sbse
recording
recording layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59012432A
Other languages
Japanese (ja)
Inventor
Junichi Akamatsu
赤松 順一
Kenjiro Watanabe
健次郎 渡辺
Susumu Sakamoto
進 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59012432A priority Critical patent/JPS60155496A/en
Publication of JPS60155496A publication Critical patent/JPS60155496A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • G11B7/2542Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers consisting essentially of organic resins
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B7/2572Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of organic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain an information-recording medium in which a recording layer can be securely brought into a crystalline state and an amorphous state even in a disk system, by constituting a thin-film recording layer of an SbSe compound comprising Ge in a specified percentage, in an erasable optical recording medium. CONSTITUTION:An SiO2 film is vapor deposited, if required, on an acrylic resin base, and then a Ge-containing SbSe film is provided thereon as a thin-film recording layer. The SbSe film is provided by using an SbSe vapor source and a Ge vapor source and vapor-depositing the two substances while controlling the ratio of the amounts thereof. The film thickness is set to be about 900Angstrom , and the Ge content is set to be 1-10atom%, preferably, 3-8atom%. The SbSe compound may be Sb2Se3 or an SbSe compound comprising 10-90atom% of Sb. After vapor-depositing an SiO2 film on the recording layer, the resultant material is adhered to an acrylic resin plate by a UV-curing type resin, followed by curing the resin to obtain the recording medium.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザー光等の光学的に情報を記録する記録
媒体、特に消去可能な記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a recording medium for optically recording information such as a laser beam, and particularly to an erasable recording medium.

背景技術とその問題点 消去可能な光記録材料としては、光磁気材料の例えばT
bPθ+ GdCo等が知られている。しかしながらこ
のような光磁気材料による情報記録媒体にあっては、そ
の記録情報、すなわち磁化の向きを光の偏光を用いて読
み出すものであるために、光学系が複雑となる。また、
その消去は、外部磁界によってなすものであるために装
置が複雑となる。
BACKGROUND ART AND PROBLEMS Erasable optical recording materials include magneto-optical materials such as T.
bPθ+ GdCo etc. are known. However, in an information recording medium made of such a magneto-optical material, the optical system is complicated because the recorded information, that is, the direction of magnetization, is read out using polarized light. Also,
Since the erasure is performed using an external magnetic field, the device becomes complicated.

これに比し、非晶質から結晶質へ、また結晶質から非晶
質への可逆的相転移を利用して、急熱急冷による結晶質
から非晶質の相転移を行って例えば情報の記録をなし、
除熱によって非晶質から結晶質への相転移を行って例え
ば消去をなし、非晶質状態と結晶質状態における反射率
R1透過率τの変化によっ゛ζ信号の再生を行う方法が
提案された。この方法による場合、レーザー光量及び照
射時間によって結晶質5非晶質の相転移を行わしめて記
録及び消去を行うので、光字系が簡素化されるという利
点を有する。また、この相転移による記録方法は、その
再生信号量が前述した光磁気材料による再生信号量に比
して極めて大きいものであっ゛ζコントラスト比の大き
な記録ができるという利点を有している。
In contrast, by utilizing reversible phase transitions from amorphous to crystalline and from crystalline to amorphous, phase transition from crystalline to amorphous is performed by rapid heating and cooling, for example, information record;
A method has been proposed in which a phase transition from amorphous to crystalline occurs by removing heat, for example, erasure is performed, and the ζ signal is reproduced by changing the reflectance R1 transmittance τ between the amorphous state and the crystalline state. It was done. This method has the advantage that the optical system is simplified because recording and erasing are performed by causing a crystalline-5-amorphous phase transition depending on the amount of laser light and the irradiation time. Further, this recording method using phase transition has the advantage that the amount of reproduced signals is much larger than the amount of reproduced signals using the above-mentioned magneto-optical material, and recording with a large ζ contrast ratio can be performed.

そして、このような相転移による記録材料としては、S
e系の材料、或いはTeの低級酸化物等が知られている
。そのり】で、Sb2 Sesは、約170℃で非晶質
から結晶質への相転移が生じるので、この材料の結晶質
ぜ非晶質の可逆性を利用した情報記録媒体が注目される
。このSbz Sesによる記録材料で5は、これを非
晶質から結晶質に転移させるのに、レーザー光を局部的
に照射し、この部分を170℃以上に加熱させることに
よって行うことができるが、この場合、その非晶質から
結晶質の転移は、170℃以上で成る時間以上に保持さ
せる必要があり、レーザー光でゆっくり熱する除熱の条
件が必要となる。これに対して、結晶質から非晶質への
転移は、照射レーザー光栄を増加して、その溶融温度の
約600℃に加熱することによって行うが、この場合、
急冷されることが非晶質化に必要となる。すなわち、除
熱徐冷により非晶質から結晶質への転移を行わしめ、急
冷により結晶質から非晶質への転移を行わしめて、情報
の消去と記録を行うものである。
As a recording material that undergoes such a phase transition, S
E-based materials, lower oxides of Te, etc. are known. Since Sb2Ses undergoes a phase transition from amorphous to crystalline at about 170° C., an information recording medium that utilizes the reversibility of this material from crystalline to amorphous is attracting attention. In this recording material made of Sbz Ses, the transition from amorphous to crystalline state can be achieved by locally irradiating laser light and heating this area to 170° C. or higher. In this case, the transition from amorphous to crystalline must be maintained at a temperature of 170° C. or more for a period of time or more, and heat removal conditions such as slow heating with laser light are required. On the other hand, the transition from crystalline to amorphous is achieved by increasing the irradiated laser beam and heating it to its melting temperature of about 600°C;
Rapid cooling is required for amorphization. That is, information is erased and recorded by causing a transition from amorphous to crystalline by removing heat and slow cooling, and by causing a transition from crystalline to amorphous by rapid cooling.

ところが実際上は、この相転移を利用する記録材料は、
その膜厚、熱伝導率、結晶化時間等によって、必ずしも
、−に述し′ζ情報の記録、消去を良好に行うこができ
ない。例えば、非晶質状態から結晶質状態への転移は比
較的容易に行うことができるが、結晶質状態から非晶質
状態の転移が良好に行われない場合がある。それは、結
晶質状態にある部分をレーザー光の照射で溶融させても
その冷却過程で再結晶化してしまうことにある。このよ
うな冷却過程での再結晶化を回避するために、その記録
材料の5bSe化合物において、Seの含有量を多くす
るとか、5bSe化合物に少量のA3等を添加して結晶
化の時間を長くして溶融部分の一冷却時間より結晶化時
間を長くすることによって、冷却時に再結晶化が生じな
いようにすることが行われる。
However, in reality, recording materials that utilize this phase transition are
Depending on the film thickness, thermal conductivity, crystallization time, etc., it is not always possible to record and erase the 'ζ information as described in -. For example, although the transition from an amorphous state to a crystalline state can be performed relatively easily, the transition from a crystalline state to an amorphous state may not be performed satisfactorily. The reason is that even if the crystalline portion is melted by laser beam irradiation, it will recrystallize during the cooling process. In order to avoid such recrystallization during the cooling process, it is possible to increase the Se content in the 5bSe compound of the recording material, or to prolong the crystallization time by adding a small amount of A3 etc. to the 5bSe compound. By making the crystallization time longer than one cooling time of the molten part, it is ensured that recrystallization does not occur during cooling.

ところがこのように結晶化時間を長くすると、記録媒体
を回転させながらレーザー光を照射して結晶化させるい
わゆるディスク方式による場合、その結晶化が着しく困
難となる。
However, when the crystallization time is increased in this manner, crystallization becomes difficult when using a so-called disk method in which crystallization is performed by irradiating a laser beam while rotating a recording medium.

発明の目的 本発明は、上述した欠点を回避し、ディスク方式を採る
場合においても、確実に、記録及び消去、ずなわち、記
録1−の結晶化、非晶質化を確実に行うことができるよ
うにした情報記録媒体を提供するものである。
Purpose of the Invention The present invention avoids the above-mentioned drawbacks and makes it possible to reliably perform recording and erasing, that is, to reliably crystallize and amorphize recording 1-, even when using a disk method. The purpose of this invention is to provide an information recording medium that enables the following.

すなわち、本発明においては、5h2S83における一
ヒ述した再結晶化による不都合は、その溶融温度が60
0℃程度であるに比し、結晶化温度が170℃程度で、
両者の温度差が大きいものであるために、その冷却時に
再結晶化が生じ易、いものであると考え、これに基いて
、この5bSe化合物による記録材料の結晶化温度の上
昇をはかるものである。
That is, in the present invention, the above-mentioned disadvantages due to recrystallization in 5h2S83 are solved when its melting temperature is 60°C.
Compared to about 0℃, the crystallization temperature is about 170℃,
Since the temperature difference between the two is large, recrystallization is likely to occur during cooling, and based on this, we aim to increase the crystallization temperature of the recording material using this 5bSe compound. .

発明の概要 本発明におい”ζは、5bSe化合物に1〜10原子%
のGeを含ませて成る薄膜記録層を有して成り、これに
光照射により情報を記録するものである。
Summary of the Invention In the present invention, "ζ" is 1 to 10 atomic % in the 5bSe compound.
It has a thin film recording layer containing Ge, and information is recorded on this by light irradiation.

実施例 第1図及び第2図は夫々Geをドープした5b2Sea
におけるGeの含有量を変化させた場合の転移温度及び
反射率Rの測定結果を示したものである。この場合の反
射率Rは、半導体レーザー光(波長=8300人)に対
するもので、第2図中曲線(11及び(2)は夫々転移
を発生させる前と転移発生後の夫々の反射率を測定した
も?である。第1図から明らかなように、Geを3原子
%程度ドーピングさせるだけで、その転移温度は170
℃から260℃へと変化している。第2図から明らかな
ように、結晶化によっ“ζ生じる反射率変化、すなわち
曲線11)及び(2)間の値の差はGeドープによって
損われることなく保持されている。尚、これら測定試料
の膜厚は約1000人とした。そし°C1この膜の生成
は、真空蒸着装置あ真空ベルジャ内に〜された2つのボ
ートの一方にSb2Se3を、他方にGeを入れて、こ
れら両蒸着源の夫々の蒸着量を制御してガラス基板上向
、5b2SI33に、他の金属原子の添加を行ったが、
 Snt Pbt Tet Bit Zn+ Cat 
ML Cr+ Ni+ Mrt+Si等では結晶aに伴
う反射率の変化が小さくなってしまうのみならず、転移
温辰、すなわち、結晶化温度を上げるような効果が生じ
なかった。
Examples FIG. 1 and FIG. 2 show 5b2Sea doped with Ge, respectively.
2 shows the measurement results of the transition temperature and reflectance R when the Ge content is changed. The reflectance R in this case is for semiconductor laser light (wavelength = 8300), and the curves (11 and (2) in Figure 2 measure the reflectance before and after the transition occurs, respectively. As is clear from Figure 1, by doping only about 3 atomic percent of Ge, the transition temperature increases to 170.
℃ to 260℃. As is clear from Fig. 2, the change in reflectance caused by crystallization, that is, the difference in value between curves 11) and (2), is maintained unimpaired by the Ge doping. The film thickness of the sample was approximately 1000.The film was produced at °C1 by placing Sb2Se3 in one of two boats and Ge in the other in a vacuum evaporation apparatus (vacuum bell jar). Other metal atoms were added to 5b2SI33 above the glass substrate by controlling the amount of evaporation of each source.
Snt Pbt Tet Bit Zn+ Cat
In the case of ML Cr+Ni+Mrt+Si, etc., not only did the change in reflectance due to crystal a become small, but also the effect of increasing the transition temperature, that is, the crystallization temperature did not occur.

また、Ge添加によって転移温度を高める効果は、上述
したSb2 Se3のみならず、sbが10原子%〜9
0原子%の5bSe化合物において同様の効果がみられ
た。
In addition, the effect of increasing the transition temperature by adding Ge is not limited to the above-mentioned Sb2Se3, but also when sb is 10 at% to 9
A similar effect was seen with 0 at% 5bSe compound.

そして、5bSeのG’e含有量は、転移温度が250
〜350℃と妊る範囲の3〜8原子%に選定することが
望ましい。つまり、Geの含有量が8原子%を超えると
、非晶質から結晶質に変化させる温度が高くなり過ぎ、
感度が低下するのみならず、レーザーパワーが適正パワ
ーより少し大となっても、記録層が溶融温度に達してし
まうので、その最適パワー範囲が狭くなるという欠点が
住じてくる。また、Ge含有量が、3原子%未満でその
転移温度が250℃未満の場合は、実質的に冷却過程で
の再結晶化の回避の効果が得られにくくなる。
And, the G'e content of 5bSe has a transition temperature of 250
It is desirable to select 3 to 8 atomic % within the range of ~350°C. In other words, if the Ge content exceeds 8 at%, the temperature at which the amorphous state changes to crystalline state becomes too high.
Not only does the sensitivity decrease, but even if the laser power is slightly higher than the appropriate power, the recording layer reaches its melting temperature, resulting in a disadvantage that its optimum power range becomes narrower. Further, if the Ge content is less than 3 at % and the transition temperature is less than 250° C., it becomes difficult to substantially obtain the effect of avoiding recrystallization during the cooling process.

実施例1 案内溝付きの厚さ 1.2u+のインジェクション法に
より成型されたアクリル基板上に5i0211*を電子
ビーム蒸着法で1500人の厚さに蒸着し、これの上に
68含有の5bSe膜によるlB膜記録層を形成した。
Example 1 5i0211* was deposited to a thickness of 1,500 mm by electron beam evaporation on an acrylic substrate with a guide groove having a thickness of 1.2 u+ formed by an injection method, and a 68-containing 5bSe film was deposited on top of this by electron beam evaporation. A 1B film recording layer was formed.

このSbSeg着源と、Ge蒸着源とからの共蒸着によ
って900人程度の厚さに形成した。その後、更にこの
5bSeGe薄股記録層上に5i0211Qを2000
人の厚さに蒸着し、更にこれの上に紫外線硬化型樹脂を
用いて1.2鶴の厚さのアクリル板と密着させ硬化させ
た。この場合の5bSeGe薄膜記録層の組成は、(S
ba 5e2) ss Gesであった。この場合、薄
膜記録層を挾んで5i02膜を形成するようにしたのは
、薄膜記録層にレーザー光を集光照射して局部的に加熱
した時にアクリル基板に熱変形が生じることがないよう
にして、この熱変形にょる毒句逆的反応を回避するため
のものである。このようにして作オした直径20抛lの
ディスクに対し、半導体レーザー光をアクリル基脚側か
ら照射して記録、消去を行った。すなわち、先ず、非晶
質状態で形成された薄膜記録層の記録トラックとなる部
分をディスク回転数45Orpmで結晶化した。このと
きの半導体レーザーのディスク面上のパワーは1oII
IWであった。次に、このようにして結晶化したトラッ
クを、ディクス回転数180Orpm 、レーザーパワ
ー変調周波数2 MHzで結晶質から非晶質化して記録
を行った。この時のピークパワーはディスク面で151
であった。この記録により非晶質化された光学的記録ピ
ットは、第3図にその拡大平面図を示すように、楕円形
状となった。
Co-evaporation from this SbSeg deposition source and a Ge deposition source was performed to a thickness of approximately 900 mm. After that, 5i0211Q was further coated on this 5bSeGe thin recording layer for 2000 minutes.
The film was vapor-deposited to a human thickness, and then an ultraviolet curing resin was used on top of this to adhere to an acrylic plate with a thickness of 1.2 cm and cured. The composition of the 5bSeGe thin film recording layer in this case is (S
ba 5e2) ss Ges. In this case, the reason why the 5i02 film was formed sandwiching the thin film recording layer was to prevent thermal deformation of the acrylic substrate when the thin film recording layer was locally heated by condensed laser beam irradiation. This is to avoid adverse reactions caused by this thermal deformation. Recording and erasing were performed on the 20 l diameter disk thus produced by irradiating semiconductor laser light from the acrylic base side. That is, first, a portion of the thin film recording layer formed in an amorphous state that would become a recording track was crystallized at a disk rotation speed of 45 rpm. At this time, the power of the semiconductor laser on the disk surface is 1oII
It was IW. Next, the thus crystallized track was changed from crystalline to amorphous at a disk rotation speed of 180 rpm and a laser power modulation frequency of 2 MHz, and recording was performed. The peak power at this time was 151 on the disk surface.
Met. The optical recording pits amorphized by this recording took on an elliptical shape, as shown in an enlarged plan view of FIG.

第4図は本発明によらない、すなわち、Geをドープし
ていない5bsSb2の同様の記録ピットの拡大平面図
で、この場合、その形状は非対称となるものであり、こ
のような非対称の記録ピットから光学的に情報を再生し
た場合、再生形状が歪み、良好なC/HないしはS/N
が得られない。そして、このように非対称な記録ピット
が生じるのは、次の理由による。すなわち、レーザー光
がディスク上を移動する際、レーザー光がオフになる瞬
間の部分Bは熱の冷却速度が早いが、他端部分Aにおい
ては、レーザー光が通り過ぎた後でもその近傍部分Cに
レーザー光が照射されているごとによって、この部分C
からの熱の供給によっ°ζ急速に冷えない。したがって
この部分A側では急冷条件が十分に満されず、その冷却
過程で、一部分再結晶化してしまい光学的情報ピットは
、実質的にA側で小となる。
FIG. 4 is an enlarged plan view of a similar recording pit of 5bsSb2 not according to the present invention, that is, not doped with Ge; in this case, the shape is asymmetric, and such an asymmetrical recording pit When information is optically reproduced from
is not obtained. The reason why such asymmetric recording pits occur is as follows. In other words, when the laser beam moves on the disk, the cooling rate of heat is fast in the part B at the moment when the laser beam is turned off, but at the other end part A, even after the laser beam has passed, the heat cools down in the neighboring part C. Depending on the laser beam irradiation, this part C
°ζ does not cool down rapidly due to the supply of heat from Therefore, the quenching conditions are not sufficiently satisfied on this part A side, and during the cooling process, a portion of the part recrystallizes, so that the optical information pit becomes substantially smaller on the A side.

これに比し、上述した本発明による記録媒体では、その
5bSe記録層にGeがドープされていることによって
、実質的に転移温度が上げられているので、その記録ピ
ットに第3図で示したように実質的に部分A側において
も等価的に急冷条件が満たされ、再結晶化が生じにくい
ものであり、これがため対称性にすぐれたものとなるの
である。
In contrast, in the recording medium according to the present invention described above, the 5bSe recording layer is doped with Ge, so that the transition temperature is substantially raised, so that the recording pits shown in FIG. As such, the quenching conditions are substantially equivalently satisfied on the part A side, and recrystallization is less likely to occur, resulting in excellent symmetry.

尚、上述したところは主として結晶→非晶質によって記
録をなし、非晶質−結晶によっ°C消去を行った場合で
あるが、記録、消去をこれとは逆の態様とすることもで
きる。
In addition, although the above-mentioned case is mainly a case where recording is performed from crystal to amorphous and erasing is performed by °C from amorphous to crystal, recording and erasing can also be performed in the opposite manner. .

発明の効果 上述したように、本発明によれば、5bSe化合物によ
る記録層においてGeを含有せしめたごとによって、そ
の転移温度を上げ、且つ、結晶5非晶質の転移による光
学的特性の変換に遜色を来すことがないので、111述
し゛たように確実な記録消去と、対称性にすぐれて、光
学的記録ピット、したがって、再生出力の歪が小さくC
/NないしばS/Nにずぐれた再生を行うごとができ、
ビデオディスク、オーディオディクスとして用いて好適
なものである。
Effects of the Invention As described above, according to the present invention, by incorporating Ge in the recording layer made of a 5bSe compound, the transition temperature can be increased, and the optical properties can be changed by the transition of the crystal 5 amorphous state. Since there is no inferiority, as mentioned in 111, reliable erasure of records, excellent symmetry, optical recording pits, and therefore small distortion of reproduction output can be achieved.
/N or even better S/N playback,
It is suitable for use as a video disc or audio disc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は5bSeGeのGe含有量に対する
転移温度と光学的特性の測定曲線図、第3図及び第4図
は記録ピットの説明図である。 46含有量(I!!+%) 66含有量(S号%) 第3図 CB レーず一科!h方藺 第4図 レーで−鈴vJθ冑
FIGS. 1 and 2 are measurement curves of the transition temperature and optical characteristics of 5bSeGe with respect to Ge content, and FIGS. 3 and 4 are explanatory diagrams of recording pits. 46 content (I!!+%) 66 content (S No. %) Figure 3 CB Lace family! h direction figure 4 leh - bell vJθ helmet

Claims (1)

【特許請求の範囲】[Claims] 5bSe化合物に1〜10原子%のGeを含ませて成る
薄膜記録層を有し、該薄膜記録層に光照射により情報を
記録することを特徴とする光学情報記録媒体。
An optical information recording medium comprising a thin film recording layer made of a 5bSe compound containing 1 to 10 atomic % of Ge, and information is recorded on the thin film recording layer by light irradiation.
JP59012432A 1984-01-26 1984-01-26 Information-recording medium Pending JPS60155496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012432A JPS60155496A (en) 1984-01-26 1984-01-26 Information-recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012432A JPS60155496A (en) 1984-01-26 1984-01-26 Information-recording medium

Publications (1)

Publication Number Publication Date
JPS60155496A true JPS60155496A (en) 1985-08-15

Family

ID=11805124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012432A Pending JPS60155496A (en) 1984-01-26 1984-01-26 Information-recording medium

Country Status (1)

Country Link
JP (1) JPS60155496A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287058A (en) * 1985-06-10 1986-12-17 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Optical data memory device and making thereof
US6268107B1 (en) * 1985-09-25 2001-07-31 Matsushita Electric Industrial Co., Ltd. Reversible optical information-recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61287058A (en) * 1985-06-10 1986-12-17 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Optical data memory device and making thereof
US6268107B1 (en) * 1985-09-25 2001-07-31 Matsushita Electric Industrial Co., Ltd. Reversible optical information-recording medium
USRE42222E1 (en) * 1985-09-25 2011-03-15 Matsushita Electronic Industrial Co., Ltd. Reversible optival information-recording medium

Similar Documents

Publication Publication Date Title
Barton et al. New phase change material for optical recording with short erase time
JPH0352651B2 (en)
JPH05144082A (en) Optical recording medium and protective film for optical recording medium
US4633273A (en) Information recording medium including antimony-selenium compounds
JP3136153B2 (en) Optical recording medium and manufacturing method thereof
JPH01116937A (en) Optical recording, reproducing and erasing material of information
JP2556183B2 (en) Optical recording method and optical recording medium using this method
JPH01229426A (en) Recording method for optical information
JPS60155496A (en) Information-recording medium
US5015548A (en) Erasable phase change optical recording elements and methods
JP2577349B2 (en) Optical recording medium
JPS63228433A (en) Optical information recording, reproducing and erasing member
JPH03152736A (en) Optical information recording medium and protective film for optical information recording medium
JPH03263626A (en) Optical information recording, reproducing and erasing member
JPH0452189A (en) Optical record medium and method to manufacture optical record medium
JPH07111786B2 (en) Optical recording medium, protective film for optical recording medium, and manufacturing method of protective film
JPH04136164A (en) Sputtering target for forming protective film for optical recording medium and its production
JP2803315B2 (en) Optical recording medium
JP2639174B2 (en) Optical recording medium
JP2913759B2 (en) Optical recording medium
JPH04234691A (en) Erasable optical recording material with base of tellurium alloy, and recording method thereof
JPH0825338B2 (en) Optical information recording / reproducing / erasing member recording / reproducing / erasing method
JPH0827981B2 (en) Information carrier disc
JPH05144084A (en) Optical recording medium and production thereof
JPH03241539A (en) Optical information recording, reproducing and erasing member