JPS6015509A - Light interference angular velocity meter - Google Patents

Light interference angular velocity meter

Info

Publication number
JPS6015509A
JPS6015509A JP58123765A JP12376583A JPS6015509A JP S6015509 A JPS6015509 A JP S6015509A JP 58123765 A JP58123765 A JP 58123765A JP 12376583 A JP12376583 A JP 12376583A JP S6015509 A JPS6015509 A JP S6015509A
Authority
JP
Japan
Prior art keywords
phase
output
light
circuit
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58123765A
Other languages
Japanese (ja)
Inventor
Kenichi Okada
健一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP58123765A priority Critical patent/JPS6015509A/en
Publication of JPS6015509A publication Critical patent/JPS6015509A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

PURPOSE:To reduce a linearity error, by installing optical phase modulator and phase shifter on an input and output end of optical path producing the Sagnac effect and controlling a light source by operating phase driving frequency component and phase modulation driving frequency component. CONSTITUTION:A phase shifter 25 is arranged in series on one input and output and of an optical path 16 and the phase shifter 25 is driven by a driving frequency fo from a shift driving circuit 26 with approximately pi/2 of phase difference between mutually opposed transmitting rays of light. On the other input and output end of the light path 16 is installed a phase modulator 27 and is modulated by output of a phase modulation driving circuit 28. The circuit 28 is disconnected after synchronization with a driving signal of the circuit 28 is disconnected after synchronization with a driving signal of the circuit 26 and an output of a light receiver 16 is taken out through BPF32, 33 as frequency fo component and modulated frequency fm component of the circuit 28. Next, after synchronized detection 34, 37, these components are supplied to a velocity meter processing circuit. Further, they are compared with an output of the reference power source 49 through squaring circuit 45, 46 and addition circuit 47 and a light driving circuit 24 is driven by the compared output. Thus, a linearity error can be reduced.

Description

【発明の詳細な説明】 この発明はザブナック効果を利用した光干渉角速度計に
関し、特にその光レベルを安定にしようとするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical interference gyrometer that utilizes the Zabnak effect, and is particularly intended to stabilize the light level thereof.

〈従来技術〉 従来のとの種光干渉角速度計においては、第1図に示す
ようにレーサーのような光源11よシの光ビームは、光
分岐手段12を通り、更に光分配結合手段13により、
右回り光14と左回り光15とに分配され、これら光は
光学路16の両端忙それぞれ入射される。光学路16は
例えば光ファイバをループ状に巻回したものである。光
学路16を通過したこれら右回9光16と左回受光17
とは分配結合手段13により互に結合されて干渉光18
として受光器19に受光される3゜光学路16の周方向
に沿う角速度、つ捷り光学路16の軸心と同一軸心回り
の角速度Ωが印加されると、いわゆるサグナック効果が
生じて光学路1Gを透過した両党16.17の間に位相
差が生じる。これらの両光の干渉光18の光強度10は
IO”’1−四(Δφ+△ψ) となる。この干渉光18の強II I Oを検出するこ
とによって光学路16に印加された角速度Ωを検出する
ことができる。
<Prior Art> In a conventional optical interference angular velocity meter, as shown in FIG. ,
The light is divided into clockwise light 14 and counterclockwise light 15, and these lights are incident on both ends of the optical path 16, respectively. The optical path 16 is, for example, an optical fiber wound in a loop. These nine right-handed lights 16 and left-handed received lights 17 that have passed through the optical path 16
are mutually coupled by the distribution coupling means 13 to produce interference light 18.
When an angular velocity along the circumferential direction of the 3° optical path 16 received by the light receiver 19 and an angular velocity Ω around the same axis as the axis of the shunting optical path 16 are applied, a so-called Sagnac effect occurs and the optical A phase difference occurs between the two components 16 and 17 that have passed through the path 1G. The light intensity 10 of the interference light 18 of these two lights becomes IO"'1-4 (Δφ+Δψ). By detecting the strong IIIO of this interference light 18, the angular velocity Ω applied to the optical path 16 can be detected.

このようにこの種の光干渉角速度計においては、その検
出角速度が干渉光18の光強度に関係しているため、受
光器19によって受光された電気信号の最大値を一定に
保つ必要がある。このだめ従来においては、第1図に示
すように光源11よりの光は分岐手段12によって分岐
され、受光器21で電気信号に変換され、この受光器2
1の出力と、基準電圧発生器22よシの基準電5圧とが
比較器23で比較され、その比較出力によって光源駆動
回路24が制御され、これに伴って光源110光出方が
制御され、この結果比較器23に入力される受光器21
の出力か基準電圧と一致するようにされていた。
As described above, in this type of optical interference angular velocity meter, the detected angular velocity is related to the light intensity of the interference light 18, so it is necessary to keep the maximum value of the electrical signal received by the light receiver 19 constant. In the conventional method, as shown in FIG.
1 and the reference voltage 5 from the reference voltage generator 22 are compared by the comparator 23, and the light source drive circuit 24 is controlled by the comparison output, and accordingly, the way the light is emitted from the light source 110 is controlled. , this result is input to the comparator 23.
The output was made to match the reference voltage.

この従来の光干渉角速度計においては、光源11の光出
力の強度は安定に保持されるが、元干渉速度度引として
は光分配結合器13、光学路16、受光器19があり、
更に図に示して々いが光位相変調器や光移相器など一般
に用いられ、これらが温度の変動や、外部振動等によっ
て影響され、例えば光学的主軸が回転したシ、光軸がず
れたりし、或は受光器19の感度が変ったすするため、
受光器19の出力電気信号の最大値が変動し、この結果
、元干渉角’MIX計にIJ ニアリティ誤差が生じる
欠点があった。なお受光器19の出方電気信号はサグナ
ック効果によってもその強度が変化するため、この受信
強度を用いて光干渉角速度計の全体を安定化することは
できない。
In this conventional optical interference angular velocity meter, the intensity of the optical output of the light source 11 is maintained stably, but the original interference velocity converter includes the optical splitting coupler 13, the optical path 16, and the optical receiver 19.
Furthermore, as shown in the figure, there are commonly used optical phase modulators and optical phase shifters that are affected by temperature fluctuations, external vibrations, etc., such as rotation of the optical principal axis or misalignment of the optical axis. or the sensitivity of the light receiver 19 has changed,
The maximum value of the output electric signal of the light receiver 19 fluctuates, and as a result, there is a drawback that an IJ nearness error occurs in the original interference angle 'MIX meter. Note that since the intensity of the output electric signal from the light receiver 19 changes due to the Sagnac effect, it is not possible to stabilize the entire optical interference gyrometer using this received intensity.

〈発明の概要〉 この発明の目的は温度や振動等の外乱によって彩管され
かたく、光電気変換出力信号の最大値を一定に保つこと
ができ、従ってリニアりティの精度が商い光干渉角速度
計を提供するものである。
<Summary of the Invention> The object of the present invention is to provide an optical interference gyro meter that is difficult to change due to disturbances such as temperature and vibration, can keep the maximum value of the photoelectric conversion output signal constant, and therefore improves the accuracy of linearity. It provides:

この発明によれば、光学路の入出力端に光位相変調器と
、移相器とをそれぞれ設け、との移相器をこれを反対方
向に透過した光の位相差がは’= 2J二なることを交
互に繰返すJ:うに移相駆動回路で、駆動し1、」]つ
この移相1騙動回路の駆動と同期して例えは1の周波数
で位相変調器から、その位相変訣1.駆動回路を切離す
。−力、受光手段の出力から移a’ll ’d”Qの、
l駆動周波数成分を第1F波器で取出し、且一つ位相変
調、14動周波数成分を第2p波器で取出す。これら第
1?p波器、第2戸波器の出力を自乗して加算し、この
加算出力と基準値と比較して両者が一致するように光臨
を制御する。
According to this invention, an optical phase modulator and a phase shifter are provided at the input and output ends of an optical path, respectively, and the phase difference of light transmitted through the phase shifters in opposite directions is '= 2J2 The phase shift drive circuit alternately repeats the following: 1, and the phase shift 1 is synchronized with the drive of the phase shift 1 deception circuit. 1. Disconnect the drive circuit. - force, transferred from the output of the light receiving means a'll 'd"Q,
The 1 drive frequency component is extracted by the first F wave generator, and the 14 drive frequency component is extracted by the second P wave generator. The first of these? The outputs of the p-wave device and the second wave device are squared and added together, and this added output is compared with a reference value to control the light arrival so that the two match.

〈実施例〉 第2図はこの発明による光干渉角速度計の実施例を示し
、第1図と対応する部分には同一符号を付けである。こ
の実施例においては光学路16の一方の入出力端にとれ
と縦続して移相器25が配される。この移相器25はこ
れをその一方から透過しだ光と、他方から透過しノこ光
との間にはソ図の位相差を与えるものであり、このフの
位相差の極性が交互に反転するように移相駆動回路26
から周波数foの駆動信号が移相器25に与えられる。
<Embodiment> FIG. 2 shows an embodiment of the optical interference gyrometer according to the present invention, and parts corresponding to those in FIG. 1 are given the same reference numerals. In this embodiment, a phase shifter 25 is arranged in series at one input/output end of the optical path 16. This phase shifter 25 provides a phase difference between the light transmitted from one side and the saw light transmitted from the other side, and the polarity of this phase difference alternates. Phase shift drive circuit 26 to invert
A drive signal of frequency fo is applied to the phase shifter 25 from .

位相変調器27がこの例においては、光学路16の他方
の入出力端に対して縦続的r(設けられる。
A phase modulator 27 is provided in this example in cascade to the other input and output end of the optical path 16.

しかしこれら位相変調器27、移相器25を光学路16
の同一の入出力端に設けても良い。位相変調器27は位
相変調駆動回路28の出力によって位相変調がかけられ
て、これを透過する光の位相が変調される。この位相変
調駆動回路28−二、移相駆動回路26の駆動信号と同
期して位相変調器27から周期的に切離される。この例
においては移相駆動回路26の出力は分周器29によシ
1に分周され、その分周出力によってスイッチ31〃;
制御され、位相変調駆動回路28が位相変調上器27か
ら周期的に切離される。
However, these phase modulator 27 and phase shifter 25 are connected to the optical path 16.
They may be provided at the same input and output terminals. The phase modulator 27 is subjected to phase modulation by the output of the phase modulation drive circuit 28, and the phase of the light transmitted therethrough is modulated. This phase modulation drive circuit 28-2 is periodically separated from the phase modulator 27 in synchronization with the drive signal of the phase shift drive circuit 26. In this example, the output of the phase shift drive circuit 26 is frequency-divided by a frequency divider 29 to 1, and the frequency-divided output causes the switch 31;
The phase modulation drive circuit 28 is periodically disconnected from the phase modulation upper unit 27.

受光器19の出力は涙液器32.33に供給され、F波
器32は移相駆動回路26の駆動周波数fOの成分を取
出すものであり、ろ波器33は位相変調駆動回路28の
変調周波数fmの成分を取出すものである。P波器32
の出力は同期検波回路34で移相駆動回路26の出力に
よって同期検波される。位相変調駆動回路28の出力は
位相反転器35にも与えられており、この位相反転され
たものと、されないものとが切替スイッチ36によって
取出され、このスイッチ26の出力を基準として同期検
波回路37において涙液器33の出力が同期検波される
。切替スイッチ36は移相駆動回路26の出力によって
切替制御される。同期検波回路34.37の各出力はそ
れぞれ゛亥イツチ38,39を通じて低域通過P波器4
1.42に供給される。
The output of the light receiver 19 is supplied to lachrymal fluid vessels 32 and 33, the F wave generator 32 extracts a component of the drive frequency fO of the phase shift drive circuit 26, and the filter 33 extracts the component of the drive frequency fO of the phase shift drive circuit 28. The component of frequency fm is extracted. P wave device 32
The output is synchronously detected by the synchronous detection circuit 34 using the output of the phase shift drive circuit 26. The output of the phase modulation driving circuit 28 is also given to a phase inverter 35, and the output with and without phase inversion is taken out by a changeover switch 36, and the output of the phase modulation drive circuit 28 is taken out by a changeover switch 36. The output of the lachrymal fluid machine 33 is synchronously detected. The changeover switch 36 is controlled by the output of the phase shift drive circuit 26. The outputs of the synchronous detection circuits 34 and 37 are connected to the low-pass P-wave generator 4 through switches 38 and 39, respectively.
Supplied at 1.42.

スイッチ38.39は分周器29の出力に応じて制御さ
れるが、これらは互いに逆関係に制御される。ろ波器4
1.42の出力は出力端子4.3.44よシ、その一方
又は両方が光干渉角速度計の角速度を検出するだめの処
理回路(図示せず)に取込捷れる。
The switches 38 and 39 are controlled according to the output of the frequency divider 29, but these are controlled in an inverse relationship to each other. Filter 4
The output of 1.42 is fed to output terminals 4.3.44, one or both of which are fed into a processing circuit (not shown) for detecting the angular velocity of the optical interference gyrometer.

またこれら涙液器41 、4.2の出力は自乗回路45
.46によってそれぞれ自乗され、更にこれら自乗回路
45.46の出力は加算回路47で加算され、その加算
出力は増幅器48で増幅され、基準電源49の出力と比
較器51で比較され、その比較出力によって光駆動回路
24が制御される。
In addition, the outputs of these lachrymal fluid vessels 41 and 4.2 are outputted by a square circuit 45.
.. 46, and the outputs of these square circuits 45 and 46 are added together in an adder circuit 47. The added output is amplified in an amplifier 48, and compared with the output of a reference power source 49 in a comparator 51. The optical drive circuit 24 is controlled.

移相器25において、その移相器25を反対方向に透過
する光の間に+2’ 2の位相差が交互に与えられてい
るため、移相駆動回路26の駆動周波数foを基本成分
とする干渉光18の出力■0は、 10cc魚(Δφ士グ) となる。この出力■0はサグナック効果によって生じる
位相差△φに対し、5IfI△φで変化する。この時位
相変調器27は非動作状態とし、つまシ位相変調駆動回
路28が切離されている時、出力■。
In the phase shifter 25, a phase difference of +2'2 is alternately given between the lights passing through the phase shifter 25 in opposite directions, so the drive frequency fo of the phase shift drive circuit 26 is used as the fundamental component. The output ■0 of the interference light 18 becomes 10cc fish (Δφshig). This output ■0 changes by 5IfIΔφ with respect to the phase difference Δφ caused by the Sagnac effect. At this time, the phase modulator 27 is in an inactive state, and when the phase modulation drive circuit 28 is disconnected, the output is -.

がsLn△φとなる。becomes sLnΔφ.

一方、スイッチ31がONとされて位相変調器27が周
波数fmの駆動信号によって位相変調されると、その時
の位相変調駆動周波数fmを基本成分とする干渉光18
の光出力Imは、 ImoCJl(η1sin(Δφ±ψ)で与えられる。
On the other hand, when the switch 31 is turned on and the phase modulator 27 is phase modulated by the drive signal of the frequency fm, the interference light 18 whose basic component is the phase modulation drive frequency fm at that time
The optical output Im is given by ImoCJl(η1sin(Δφ±ψ)).

この時、移相器25はその移相動作を行うようにされて
いる。Jl(η)は第1種ベッセル関数であってη=2
β虐πfmτである。βは変調指数、τは光フアイバ1
6中の光の伝般時間、ψは移相器25で与えられる百の
位相差バイアスを示す。従って周波数fmを基本成分と
する干渉光18の強度は位相差Δφに対し房△φで変化
する。
At this time, the phase shifter 25 performs its phase shifting operation. Jl(η) is a Bessel function of the first kind, and η=2
β torture πfmτ. β is the modulation index, τ is the optical fiber 1
The propagation time of light in 6, ψ indicates the phase difference bias of 100 given by the phase shifter 25. Therefore, the intensity of the interference light 18 having the frequency fm as a fundamental component changes with respect to the phase difference Δφ.

移相駆動回路26の出力を第3図Aとする時、スイッチ
31は第3図Bのように制御され、スイッチ38.39
はそれぞれ第3図C,Dのように制御される。即ち、ス
イッチ31がONの時、スイッチ38はOFF、スイッ
チ39はONとなっている。又、スイッチ31のONの
区間とOFFの区間は同一長さであり、そのONの区間
において、移相器25による位相差が+−2−百となる
各回数が等しく、この例では一回づつとされている。こ
のようにして受光器19の出力中の周波数fO酸成分、
周波数fm成分とが交互に取出され、第4図に示すよう
にその検波出力である涙液器41の出力はV Osin
△φに比例し、ろ波器42の出力はVmcOs△φで表
わされる。これらは自乗回路45゜46でそれぞれ自乗
され、加算器47の出力はVO25in2△φ+vm2
cos2△φとなり、VO=Vmとなるように予め利得
を調整しておくことによって加算器47の出力は■f=
v2(SIn2△φ+CQS2Δφ)=V2となシ、と
のv2が基準電源49の電圧と一致するように比較器5
1の出力によって光源駆動回路24が制御される。この
ようにして周波数fO及びfmを基本成分とする信号の
最大値Vo及びVmをそれぞれ一定に保つことができ、
従って光干渉角速度計のりニアリテイ誤差をそれだけ小
さくすることができる。
When the output of the phase shift drive circuit 26 is as shown in FIG. 3A, the switch 31 is controlled as shown in FIG. 3B, and the switches 38, 39
are controlled as shown in FIG. 3C and D, respectively. That is, when the switch 31 is on, the switch 38 is off and the switch 39 is on. Further, the ON period and the OFF period of the switch 31 are the same length, and in the ON period, the number of times that the phase difference by the phase shifter 25 becomes +-2-100 is equal, and in this example, it is once. It is said to be one by one. In this way, the frequency fO acid component in the output of the photoreceiver 19,
The frequency fm component is taken out alternately, and as shown in FIG.
The output of the filter 42 is expressed as VmcOsΔφ. These are each squared by a square circuit 45°46, and the output of the adder 47 is VO25in2△φ+vm2
cos2△φ, and by adjusting the gain in advance so that VO=Vm, the output of the adder 47 becomes f=
The comparator 5
The light source drive circuit 24 is controlled by the output of 1. In this way, the maximum values Vo and Vm of the signals whose fundamental components are frequencies fO and fm can be kept constant, respectively.
Therefore, the linearity error of the optical interference gyrometer can be reduced accordingly.

く効 果〉 以上述べたように2の発明によれば、受光器19の出力
を用いてこれを安定にすることができ、従って光干渉角
速度計の各部の全体が外乱などに対して安>jlとなり
、光干渉角速度計のりニアリテイ誤差を小さくすること
ができる。
Effect> As described above, according to the second invention, the output of the light receiver 19 can be used to stabilize it, and therefore, each part of the optical interference gyrometer as a whole is safe against external disturbances. jl, and the linearity error of the optical interference gyrometer can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光干渉角速度計を示すブロック図、第2
図はこの発明の光干渉角速度計を示すブロック図、第3
図はそのスイッチ切替例を示すタイムチャート、第4図
は済波器41.42の信号出力波形例を示す図である。 IJ:光源、12:光分配結合手段、16:光学路、1
9:受光器、24:光源駆動回路、25:移相器、26
:移相駆動回路、27:位相変調器、28二位相変調駆
動回路、32.33:帯域通過v5阪器、34.37:
同期検波器、41 、42:低域通過?P仮器、45,
46:自乗回路、47:加算回路、49:基準電源、5
1:比較器。 7171 図 ]6 71−3 図 ON FF− 2172図 占
Figure 1 is a block diagram showing a conventional optical interference gyrometer, Figure 2
The figure is a block diagram showing the optical interference gyrometer of the present invention.
The figure is a time chart showing an example of switching the switch, and FIG. 4 is a diagram showing an example of the signal output waveform of the wave transmitters 41 and 42. IJ: light source, 12: light distribution/coupling means, 16: optical path, 1
9: Light receiver, 24: Light source drive circuit, 25: Phase shifter, 26
: Phase shift drive circuit, 27: Phase modulator, 28 Biphase modulation drive circuit, 32.33: Bandpass v5 filter, 34.37:
Synchronous detector, 41, 42: Low pass? P temporary vessel, 45,
46: Square circuit, 47: Addition circuit, 49: Reference power supply, 5
1: Comparator. 7171 Figure ]6 71-3 Figure ON FF- 2172 Figure Horoscope

Claims (1)

【特許請求の範囲】[Claims] (1)光源と、少くとも一周する光学路と、上記光源か
らの光を上記光学路に対し、右回シ及び左回りの元とし
て入射する手段と、上記光学路から放射された右回り光
及び左回り光をそれぞれ干渉させる干渉手段と、上記光
学路に周方向の角速度が加わって、上記右回り元及び左
回り光の間にザブナック効果により表われる位相差を上
h14干渉光の光強1iとして検出する受光手段とを備
え、その受光1・段の出力から上記角速度を測定する光
干渉角速度計において、上記光学路の一方の入出力端に
縦続的に配され、互いに反対方向に透過する光の間に、
はソ2の位相差を与える移相器と、上記光学路の一方の
入出力端、に縦続的に配され、その光学路を通る光に位
相変調を与える位相変調器と、上記移相器を反対方向に
通過する光の間にはソlの位相差を交互に与えるように
、その移相器を駆動する移相駆動回路と、その移相駆動
回路の駆動信号と同期して上記位相変調器からその位相
変調駆動回路を切離す切離し手段と、上記受光手段の出
力から上記移相駆動回路の駆動周波数成分を取出す第1
P波器と、上記受光手段の出力から上記位相変調駆動回
路の駆動周波数成分を取出す第2泥波器と、これら第1
P波器、第2P波器の出力をそれぞれ自乗して加算する
加算手段と、その介層、出力と基率値とを比較して、そ
の比較出力により上記光源を制御する比較手段とを具備
する光干渉角速度計。
(1) A light source, an optical path that goes around at least once, a means for making the light from the light source enter the optical path as a clockwise and counterclockwise source, and clockwise light emitted from the optical path. and interference means for interfering the left-handed and counter-clockwise lights, respectively, and a circumferential angular velocity is added to the optical path to increase the optical intensity of the interfering light by increasing the phase difference that appears due to the Zabnack effect between the clockwise original and counter-clockwise lights. 1i, and measures the angular velocity from the output of the first stage of light receiving. Between the lights,
is a phase shifter that provides a phase difference of 2, a phase modulator that is arranged in series at one input/output end of the optical path and provides phase modulation to the light passing through the optical path, and the phase shifter. A phase shift drive circuit that drives the phase shifter and a phase shift drive circuit that drives the phase shifter, and synchronize with the drive signal of the phase shift drive circuit so as to alternately give a phase difference of 1 between the lights passing in opposite directions. a separating means for separating the phase modulation driving circuit from the modulator; and a first device for extracting a driving frequency component of the phase shift driving circuit from the output of the light receiving means.
a P wave device, a second wave device for extracting a drive frequency component of the phase modulation drive circuit from the output of the light receiving means, and a first
It is equipped with an adding means for squaring the outputs of the P-wave device and the second P-wave device and adding them together, and a comparison means for comparing the intermediate layer and output with a cardinal value and controlling the light source based on the comparison output. Optical interference gyrometer.
JP58123765A 1983-07-06 1983-07-06 Light interference angular velocity meter Pending JPS6015509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58123765A JPS6015509A (en) 1983-07-06 1983-07-06 Light interference angular velocity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123765A JPS6015509A (en) 1983-07-06 1983-07-06 Light interference angular velocity meter

Publications (1)

Publication Number Publication Date
JPS6015509A true JPS6015509A (en) 1985-01-26

Family

ID=14868721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123765A Pending JPS6015509A (en) 1983-07-06 1983-07-06 Light interference angular velocity meter

Country Status (1)

Country Link
JP (1) JPS6015509A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117410A (en) * 1984-11-14 1986-06-04 Agency Of Ind Science & Technol Optical fiber gyroscope
JPS61147106A (en) * 1984-12-21 1986-07-04 Agency Of Ind Science & Technol Phase modulation type optical fiber gyro

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117410A (en) * 1984-11-14 1986-06-04 Agency Of Ind Science & Technol Optical fiber gyroscope
JPS61147106A (en) * 1984-12-21 1986-07-04 Agency Of Ind Science & Technol Phase modulation type optical fiber gyro

Similar Documents

Publication Publication Date Title
US4481519A (en) Radio frequency signal direction finding apparatus
US4661964A (en) Resonant waveguide laser gyro with a switched source
AU568844B2 (en) Double conversion receiver
US5048962A (en) Optical gyro, signal processing apparatus for the same and method of driving phase modulator used in the same
AU592220B2 (en) Optical heterodyne receiver
US4286878A (en) Optical fibre interferometric gyrometer with polarization switching
JPS6015509A (en) Light interference angular velocity meter
US4585347A (en) Rotation rate measuring instrument
JP3443810B2 (en) Polarization control circuit
CA1301894C (en) Apparatus and method for phase modulating optical signals in a fiber optic rotation sensor
JP2505215B2 (en) Fiber optic gyro
JP2963612B2 (en) Optical rotation angular velocity sensor
US5390021A (en) Optical ring resonator gyro using coherent light modulated by a rectangular signal having its period divided into four intervals
US5608525A (en) Phase adjustable optical fiber gyro using both even order harmonics and an orthogonal component of an even-order harmonic
JPS585365B2 (en) Rotation speed measuring device
JPH05272981A (en) Optical gyro
JP2700585B2 (en) Optical gyro device
JPH09280871A (en) Optical fiber giro
JPH0324972B2 (en)
JP2514528B2 (en) Optical interference gyro with self-diagnosis function
JP2739191B2 (en) Optical interference angular velocity meter
JPS6329211A (en) Optical fiber rotary sensor
JPH0682257A (en) Light interference angular velocity meter
JPH04204012A (en) Method for adjusting phase of optical rotational angular velocity sensor
JPH1090740A (en) Light frequency sweeping device