JP2739191B2 - Optical interference angular velocity meter - Google Patents

Optical interference angular velocity meter

Info

Publication number
JP2739191B2
JP2739191B2 JP4150674A JP15067492A JP2739191B2 JP 2739191 B2 JP2739191 B2 JP 2739191B2 JP 4150674 A JP4150674 A JP 4150674A JP 15067492 A JP15067492 A JP 15067492A JP 2739191 B2 JP2739191 B2 JP 2739191B2
Authority
JP
Japan
Prior art keywords
light
optical path
phase
optical
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4150674A
Other languages
Japanese (ja)
Other versions
JPH05340761A (en
Inventor
健一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP4150674A priority Critical patent/JP2739191B2/en
Publication of JPH05340761A publication Critical patent/JPH05340761A/en
Application granted granted Critical
Publication of JP2739191B2 publication Critical patent/JP2739191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は少くとも一周する光学
路内に右回り光と左回り光として伝搬する光の位相差を
検出することにより、その光学路に印加されるその軸心
まわりの角速度を検出する光干渉角速度計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects a phase difference between right-handed light and left-handed light propagating in at least one round of an optical path, thereby detecting the phase difference applied to the optical path. The present invention relates to an optical interference gyro for detecting angular velocity.

【0002】[0002]

【従来の技術】従来の光干渉角速度計(以下FOGと称
す)を図2を参照して説明する。光源11からの光I
は、光カプラ12、偏光子13、光カプラ14を順次経
て、例えば複数回ループ状に巻いた光ファイバコイルで
構成された光学路15の両端に入射される。光学路15
を伝搬する右回り光及び左回り光は、光学路15と光カ
プラ14との間に配置した位相変調器16により位相変
調される。位相変調を受けた両光は、光カプラ13で結
合され、干渉し、光カプラ12により受光器17へ分岐
され光電変換される。光学路15にその周方向の角速度
が印加されない状態においては、光学路16中における
両光間の位相差は、理想的にはゼロであるが、光学路1
5にその円周回りに角速度Ωが印加されると、この角速
度Ωによっていわゆるサニャック(sagnac)効果
が生じ、両光間に位相差ΔΦsが生じる。この位相差Δ
Φsは、次式で表される。
2. Description of the Related Art A conventional optical interference gyro (hereinafter referred to as FOG) will be described with reference to FIG. Light I from light source 11
Are sequentially passed through the optical coupler 12, the polarizer 13, and the optical coupler 14, and are incident on both ends of an optical path 15 constituted by, for example, an optical fiber coil wound in a loop a plurality of times. Optical path 15
Is phase-modulated by a phase modulator 16 disposed between the optical path 15 and the optical coupler 14. The two lights that have undergone the phase modulation are combined by the optical coupler 13, interfere with each other, are branched by the optical coupler 12 to the light receiver 17, and are photoelectrically converted. When the angular velocity in the circumferential direction is not applied to the optical path 15, the phase difference between the two lights in the optical path 16 is ideally zero, but the optical path 1
When an angular velocity Ω is applied to the circumference of the light 5, a so-called Sagnac effect is generated by the angular velocity Ω, and a phase difference ΔΦs is generated between the two lights. This phase difference Δ
Φs is represented by the following equation.

【0003】 ΔΦs=4πRLΩ/(Cλ) (1) C:光速 λ:真空中における光の波長 R:光ファイバコイルの半径 L:光ファイバの長さ 一方この時の受光器17の出力Vpは、位相変調器16
の位相変調信号をP(t)=Asinωmtとすると次式で
表わせる。
ΔΦs = 4πRLΩ / (Cλ) (1) C: speed of light λ: wavelength of light in a vacuum R: radius of an optical fiber coil L: length of an optical fiber On the other hand, the output Vp of the photodetector 17 at this time is Phase modulator 16
If P (t) = A sin ωmt, the phase modulation signal is expressed by the following equation.

【0004】 Vp=(Po /2)・Kpd{1+ cosΔΦs( Σεn ・(−1) n ・J2n(X) ・cos2nωmt′)− sinΔΦs(2Σ(−1) n ・J2n+1(X) ・cos(2n+1)ωmt′)} (2) ここで Σはn=0から無限大まで t′=t−(τ/2) εn =1;n=0,2;n1 Kpd:光電変換係数や増幅器利得等で決まる定数 Po :受光器17に到達する最大光量 Jn :第一種ベッセル関数 X:2Asin πfm τ ΔΦ:光ファイバコイル15における左右両回り光間の
位相差 ωm :位相変調の角周波数(ωm =2πfm) τ:光ファイバコイル15中における光の伝搬時間 (2)式から明らかなように受光器17からの光電変換
信号には、sin ΔΦsに比例する項と、cos ΔΦsに比
例する項とが含まれている。従って干渉光の強度を測定
することにより角速度Ωを検出することが出来る。従来
のFOGの出力としては、受光器17の出力の内、一次
のsin ΔΦs成分が同期検波されて利用されていた。以
下に同期検波回路18から出力される一次のsin ΔΦs
成分を示す。
[0004] Vp = (Po / 2) · Kpd {1+ cosΔΦs (Σε n · (-1) n · J 2n (X) · cos2nωmt ') - sinΔΦs (2Σ (-1) n · J 2n + 1 (X ) · Cos (2n + 1) ωmt ′)} (2) where Σ is from n = 0 to infinity t ′ = t− (τ / 2) ε n = 1; n = 0, 2; n > 1 Kpd: A constant determined by a photoelectric conversion coefficient, an amplifier gain, and the like Po: Maximum light amount reaching the light receiver 17 Jn: Bessel function of the first kind X: 2A sin πfm τ ΔΦ: Phase difference between left and right round lights in the optical fiber coil 15 ωm: Phase Modulation angular frequency (ωm = 2πfm) τ: light propagation time in optical fiber coil 15 As is apparent from equation (2), the photoelectric conversion signal from photodetector 17 has a term proportional to sin ΔΦs and a term cos And a term proportional to ΔΦs. Therefore, the angular velocity Ω can be detected by measuring the intensity of the interference light. As the output of the conventional FOG, the primary sin ΔΦs component of the output of the light receiver 17 is synchronously detected and used. The primary sin ΔΦs output from the synchronous detection circuit 18 below
The components are shown.

【0005】 V1 =Po・Kpd・J1(X)・ sinΔΦs・ cosωmt′ (3) (3)式で示される成分は、同期検波回路18によって
cosωmt′を基本波とする矩形波によって同期検波され
る。即ち受光器17の出力は、同期検波回路18に入力
され、そこで位相変調周波数と同じ成分、即ち(1)式
における一次成分(n=1)がクロック回路21からの
参照信号Vf1を受けて取り出される。同期検波回路18
の出力は、ローパスフィルタ19でリップル成分がフィ
ルタリングされ、FOG出力V1 として出力端子20に
取り出される。
V 1 = Po · Kpd · J 1 (X) · sinΔΦs · cosωmt ′ (3) The component represented by the equation (3) is calculated by the synchronous detection circuit 18.
Synchronous detection is performed by a rectangular wave having cos ωmt ′ as a fundamental wave. That is, the output of the light receiver 17 is input to the synchronous detection circuit 18, where the same component as the phase modulation frequency, that is, the primary component (n = 1) in the equation (1) receives the reference signal Vf 1 from the clock circuit 21. Taken out. Synchronous detection circuit 18
The output of the ripple component in the low-pass filter 19 is filtered, it is taken out to an output terminal 20 as the FOG output V 1.

【0006】このFOGの出力V1 は次式で表される。 Vo=Po・Kpd・J1(X)・KA1・sin ΔΦs (4) ここで KA1:同期検波回路18の利得 ところで位相変調器16は、そこを通る右回り、左回り
の両光を位相変調する機能を有する物であるが、現実問
題として位相変調と同時に光伝送損失を与え、結果的に
好まざる光強度変調を伴う。即ち(4)式において受光
器に到達する光量Poが強度変調成分を伴う。ここで強
度変調をIm(t)=Bsin ωmtとすると、受光器に到達
する量Po(t)は次式で示される。
The output V 1 of the FOG is expressed by the following equation. Vo = Po · Kpd · J 1 (X) · K A1 · sin ΔΦs (4) where K A1 is the gain of the synchronous detection circuit 18 The phase modulator 16 controls the clockwise and counterclockwise light passing therethrough. Although it has a function of performing phase modulation, it has an optical transmission loss at the same time as phase modulation as a practical problem, resulting in undesired light intensity modulation. In other words, in equation (4), the amount of light Po reaching the light receiver is accompanied by an intensity modulation component. Here, assuming that the intensity modulation is Im (t) = Bsin ωmt, the amount Po (t) reaching the light receiver is expressed by the following equation.

【0007】 Po(t)=Po+Im(t)+Im(t−τ) (5) この強度変調成分は同期検波回路18で同期検波され、
直流化されバイアス誤差となる。そこで従来、この強度
変調の影響を避けるために位相変調周波数fmを1/
(2τ)に設定して作動させていた。このようにするこ
とによって(5)式における右辺の第2項目と第3項目
とが打ち消し合い零となり、強度変調の影響を全く受け
なくなる。
Po (t) = Po + Im (t) + Im (t−τ) (5) The intensity modulation component is synchronously detected by the synchronous detection circuit 18,
It is converted to a direct current and becomes a bias error. Therefore, conventionally, the phase modulation frequency fm is reduced to 1 /
(2τ). By doing so, the second item and the third item on the right side of the equation (5) cancel each other out to be zero, and are not affected by the intensity modulation at all.

【0008】[0008]

【発明が解決しようとする課題】従来のFOGは、強度
変調の影響を避けるため位相変調周波数fm を1/(2
τ)で実施していた。そのため低価格や小型化等のため
光学路15の光ファイバを短くしようとするとτが小さ
くなり位相変調周波数fm が高周波となり、同期検波回
路18の要求性能達成が困難になり、又素子の高速化が
要求されるため消費電流が大きくなり、低消費電流化の
妨げになる。
In the conventional FOG, the phase modulation frequency fm is reduced to 1 / (2
τ). Therefore, if the optical fiber of the optical path 15 is shortened for low cost and miniaturization, τ becomes small, the phase modulation frequency fm becomes high, and it becomes difficult to achieve the required performance of the synchronous detection circuit 18, and the speed of the element is increased. Is required, the current consumption increases, which hinders a reduction in current consumption.

【0009】この発明はバイアスドリフトを小さく抑え
ることが出来、また低消費電気部品を使用することが出
来る光干渉角速度計を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical interference gyro which can suppress a bias drift and can use low power consumption components.

【0010】[0010]

【課題を解決するための手段】この発明によれば少なく
とも一周する光学路と、その光学路に対して右回り光及
び左回り光を通す分岐手段と、その光学路を伝搬してき
た右回り光及び左回り光を干渉させる干渉手段と、前記
分岐手段と前記光学路の一端との間にこれらと縦続的に
配置されて右回り光及び左回り光に、周波数fm の変調
波で位相変化を与える位相変調手段と、前記干渉光の光
強度を電気信号として検出する受光器と、前記検出され
た電気信号を前記周波数fm で同期検波して、入力角速
度成分を検出する同期検波手段と、を少なくとも有する
光干渉角速度計において、前記周波数fm を、前記光学
路を伝搬する光の経過時間をτとした時、fm =1/
(4τ)と設定される。これにより、位相変調にともな
う強度変調の影響を少なくしかつ従来の位相変調周波数
より1/2の低周波動作が可能となった。
According to the present invention, at least one round optical path, branching means for passing clockwise light and counterclockwise light to the optical path, and clockwise light propagating through the optical path. And an interfering means for interfering with the counterclockwise light, and a cascade disposed between the branching means and one end of the optical path so as to modulate the clockwise light and the counterclockwise light with the frequency fm.
A phase modulation means which gives a phase change in the waves, a photodetector for detecting the light intensity of the interference light as an electrical signal, is the detection
The detected electrical signal is synchronously detected at the frequency fm, and the input angular velocity
Synchronous detection means for detecting a degree component, at least a light interference gyro of the prior distichum wavenumber fm, when the elapsed time of light propagating through the optical path was tau, fm = 1 /
(4τ) is set. As a result, the influence of the intensity modulation accompanying the phase modulation is reduced, and a low-frequency operation at half the conventional phase modulation frequency is made possible.

【0011】[0011]

【実施例】図2の構成において、この発明によれば位相
変調器16へ印加する電圧Vpmの周波数fm を1/(4
τ)とする。この場合(5)式は次式になる。 Po(t)=Po+B・sin ωmt+B・sin ωm(t−τ) =Po・(1+(2B/Po)・cos(π/4) ・sin(ωm t−(π/4)) (6) 一方同期検波回路18に入力される一次のsin ΔΦs 成
分は(3)式より次式で表される。
In the configuration of FIG. 2, according to the present invention, the frequency fm of the voltage Vpm applied to the phase modulator 16 is reduced to 1 / (4
τ). In this case, the expression (5) becomes the following expression. Po (t) = Po + B · sin ωmt + B · sin ωm (t−τ) = Po · (1+ (2B / Po) · cos (π / 4) · sin (ωmt− (π / 4)) (6) On the other hand The primary sin ΔΦs component input to the synchronous detection circuit 18 is expressed by the following equation from the equation (3).

【0012】V1 =Po・Kpd・J1 (X)・sinΔΦs ・cos(ωmt−(π/4)) (7) ところで同期検波回路18では、一次のsin ΔΦs 成分
1 と同位相の参照信号Vpm、つまりcosωmtによって
同期検波されるので(7)式で示した一次のsin ΔΦs
成分V1 は、従来のFOGと同様(4)式で示した信号
が出力される。一方(6)式で示した強度変調成分は、
参照信号Vpmの(つまりcosωmtの)位相と90°位相
がずれているため直流成分が現れず次段のローパスフィ
ルタ19でろ波される。
V 1 = Po · Kpd · J 1 (X) · sin ΔΦs · cos (ωmt− (π / 4)) (7) By the way, in the synchronous detection circuit 18, the same phase as the primary sin ΔΦs component V 1 is referred. Since the signal is synchronously detected by the signal Vpm, that is, cosωmt, the first-order sin ΔΦs expressed by the equation (7) is used.
Component V 1 was, as in the conventional FOG (4) signal shown in expression is output. On the other hand, the intensity modulation component expressed by the equation (6) is
Since the phase of the reference signal Vpm (that is, cosωmt) is 90 ° out of phase, no DC component appears and is filtered by the low-pass filter 19 at the next stage.

【0013】図1に同期検波回路18の入出力信号の関
係を示す。Aは、(7)式で示した一次のsin ΔΦs 成
分を示し、Bは強度変調成分を示し、Cは参照信号Vpm
を示し、(6)のPo(t)と同位相の波形である。同期
検波回路18では例えば参照信号VpmがIの領域の時入
力される信号は、そのまま出力し、IIの領域の時、入力
される信号を反転し出力する。そうすると一次のsin Δ
Φs 成分は、Dに示すように出力され、次段のローパス
フィルタ19で交流分がろ波され、直流成分が端子20
に出力される。一方強度変調成分は図Eに示すように出
力され次段のローパスフィルタ19によってろ波され端
子20に現れない。
FIG. 1 shows the relationship between the input and output signals of the synchronous detection circuit 18. A indicates a first-order sin ΔΦs component represented by the equation (7), B indicates an intensity modulation component, and C indicates a reference signal Vpm.
And a waveform having the same phase as Po (t) in (6). In the synchronous detection circuit 18, for example, a signal input when the reference signal Vpm is in the region I is output as it is, and when the reference signal Vpm is in the region II, the input signal is inverted and output. Then the primary sin Δ
The Φs component is output as indicated by D, and the AC component is filtered by the low-pass filter 19 in the next stage, and the DC component is
Is output to On the other hand, the intensity modulation component is output as shown in FIG. E, is filtered by the low-pass filter 19 in the next stage, and does not appear at the terminal 20.

【0014】上述において光カプラ13を光ファイバカ
プラとして構成してもよく、位相変調器16を光ファイ
バを用いたものを使用してもよい。またこの発明は開ル
ープ光干渉角速度計のみならず、閉ループ光干渉角速度
計にも適用できる。
In the above description, the optical coupler 13 may be configured as an optical fiber coupler, and the phase modulator 16 using an optical fiber may be used. The present invention can be applied not only to an open-loop optical interference gyro but also to a closed-loop optical gyro.

【0015】[0015]

【発明の効果】以上述べたようにこの発明によれば位相
変調手段を駆動する変調周波数fm を、光学路を伝搬す
る光の経過時間をτとした時、fm =1/(4τ)と設
定していることにより、位相変調にともなう強度変調の
影響を少なくすることができ、かつ従来のFOGより1
/2の位相変調周波数fm であるためそれだけ低周波で
同期検波回路を作動することが出来、バイアスドリフト
を小さく抑えることが出来る。また低消費電気部品を使
用することが出来るようになった。さらに従来の位相変
調周波数が許容されるので有ればさらに光学路15とし
ての光ファイバが2倍も短尺化でき低価格化することが
できる。
As described above, according to the present invention, the modulation frequency fm for driving the phase modulation means is set to fm = 1 / (4.tau.), Where τ is the elapsed time of light propagating through the optical path. By doing so, it is possible to reduce the influence of intensity modulation due to phase modulation, and to reduce the influence of the conventional FOG by one.
Since the phase modulation frequency fm is / 2, the synchronous detection circuit can be operated at a lower frequency, and the bias drift can be reduced. Also, low power consumption components can be used. Furthermore, if the conventional phase modulation frequency is allowed, the optical fiber as the optical path 15 can be further shortened by twice and the cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例における同期検波回路の入出
力の関係の例を示すタイムチャート。
FIG. 1 is a time chart showing an example of an input / output relationship of a synchronous detection circuit according to an embodiment of the present invention.

【図2】光干渉角速度計の例を示すブロック図。FIG. 2 is a block diagram illustrating an example of an optical interference gyro.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも一周する光学路と、その光学
路に対して右回り光及び左回り光を通す分岐手段と、前
記光学路を伝搬してきた右回り光及び左回り光を干渉さ
せる干渉手段と、前記分岐手段と前記光学路の一端との
間にこれらと縦続的に配置されて右回り光及び左回り光
、周波数fm の変調波で位相変化を与える位相変調手
段と、前記干渉光の光強度を電気信号として検出する受
光器と、前記検出された電気信号を前記周波数fm で同
期検波して、入力角速度成分を検出する同期検波手段
と、 を有する光干渉角速度計において、 前記周波数fm が、前記光学路を伝搬する光の経過時間
をτとした時、fm =1/(4τ)に設定されているこ
とを特徴とする光干渉角速度計。
1. An optical path that makes at least one round, a branching unit that passes clockwise light and a counterclockwise light with respect to the optical path, and an interference unit that interferes the clockwise light and the counterclockwise light propagating through the optical path. Phase modulating means disposed between the branching means and one end of the optical path in cascade with them to change the phase of the clockwise light and the counterclockwise light with a modulating wave having a frequency fm; A light receiver for detecting the light intensity of the light as an electric signal, and the detected electric signal at the frequency fm.
Synchronous detection means for detecting the input angular velocity component by performing phase detection
When, in optical interference gyro having, before distichum wavenumber fm is, when the elapsed time of light propagating through the optical path was tau, characterized in that it is set to fm = 1 / (4τ) Optical interference gyro.
JP4150674A 1992-06-10 1992-06-10 Optical interference angular velocity meter Expired - Fee Related JP2739191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4150674A JP2739191B2 (en) 1992-06-10 1992-06-10 Optical interference angular velocity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4150674A JP2739191B2 (en) 1992-06-10 1992-06-10 Optical interference angular velocity meter

Publications (2)

Publication Number Publication Date
JPH05340761A JPH05340761A (en) 1993-12-21
JP2739191B2 true JP2739191B2 (en) 1998-04-08

Family

ID=15501997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4150674A Expired - Fee Related JP2739191B2 (en) 1992-06-10 1992-06-10 Optical interference angular velocity meter

Country Status (1)

Country Link
JP (1) JP2739191B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60157012A (en) * 1984-01-27 1985-08-17 Fujitsu Ltd Closed loop optical fiber gyro system

Also Published As

Publication number Publication date
JPH05340761A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
EP3106835B1 (en) Systems and methods for resonator fiber optic gyroscopes utilizing reference ring resonators
EP0730725A1 (en) Reduction of optical noise
US5384637A (en) Fiber optic gyroscope modulation amplitude control
US5412472A (en) Optical-interference type angular velocity or rate sensor having an output of improved linearity
EP0535164B1 (en) Demodulation reference signal source
JP2739191B2 (en) Optical interference angular velocity meter
EP0569993B1 (en) Optical-interference-type angular rate sensor
JP2578045B2 (en) Optical interference angular velocity meter
JP2722013B2 (en) Single-stage demodulator using reference signal phase fluctuation method
JPH11108669A (en) Optical fiber gyro
JPS6212811A (en) Angular speed meter using optical interference
JP2729290B2 (en) Fiber optic gyro
JP2514532B2 (en) Optical interference gyro
JP2532326B2 (en) Optical interference gyro
JP2548072B2 (en) Optical interference gyro
JP2739193B2 (en) Timing generation circuit for optical interference gyro
JP2649310B2 (en) Optical interference gyro with self-diagnosis function
JPS585365B2 (en) Rotation speed measuring device
JPH10132578A (en) Optical fiber gyroscope
JP2557658B2 (en) Optical interference gyro
JPH09269230A (en) Light interference angular velocity meter
JP2003004454A (en) Light interference angular velocity meter
JPH10318760A (en) Optical interference angular speed meter
JPH0643898B2 (en) Optical interference gyro
JPH1073439A (en) Optical interference angular-velocity meter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees