JPS60155001A - Dashpot structure for gas shut-off valve - Google Patents

Dashpot structure for gas shut-off valve

Info

Publication number
JPS60155001A
JPS60155001A JP1012884A JP1012884A JPS60155001A JP S60155001 A JPS60155001 A JP S60155001A JP 1012884 A JP1012884 A JP 1012884A JP 1012884 A JP1012884 A JP 1012884A JP S60155001 A JPS60155001 A JP S60155001A
Authority
JP
Japan
Prior art keywords
cylinder
piston
fluid
dashpot
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1012884A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Sadamura
定村 弘祥
Hiroshi Maeda
宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1012884A priority Critical patent/JPS60155001A/en
Publication of JPS60155001A publication Critical patent/JPS60155001A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/30Power arrangements internal to the switch for operating the driving mechanism using fluid actuator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/60Mechanical arrangements for preventing or damping vibration or shock
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/60Mechanical arrangements for preventing or damping vibration or shock
    • H01H3/605Mechanical arrangements for preventing or damping vibration or shock making use of a fluid damper

Landscapes

  • Actuator (AREA)

Abstract

PURPOSE:To relax stress generated in a cylinder member in a dashpot for a gas shut-off valve, by allowing fluid to enter into and discharge from the dashpot through a clearance between the inner surface of the cylinder and the fitting part of a piston. CONSTITUTION:The flow of fluid for controlling the operation of a shut-off unit having a movable contat which is connected through link to a piston 1, is carried out through a clearance between the inner surface of a cylinder and the fitting part of a piston 1. Further, in the case of a cylinder in which no suction and discharge fluid holes are formed, there is no stress concentration generated by high pressure fluid in the cylinder, other than nominal stress which is inversely proportional to the wall-thickness of the cylinder so that it is possible to aim at reducing stress generated in the cylinder. With this arrangement, stress generated in the cylinder member may be reduced, thereby apparatus having a high-degree of reliability may be provided.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガス遮断器およびガス絶縁開閉装置のダッシュ
ポットシリンダの応力緩和構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a stress relaxation structure for a gas circuit breaker and a dashpot cylinder of a gas insulated switchgear.

〔発明の背景〕[Background of the invention]

従来のガス遮断器のダッシュポット構造を第1図に示す
。ピストン1は連断器の可動接触子にリンクで連結され
ており、可動接触子の引外し、および2投入動作に伴い
、ピストン1は左方および右方に動作する。可動接触子
が引外し動作を行なうとピストンは左方に動作し・油室
7の流体は流体の吸排出孔8からタンク内油室6へと流
出する。
The dashpot structure of a conventional gas circuit breaker is shown in FIG. The piston 1 is connected to a movable contact of the coupler by a link, and the piston 1 moves leftward and rightward as the movable contact is tripped and closed. When the movable contact performs a tripping operation, the piston moves to the left, and the fluid in the oil chamber 7 flows out from the fluid suction and discharge hole 8 to the oil chamber 6 in the tank.

そして、同時にタンク内油室6の流体は油室5に流入す
る。可動接触子が投入動作を行なう場合は・ピストン1
は右方に動作し、流体は前述と逆の吸排出が行なわれる
。ピストン1が高速動作し5流体が吸排出孔8を通って
流出する場合、流体の排出量は排出孔の面積により制限
される。即ち、可動接触子の速度制御は流体の粘性抵抗
で制御している。そして、ピストン1が左方に動く場合
は、油室7.右方に動く場合は油室5内の流体圧力は数
百気圧になる。このため、シリンダ3には内圧による応
力が発生する。この時の応力分布を第3向および第4図
に示す。シリンダ3の周囲に流体の吸排出孔がない場合
、シリンダ円筒に内圧を受ける時の応力をσとした時、
排出孔がある場合の応力分布は第3図および第4図のよ
うになり、そして最大応力σmmK は排出孔の縁に発
生しσ□アキ3σとなる。
At the same time, the fluid in the tank oil chamber 6 flows into the oil chamber 5. When the movable contact performs closing operation, piston 1
moves to the right, and the fluid is sucked and discharged in the opposite manner to that described above. When the piston 1 operates at high speed and the fluid flows out through the suction/discharge hole 8, the amount of fluid discharged is limited by the area of the discharge hole. That is, the speed of the movable contactor is controlled by the viscous resistance of the fluid. If the piston 1 moves to the left, the oil chamber 7. When moving to the right, the fluid pressure in the oil chamber 5 becomes several hundred atmospheres. Therefore, stress is generated in the cylinder 3 due to internal pressure. The stress distribution at this time is shown in the third direction and in FIG. When there is no fluid suction and discharge hole around the cylinder 3, when the stress when the cylinder cylinder receives internal pressure is σ,
The stress distribution when there is a discharge hole is as shown in FIGS. 3 and 4, and the maximum stress σmmK occurs at the edge of the discharge hole and becomes σ□Aki3σ.

つまり、排出孔がある場合は、排出孔が無い時の発生応
力に比べ、約3倍の応力が発生する。
In other words, when there is a discharge hole, approximately three times as much stress is generated as compared to the stress generated when there is no discharge hole.

近年、電力需要の増大と共に、変電機器は高信頼性の機
器が強く望着れており、その寿命も数十年と長く、まし
て、遮断器の動作速度を制動するダッシュポットの破損
や破壊は遮断器の性能を著しく低下させ、その生命をも
左右するものであり、ダッシュポットの強度向上は強く
望まれている。
In recent years, as the demand for electricity has increased, there has been a strong demand for highly reliable substation equipment, which has a long lifespan of several decades, and moreover, it is difficult to break or break the dashpot that brakes the operating speed of the circuit breaker. This significantly reduces the performance of the dashpot and even affects its life, so there is a strong desire to improve the strength of the dashpot.

〔発明の目的〕[Purpose of the invention]

本発明の目的はガス遮断器のダッシュポットの強度を向
上すべく、ダッシュポットシリンダー3とピストン1の
間に流体の吸排出の隙間を設け、遮断器動作時、シリン
ダー3に発生する応力を緩和し、シリンダーの破損、破
壊の防止を図った高信頼性の機器を提供するにある。
The purpose of the present invention is to provide a gap between the dashpot cylinder 3 and the piston 1 for sucking and discharging fluid in order to improve the strength of the dashpot of a gas circuit breaker, thereby alleviating the stress generated in the cylinder 3 when the circuit breaker operates. Our goal is to provide highly reliable equipment that prevents cylinder damage and destruction.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第5図および第6図に示す。 An embodiment of the invention is shown in FIGS. 5 and 6.

ピストン1は遮断器の可動接触子とリンクで接続されて
いる。可動接触子の引外しおよび投入動作に伴い、ピス
トン1は左方および右方に動作する。
The piston 1 is connected to a movable contact of a circuit breaker by a link. With the tripping and closing operations of the movable contact, the piston 1 moves leftward and rightward.

遮断器の動作を制御するための流体の移動はシリンダ内
面とピストン1の嵌合の隙間で行なわれる。
The movement of fluid for controlling the operation of the circuit breaker is performed in the gap between the inner surface of the cylinder and the fitting of the piston 1.

即ち、ピストン1が左方に動作すると、油室7の流体は
シリンダ内面とピストン1の間を通り、油室5へと移動
する。この時5油室7から油圧5への流出面積はシリン
ダ内面とピストン嵌合部の隙間の面積により制御してい
る。ピストン1が右方に動作する場合流体の移動は油室
5から油室7へと行ガわれる。
That is, when the piston 1 moves to the left, the fluid in the oil chamber 7 passes between the inner surface of the cylinder and the piston 1 and moves to the oil chamber 5. At this time, the outflow area from the oil chamber 7 to the hydraulic pressure 5 is controlled by the area of the gap between the inner surface of the cylinder and the piston fitting portion. When the piston 1 moves to the right, the fluid moves from the oil chamber 5 to the oil chamber 7.

ピストン1が左方および右方に動作し、シリンダー0内
で流体の移動が行なわれるとき、まず、左方に動く場合
、油室7が高圧になる。また、右方に動く場合は油室5
が高圧になる。ここで、ピストン1の速度制御は第1図
の従来方式と同じく、速度制御するのでシリンダ内部の
流体の移動に伴う内圧は従来と同じである。従って、第
5図に不出 すシリンダ・即ち・流体の吸間のための孔を設けていな
いシリンダの場合、シリンダ内の高圧流体により発生す
る応力集中が無く・シリンダ円筒の肉厚に反比例した公
称応力のみである。即ち、シリンダに発生する応力の低
減を図ることが可能となる。
When the piston 1 moves leftward and rightward, causing a movement of fluid within the cylinder 0, first, when moving leftward, the pressure in the oil chamber 7 becomes high. Also, if it moves to the right, oil chamber 5
becomes high pressure. Here, since the speed of the piston 1 is controlled in the same way as in the conventional method shown in FIG. 1, the internal pressure accompanying the movement of fluid inside the cylinder is the same as in the conventional method. Therefore, in the case of a cylinder not shown in Fig. 5, i.e., a cylinder without a hole for fluid suction, there is no stress concentration caused by high-pressure fluid in the cylinder, and the nominal stress is inversely proportional to the wall thickness of the cylinder cylinder. Only stress. That is, it becomes possible to reduce the stress generated in the cylinder.

この実施例の片ロンド方式では、遮断器の接触子とシリ
ンダ1が同一軸上に配置され、シリンダが左方および右
方に動作する場合、曲げ方向の力が比較的小さいので有
効である。
The single rond system of this embodiment is effective because the force in the bending direction is relatively small when the circuit breaker contact and the cylinder 1 are arranged on the same axis and the cylinder moves leftward and rightward.

可動接触子とピストン1が同一軸上に配置されず、扇形
リンク等を介して直角方向に力が伝達される場合、ピス
トン1には曲げ方向に力が作用する。第5図のように、
ピストンが片ロツド構造では、ピストン1とシリンダ1
0の内面は流体の移動を行なうための隙間があるため・
ピストン1はロッドの部分のみで支持される。このため
、曲げによる応力を緩和するための応用例として、第7
図および第8図に示すような両ロンドをもつピストン構
造にする。
When the movable contact and the piston 1 are not arranged on the same axis and force is transmitted in a right angle direction via a sector link or the like, a force acts on the piston 1 in the bending direction. As shown in Figure 5,
If the piston is a single rod structure, piston 1 and cylinder 1
Because there is a gap on the inner surface of 0 for fluid movement,
The piston 1 is supported only by the rod part. Therefore, as an application example for alleviating stress caused by bending, the seventh
A piston structure having both ronds as shown in the figure and FIG. 8 is made.

ピストン11が左方および右方に動作する場合のシリン
ダ13内の流体の移動は片ロツドピストン構造の場合と
同様である。なお、図中2,12はタンク、14は蓋で
ある。
The movement of fluid within cylinder 13 as piston 11 moves to the left and right is similar to that of a single rod piston configuration. In addition, in the figure, 2 and 12 are tanks, and 14 is a lid.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電力用遮断器のダッシュポット構造に
おいて、シリンダ一部材に発生する応力を低減すること
が可能とカリ、高信頼性の機器を提供することができる
According to the present invention, in the dashpot structure of a power circuit breaker, it is possible to reduce the stress generated in one member of the cylinder, and it is possible to provide a highly reliable device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来のダッシュポットシリンダー
の要部断面図、第3図および第4図は従来ダッシュポッ
トシリンダの応力分布図、第5図ないし第8図は本発明
の要部断面図である。
Figures 1 and 2 are cross-sectional views of the main parts of a conventional dashpot cylinder, Figures 3 and 4 are stress distribution diagrams of the conventional dashpot cylinder, and Figures 5 to 8 are cross-sectional views of the main parts of the present invention. It is a diagram.

Claims (1)

【特許請求の範囲】 1、 ガス遮断器、ガス絶縁開閉装置の動作速度を制御
するピストン、シリンダおよび、油タンクよりなるダッ
シュポットにおいて。 前記シリンダ内面と前記ピストンとの嵌合部のすき間か
ら流体の排出および吸入を行ない、前記ガス遮断器の引
外しおよび投入動作の制動時、前記シリンダ部材に発生
する応力全緩和する手段を設けたこと全特徴とするガス
遮断器用ダッシュポット構造。
[Claims] 1. In a dashpot consisting of a piston, a cylinder, and an oil tank that control the operating speed of a gas circuit breaker or gas insulated switchgear. Means is provided for completely relieving stress generated in the cylinder member during braking of tripping and closing operations of the gas circuit breaker by discharging and suctioning fluid from a gap between a fitting portion between the inner surface of the cylinder and the piston. This is a dashpot structure for gas circuit breakers.
JP1012884A 1984-01-25 1984-01-25 Dashpot structure for gas shut-off valve Pending JPS60155001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012884A JPS60155001A (en) 1984-01-25 1984-01-25 Dashpot structure for gas shut-off valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012884A JPS60155001A (en) 1984-01-25 1984-01-25 Dashpot structure for gas shut-off valve

Publications (1)

Publication Number Publication Date
JPS60155001A true JPS60155001A (en) 1985-08-14

Family

ID=11741643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012884A Pending JPS60155001A (en) 1984-01-25 1984-01-25 Dashpot structure for gas shut-off valve

Country Status (1)

Country Link
JP (1) JPS60155001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043076A1 (en) * 2009-10-09 2011-04-14 株式会社 東芝 Shock absorber of operation mechanism for opening and closing device and method for lubricating same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043076A1 (en) * 2009-10-09 2011-04-14 株式会社 東芝 Shock absorber of operation mechanism for opening and closing device and method for lubricating same
JP2011080566A (en) * 2009-10-09 2011-04-21 Toshiba Corp Shock absorber of operation mechanism for opening/closing device and oiling method therefor
CN102575738A (en) * 2009-10-09 2012-07-11 株式会社东芝 Shock absorber of operation mechanism for opening and closing device and method for lubricating same
KR101357001B1 (en) * 2009-10-09 2014-02-03 가부시끼가이샤 도시바 Shock absorber of operation mechanism for opening and closing device and method for lubricating same
US8844913B2 (en) 2009-10-09 2014-09-30 Kabushiki Kaisha Toshiba Buffering device for the operating mechanism of a switchgear, and method of lubrication thereof
US9136675B2 (en) 2009-10-09 2015-09-15 Kabushiki Kaisha Toshiba Buffering device for the operating mechanism of a switchgear, and method of lubrication thereof
US9142941B2 (en) 2009-10-09 2015-09-22 Kabushiki Kaisha Toshiba Buffering device for the operating mechanism of a switchgear, and method of lubrication thereof
US9178339B2 (en) 2009-10-09 2015-11-03 Kabushiki Kaisha Toshiba Buffering device for the operating mechanism of a switchgear, and method of lubrication thereof
US9570891B2 (en) 2009-10-09 2017-02-14 Kabushiki Kaisha Toshiba Buffering device for the operating mechanism of a switchgear, and method of lubrication thereof

Similar Documents

Publication Publication Date Title
JP4754854B2 (en) Control device for driving in a coordinated manner at least two parts of the switchgear, where one of the parts shuts off in a vacuum
KR101763451B1 (en) Circuit breaker of gas insulation switchgear
JPS6182631A (en) Compressed gas breaker
US2783338A (en) Operating mechanism for a fluid-blast circuit breaker
JPH07320611A (en) Gas insulated switching device
JPS60155001A (en) Dashpot structure for gas shut-off valve
KR20120097856A (en) Interrupting portion of gas circuit breaker
JPWO2013175565A1 (en) Gas circuit breaker
US2500777A (en) Control arrangement for fluid operated circuit breakers
JPH03205721A (en) Gas-blast circuit-breaker
US2522994A (en) Electric circuit interrupter
US1901679A (en) Gas blast circuit breaker
JP2880543B2 (en) Gas switch
US6078485A (en) Medium- and high-voltage gas-insulated circuit breaker with arc quenching means
JP2018181501A (en) Gas-blast circuit breaker
WO2021059588A1 (en) Gas circuit breaker
KR20160038265A (en) Self blast type gas circuit breaker with auto-adjust exhausting hole
JP2555076Y2 (en) Puffer type gas circuit breaker
KR20220052169A (en) Gas Insulating Switchgear
GB927548A (en) Improvements in or relating to oil-poor circuit breakers
JPH0282419A (en) Buffer type gas circuit-breaker
US3358106A (en) Pneumatic control for compressed-gas circuit breaker having pressurized tank with insulating control tubes pressurized in both the open and closed-circuit positions
JP2020155302A (en) Gas circuit breaker
KR20230173889A (en) Puffer type gas circuit breaker
JP2002251944A (en) Gas-blast circuit breaker