JPS6015435B2 - Method for manufacturing aluminum core electrode rod with titanium coating - Google Patents

Method for manufacturing aluminum core electrode rod with titanium coating

Info

Publication number
JPS6015435B2
JPS6015435B2 JP51070412A JP7041276A JPS6015435B2 JP S6015435 B2 JPS6015435 B2 JP S6015435B2 JP 51070412 A JP51070412 A JP 51070412A JP 7041276 A JP7041276 A JP 7041276A JP S6015435 B2 JPS6015435 B2 JP S6015435B2
Authority
JP
Japan
Prior art keywords
titanium
aluminum
rod
aluminum core
core electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51070412A
Other languages
Japanese (ja)
Other versions
JPS52153878A (en
Inventor
靖弘 渡辺
実利 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP51070412A priority Critical patent/JPS6015435B2/en
Publication of JPS52153878A publication Critical patent/JPS52153878A/en
Publication of JPS6015435B2 publication Critical patent/JPS6015435B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Wire Processing (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】 本発明は電解装置の陰極又は陽極としてのチタニウム被
覆を有するアルミニウム芯体電極榛の製造方法の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the method of manufacturing an aluminum core electrode shank having a titanium coating as a cathode or anode of an electrolyzer.

従来、電解装置の陰極又は陽極として、鉛、銅、鉄、ア
ルミ等の単体金属が用いられていたが、近年、耐食性の
向上或いは公害防止上の観点から耐食性の鰻れたチタニ
ウムを、鋼又はアルミの芯材に被覆したものが利用され
る後向が見られる。
Traditionally, single metals such as lead, copper, iron, and aluminum have been used as the cathode or anode of electrolyzers, but in recent years, corrosion-resistant titanium has been used to improve corrosion resistance or prevent pollution. A trend is seen in which a coated aluminum core material is used.

この場合、チタニウムの被覆方法としては、銅丸横表面
にチタニウムパイプを爆発接合した後、ロール圧延又は
引抜きによって成型する方法、或いはアルミニウム丸棒
をチタニウムパイプに挿入した後、引抜き加工等によっ
て圧着するのが通例であり、前者の場合は特殊加工を要
し高価であり、後者の場合には単なる圧着に過ぎないの
でアルミニウムとチタニウムの間には冶金的接合が得ら
れない。
In this case, the titanium coating method is to explosively bond a titanium pipe to the lateral surface of the copper round and then form it by rolling or drawing, or insert an aluminum round rod into the titanium pipe and then crimping it by drawing, etc. The former method requires special processing and is expensive, while the latter method is merely crimping, so no metallurgical bond can be obtained between aluminum and titanium.

冶金的な接合が得られなければ、電極として種々の塑性
加工を施したり、外周チタンの溶接を行う場合、銅やア
ルミニウムの芯材と外周チタン被覆の間に空隙を生じた
り、チタン被覆に多数の滋を生ずる。
If a metallurgical bond cannot be obtained, when performing various plastic workings for electrodes or welding the outer titanium, voids may be created between the copper or aluminum core material and the outer titanium coating, or large numbers of holes may be formed in the titanium coating. Produces sustenance.

その結果、電極棒としての特性が箸るしく阻害され、芯
材として導電性の高い銅やアルミニウムを用いる本釆の
意義を失うことになる。そこで本発明は、スウェージン
グ又はしール圧延加工によってチタニウム管を芯材であ
るアルミニウム榛に加圧固着した後、簡単な拡散熱処理
を附加することによって、芯材のアルミニウムと被覆材
のチタニウムとの間により強固な結合を得ようとするも
のである。
As a result, its properties as an electrode rod are seriously impaired, and the purpose of this pot, which uses highly conductive copper or aluminum as the core material, is lost. Therefore, in the present invention, after a titanium tube is pressure-fixed to an aluminum core as a core material by swaging or seal rolling processing, a simple diffusion heat treatment is added to bond the aluminum core material and the titanium coating material. This is an attempt to create a stronger bond between the two.

即ち、本発明は、弗硝酸で酸洗し、水洗乾燥したチタニ
ウム管と酸又はアルカリで清浄化し水洗乾燥したアルミ
ニウム棒とをそれぞれ準備し、斯く浄化したチタニウム
管の内孔に前記アルミニウム棒を挿入し、常温でその断
面減少率が30〜60%となるようにスウェージング又
はロール圧延加工を施してチタニウム管を縮管してアル
ミニウム棒に加圧固着させた後、アルミニウムの融点以
下でチタニウム管とアルミニウム棒の界面にTi−AI
合金層を形成させるのに十分な拡散熱処理を施すことを
特徴とするチタニウム被覆を有するアルミニウム芯体電
極榛の製造方法を提供しようとするものである。
That is, the present invention prepares a titanium tube that has been pickled with fluoronitric acid, washed and dried with water, and an aluminum rod that has been cleaned with acid or alkali, washed and dried with water, and inserts the aluminum rod into the inner hole of the thus purified titanium tube. Then, the titanium tube is shrunk by swaging or roll rolling so that its cross-sectional area reduction rate is 30 to 60% at room temperature, and the titanium tube is fixed to an aluminum rod under pressure. Ti-AI at the interface between
It is an object of the present invention to provide a method for manufacturing an aluminum core electrode shank having a titanium coating, which is characterized by performing a diffusion heat treatment sufficient to form an alloy layer.

本発明において、チタニウム管とアルミニウム棒の前処
理は夫々の表面に付着した油脂等の不純物と表面に形成
されている強固な酸化物を除去して活性面を得るため必
要な条件であり、又拡散熱処理がアルミニウムの融点以
下の温度で進行し、Ti−AI合金層を形成させること
が出来るのは、両者の接合面がそれぞれ活性化されてい
るとともに「前工程でチタニウムとアルミニウムの両者
がスウェージングまたはロール圧延によって加圧され、
相互ヒりをおこして僅かではあるが摩擦による冶金的接
合状態が得られるからであり、この状態での拡散熱処理
が冶金的接合層の形成を助長し均一な安定した接合層を
形成させるからである。
In the present invention, pretreatment of the titanium tube and the aluminum rod is a necessary condition to remove impurities such as oil and fat attached to the respective surfaces and strong oxides formed on the surfaces, and to obtain an active surface. The reason why the diffusion heat treatment can proceed at a temperature below the melting point of aluminum and form a Ti-AI alloy layer is that both the bonding surfaces of the two are activated and that both the titanium and aluminum are swathed in the previous process. Pressed by rolling or roll rolling,
This is because a metallurgical bonding state is obtained due to mutual friction, albeit slightly, and the diffusion heat treatment in this state promotes the formation of a metallurgical bonding layer, forming a uniform and stable bonding layer. be.

このとき形成されるTi−N合金層は通常のアルミニウ
ムと異種金属間に形成される拡散合金層、例えばFe−
N合金層(Fe2AI5、FeA13)やCu−AI合
金層(り2、ソ2)のような腕硬なものではなく、その
層の厚さも5山以下であり微細組織で塑性変形能がある
。従ってこの合金層が形成された後でも、容易に曲げ加
工や加圧圧縮変形ができ、合金層部の亀裂や剥離が発生
しない。またチタニウム被覆に対する他のチタニウム材
の溶接の際の急激な熱ショックにも良く耐え、チタニウ
ム被覆に加えられた熱衝撃をTi−AI間の冶金的結合
によるアルミニウム芯材の良好な熱伝導によって著しく
緩和し、アーク溶接作業その他の溶接作業を簡単に行う
ことが出来る。このようにTj−AI合金層が他のFe
−山やCu−Nのそれと著しく異なる秀れた性能を有す
る故に、Ti一針合金層を形成せしめて冶金的に強固に
接合した電極榛を得ることが出釆るのである。
The Ti-N alloy layer formed at this time is a diffusion alloy layer formed between ordinary aluminum and a different metal, such as a Fe-N alloy layer.
It is not a hard layer like the N alloy layer (Fe2AI5, FeA13) or the Cu-AI alloy layer (Ri2, So2), the thickness of the layer is 5 peaks or less, and the microstructure has plastic deformability. Therefore, even after this alloy layer is formed, it can be easily bent, compressed and deformed, and cracks and peeling of the alloy layer do not occur. It also withstands sudden thermal shock when welding other titanium materials to the titanium coating, and the thermal shock applied to the titanium coating is significantly reduced due to the good heat conduction of the aluminum core material due to the metallurgical bond between Ti and AI. This makes it easier to perform arc welding and other welding operations. In this way, the Tj-AI alloy layer
Because of its excellent performance, which is significantly different from that of Ti and Cu-N, it is possible to form a Ti single-needle alloy layer to obtain electrode fins that are metallurgically bonded firmly.

本発明を実施するに当りアルミニウム棒をチタニウム管
に挿入した後のスウェージングやロール圧延によって圧
縮する際のりダクションパーセントはその断面積におい
て30〜60%が適当で30%未満では後で実施する拡
散熱処理においても合金層の生成が不十分であり、また
、熱処理に長時間を要することになる、一方60%を超
えるリダクションではチタニウムの伸び率が低下し、亀
裂発生の危険が生ずる。拡散熱処理温度はアルミニウム
およびアルミニウム合金の融点以下園相線までの温度で
あるが、これは処理時間と密接な関連があり、高温短時
間、低温長時間となる。通常純アルミニウムの場合60
0〜650qo×2時間、1だの場合540℃〜590
℃×2時間である。必要によりチタニウム管の事前の燐
鈍のための熱処理、完成品の強度増加のための加圧圧縮
楕円成形、外周チタニウム被覆、チタニウムと他のチタ
ニウム材料との溶接、完成品の端末封孔のためのチタニ
ウムチップの溶接等を適宜おこなうことが出来る。実施
例 1 肉厚0.5側、外窪め1物吻の純チタニウム管を脱脂後
、弗酸18部、硝酸5部の弗硝酸で酸洗し、水洗乾燥し
た。
In carrying out the present invention, when compressing an aluminum rod by swaging or roll rolling after inserting it into a titanium tube, the appropriate reduction percentage is 30 to 60% in terms of its cross-sectional area, and if it is less than 30%, the diffusion will be carried out later. Even in heat treatment, the formation of an alloy layer is insufficient, and the heat treatment requires a long time. On the other hand, if the reduction exceeds 60%, the elongation rate of titanium decreases and there is a risk of cracking. The diffusion heat treatment temperature is a temperature below the melting point of aluminum and aluminum alloys, up to the phase line, but this is closely related to the treatment time, with high temperature for a short time and low temperature for a long time. Usually 60 for pure aluminum
0~650qo x 2 hours, 540℃~590 in case of 1 day
℃×2 hours. If necessary, heat treatment for pre-phosphorus dulling of titanium tubes, pressure compression oval molding to increase the strength of the finished product, titanium coating on the outer periphery, welding of titanium with other titanium materials, and end sealing of the finished product. Welding of titanium chips can be carried out as appropriate. Example 1 A pure titanium tube with a wall thickness of 0.5 mm and an outer recessed proboscis was degreased, then pickled with hydrofluoric acid (18 parts of hydrofluoric acid and 5 parts of nitric acid), washed with water, and dried.

次に外径?17柳の99.5%アルミニウム綾を脱脂後
、同機の弗硝酸で酸洗し、水洗乾燥し前記チタニウム管
の内孔に挿入した。これを常温でスウェージングマシン
により縞管し外径で02肋づつ3回で外径◇13側とし
た。次にこれを大気雰囲気の連続熱処理炉で620qo
×3時間加熱後取出して空中放冷した。その結果アルミ
ニウムとチタニウムの間には相互拡散と若干の合金層の
形成がみられ、全周全長にわたって完全な冶金的接合を
示した。実施例 2 肉厚0.5柳、外蚤ぐ15肋の純チタニウム管を実施例
1と同様な方法で前処理した。
Next is the outer diameter? After degreasing 99.5% aluminum twill made of No. 17 willow, it was pickled with fluoronitric acid from the same machine, washed with water, dried, and inserted into the inner hole of the titanium tube. This was made into a striped tube using a swaging machine at room temperature, and the outer diameter was set to ◇13 by applying 02 ribs three times each time. Next, this is heated to 620 qo in a continuous heat treatment furnace in an atmospheric atmosphere.
After heating for 3 hours, it was taken out and allowed to cool in the air. As a result, mutual diffusion and the formation of a slight alloy layer were observed between aluminum and titanium, indicating a complete metallurgical bond over the entire circumference. Example 2 A pure titanium tube with a wall thickness of 0.5 willow and 15 ribs on the outside was pretreated in the same manner as in Example 1.

次に外蓬少13柳の1おアルミニウム合金榛を脱脂後3
0%塩酸で酸洗し、水洗乾燥したものを前記チタニウム
管の内孔に挿入した。これをロール圧延により加圧、外
径で1側づつ5回縮管し外窪め1仇吻とした。次に実施
例1と同様な方法で580qo×2時間加熱した。アル
ミニウム合金の場合も純アルミと同様な拡散傾向とTi
−AI合金層の形成が得られた。次に本実施例により得
られた試料による性状試験結果を説明する。{1} 引
張破断試験 第1図及び第2図は被断状況を示す(倍率1:1/3)
及び(倍率1:1)の顕微鏡写真。
Next, after degreasing the 1st aluminum alloy of the 13th yanagi
The sample was pickled with 0% hydrochloric acid, washed with water and dried, and then inserted into the inner hole of the titanium tube. This was pressurized by roll rolling, and the outer diameter was contracted five times on each side to form an outer recess of one end. Next, it was heated in the same manner as in Example 1 for 580 qo x 2 hours. In the case of aluminum alloy, the diffusion tendency similar to that of pure aluminum and Ti
- Formation of an AI alloy layer was obtained. Next, the results of property tests using samples obtained in this example will be explained. {1} Tensile rupture test Figures 1 and 2 show the fracture situation (magnification 1:1/3)
and (1:1 magnification) micrograph.

前者は実施例1により作製した試料について引張破断を
おこなったものであるが、その破断面は単一材の破断面
と同様な状況を呈する。又後者は、冶金的接合のない試
料外径(肉厚0.5柳)マ13肋のチタニウム管外蚤少
12柳のアルミニゥム芯体から成る複合材料の引張破断
状況であり、芯体のアルミニウムが単独にのびて破断し
た状況を示す。■ 曲げ試験 複合電極榛完成後の成形加工、あるいは使用時の外力に
よる変形での電気的性能を測定した。
The former was obtained by subjecting the sample prepared in Example 1 to tensile fracture, and the fracture surface exhibits the same situation as that of a single material. The latter is the tensile fracture state of a composite material made of a titanium tube with an outer diameter of 13 ribs (wall thickness 0.5 willow) and an aluminum core made of 12 willows with a small diameter (wall thickness 0.5 willow) without metallurgical bonding. This shows a situation in which the specimen extends independently and breaks. ■ Bending test The electrical performance of the composite electrode was measured when it was deformed by external force during molding after completion or during use.

第1表は第3図のごとき曲げ加工前後における従来品と
本発明品の電気低抗値(ム○)の変化を示したもので顕
著な差異を見出すことが出来る。以上本発明はスウェー
ジング又はロール圧延加工によって、チタニウム管を芯
材であるアルミニウム棒に加圧固着した後、簡単な拡散
熱処理工程を附加することによって電気的特性に優れ、
信頼性の高い電極棒を得ることが出来るので実用上の効
果は極めて大である。
Table 1 shows the change in electrical resistance value (MU) between the conventional product and the product of the present invention before and after bending as shown in FIG. 3, and it is possible to see a remarkable difference. As described above, the present invention has excellent electrical properties by attaching a titanium tube to an aluminum rod as a core material under pressure by swaging or rolling, and then adding a simple diffusion heat treatment process.
Since a highly reliable electrode rod can be obtained, the practical effect is extremely large.

第1表 従来品と本発明の電気抵抗値の比較(単位:凶
○)
Table 1 Comparison of electrical resistance values of conventional products and the present invention (unit: ○)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1により作製した試料についての本発明
の引張被断面、第2図は冶金的接合のない従来品の引張
破断面、第3図は曲げ加工後の電気抵抗測定試験片を示
す。 第1図 本発明の引張被断面 第2図 従来品の引張破断面 A〜B間50皿(Ti表面) A〜B間50皿(Ti表面)
Figure 1 shows the tensile cross section of the present invention for the sample prepared in Example 1, Figure 2 shows the tensile fracture cross section of a conventional product without metallurgical bonding, and Figure 3 shows the electrical resistance measurement test piece after bending. show. Figure 1 Figure 2: Tensile fracture surface of the present invention Figure 2: 50 plates between A and B of the conventional product (Ti surface) 50 plates between A and B (Ti surface)

Claims (1)

【特許請求の範囲】[Claims] 1 弗硝酸で酸洗し、水洗乾燥したチタニウム管と酸又
はアルカリで清浄化し水洗乾燥したアルミニウム棒とを
それぞれ準備し、該チタニウム管の内孔に該アルミニウ
ム棒を挿入し、常温で断面減少率が30〜60%となる
ように、スウエージング又はロール圧延加工を施してチ
タニウム管をアルミニウム棒に加圧固着させた後、アル
ミニウムの融点以下でチタニウム管とアルミニウム棒の
界面にTi−Al合金層を形成させるのに十分な拡散熱
処理を施すことを特徴とるチタニウム被覆を有するアル
ミニウム芯体電極棒の製造方法。
1 Prepare a titanium tube that has been pickled with fluoronitric acid, washed and dried with water, and an aluminum rod that has been cleaned with acid or alkali, washed and dried with water, insert the aluminum rod into the inner hole of the titanium tube, and check the area reduction rate at room temperature. After applying pressure and fixing the titanium tube to the aluminum rod by swaging or rolling so that the ratio of 1. A method for manufacturing an aluminum core electrode rod having a titanium coating, the method comprising performing a diffusion heat treatment sufficient to form a titanium-coated aluminum core electrode rod.
JP51070412A 1976-06-17 1976-06-17 Method for manufacturing aluminum core electrode rod with titanium coating Expired JPS6015435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51070412A JPS6015435B2 (en) 1976-06-17 1976-06-17 Method for manufacturing aluminum core electrode rod with titanium coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51070412A JPS6015435B2 (en) 1976-06-17 1976-06-17 Method for manufacturing aluminum core electrode rod with titanium coating

Publications (2)

Publication Number Publication Date
JPS52153878A JPS52153878A (en) 1977-12-21
JPS6015435B2 true JPS6015435B2 (en) 1985-04-19

Family

ID=13430721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51070412A Expired JPS6015435B2 (en) 1976-06-17 1976-06-17 Method for manufacturing aluminum core electrode rod with titanium coating

Country Status (1)

Country Link
JP (1) JPS6015435B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711937A (en) * 1971-07-21 1973-01-23 Pfizer Method of roll bonding to form a titanium clad aluminum composite

Also Published As

Publication number Publication date
JPS52153878A (en) 1977-12-21

Similar Documents

Publication Publication Date Title
US6020076A (en) Joined ceramic structures and a process for the production thereof
CN102962581B (en) The Cold welding method of deformation zinc alloy and copper alloy wire
JPH0797279A (en) Internal soldering of metal/ceramic composite material
JP7428290B2 (en) Method for manufacturing hot forged materials
JPS6015435B2 (en) Method for manufacturing aluminum core electrode rod with titanium coating
JPS62164899A (en) Composite bus bar for electric conduction
Enjyo et al. Diffusion welding of aluminum to titanium
JP3240211B2 (en) Copper-aluminum dissimilar metal joint material
JP4358395B2 (en) Method for producing chromium-zirconium-based copper alloy wire
JP2885057B2 (en) Evaluation method for bonding strength of clad steel sheet
JPS59110486A (en) Production of ti clad wire rod
JP3464563B2 (en) Method for producing composite
JPH03197630A (en) Method for hot-working intermetallic compound ti-al base alloy
JPS62164897A (en) Composite bus bar for electric conduction
JPH0568530B2 (en)
JPS62164898A (en) Composite bus bar for electric conduction
JPS6042283A (en) Method of bonding oxide ceramics and active metal
JPS60166195A (en) Brazing filler metal consisting of active metal
JPS63149011A (en) Die for extrusion
JPS623886A (en) Electrode tip for spot welding
Minghetti et al. Advanced forming techniques for Magnesium alloys
JPH0638570Y2 (en) High hardness composite sintered body wire drawing die
JPS61266193A (en) Production of titanium clad material
JPS5951389B2 (en) Manufacturing method for flat clad spars
JPH02247302A (en) Manufacture of titanium clad steel tube