JPS60153268A - Picture quality adjusting circuit - Google Patents

Picture quality adjusting circuit

Info

Publication number
JPS60153268A
JPS60153268A JP59008745A JP874584A JPS60153268A JP S60153268 A JPS60153268 A JP S60153268A JP 59008745 A JP59008745 A JP 59008745A JP 874584 A JP874584 A JP 874584A JP S60153268 A JPS60153268 A JP S60153268A
Authority
JP
Japan
Prior art keywords
signal
frequency
circuit
component
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59008745A
Other languages
Japanese (ja)
Inventor
Mitsuo Isobe
磯辺 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59008745A priority Critical patent/JPS60153268A/en
Publication of JPS60153268A publication Critical patent/JPS60153268A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the increase of an undesired component and to improve picture quality by detecting a prescribed signal frequency component out of an arrived input signal and controlling its frequency characteristics at the reproduction of a television picture. CONSTITUTION:A luminance signal is supplied to a frequency characteristic adjusting circuit 1 through a signal input terminal A and also supplied to a signal component detecting circuit 2 to detect only the prescribed signal frequency component out of the input luminance signal. The circuit 1 is controlled by said detecting signal and an adjusted frequency characteristic is outputted. Therefore, undesired components such as noise are not increased by a clearness improving circuit.

Description

【発明の詳細な説明】 産業上の利用分野 不発明は増幅回路の特性を可変して所望の信号を得るた
めの回路に関し、詳細にはテレビジョン映像信号の波形
応答特性を可変する既矧の画質調整回路に関するもので
ある。
Detailed Description of the Invention The invention relates to a circuit for varying the characteristics of an amplifier circuit to obtain a desired signal, and specifically relates to a circuit for varying the waveform response characteristics of a television video signal. This relates to an image quality adjustment circuit.

従来例の構成とその問題点 テレビジョン画像を再生する場合、到来入力信号が有す
る信号波形を忠実に維持し所定の増幅処理等を行なうこ
とでは必らずしも好ましくなく、画像の輪郭成分を強調
することが鮮鋭度の改善に効果音もつことが知られてい
る。
Conventional configuration and its problems When reproducing a television image, it is not necessarily desirable to faithfully maintain the signal waveform of the incoming input signal and perform predetermined amplification processing. It is known that emphasizing improves sharpness and has sound effects.

比較的狭い信号周波数成分を扱う化チロの標準テレビジ
ョン方式CNTSC,PAL、SECAM等)では映像
信号周波数が4乃至6県程度でありこの帯域内に搬送色
信号成分が所定の仕様によって多重されているため、輝
#信号成分の実効帯域幅は前記よりも狭くなる。輝度信
号と搬送色信号とを通常の周波数分離で行なう場合には
輝度信号帯域幅は3乃至4計程度とさらに狭くなり、従
って画像の輪郭を強調するには前記の周波数帯域の範囲
内で所定の信号周波数成分およびその近傍成分を増強す
ることが必要である。また標準テレビジョン方式で規定
された信号周波数帯域を有効に利用する方式、例えば既
升の櫛形フィルタを用いて埋置信号成分と搬送色信号成
分ケ分離するものにおいては輝度信号の周波数帯域が前
記のものより広帯域となるが、このような場合にも所定
の信号周波数およびその近傍の成分を増強することが画
f埃の鮮鋭度の改善に有効であることは百う捷でもない
In NEC's standard television systems (CNTSC, PAL, SECAM, etc.) that handle relatively narrow signal frequency components, the video signal frequency is about 4 to 6, and the carrier color signal component is multiplexed within this band according to predetermined specifications. Therefore, the effective bandwidth of the bright # signal component becomes narrower than above. When the luminance signal and carrier chrominance signal are separated by normal frequency, the luminance signal bandwidth becomes even narrower, about 3 to 4 times. It is necessary to enhance the signal frequency components and their neighboring components. In addition, in a system that effectively utilizes the signal frequency band specified by the standard television system, for example, in a system that uses a pre-existing comb filter to separate the buried signal component and the carrier color signal component, the frequency band of the luminance signal is However, even in such a case, it is not certain that enhancing the predetermined signal frequency and components in its vicinity is effective in improving the sharpness of image f dust.

上述した効果をもつ画質調整回路の既知の方法につき以
下図面ヶ参照して説明する。
A known method of an image quality adjustment circuit having the above-mentioned effects will be described below with reference to the drawings.

第1図では信号入力端子へに供給された映像信刊か所定
の信号周波数成分を増強するための周波数特性調整回路
1に供給され、この調整回路は例えは第2図のa、b、
cで示すような振幅−周波数特性が制御端子Cに印加さ
れる信号によってステップ状あるいは路面線的に変化す
るように構成される。この周波数特性を変化させるに際
して位相特性にひずみが生じない場合には、例えば第3
図のa 、b、cに示すように矩形波状の入力信号に対
する出力信号波形を可変することができ、特に所定の信
号周波数成分を増強させる場合には特性すで示すように
既知のプリシュート、アフタ−シュートか略々等しい振
幅で附力口された信号波形全端子Bに送出でき鮮鋭度の
向上が図れる。捷た周波数特性を変化させる場合に位相
ひずみをともなうような簡易な構成を用いる場合でも前
記のプリシュート、アフターシュートが不均一となるが
略々鮮鋭度の改善の効果をもっている。
In FIG. 1, the video news supplied to the signal input terminal is supplied to a frequency characteristic adjustment circuit 1 for amplifying a predetermined signal frequency component, and this adjustment circuit is, for example, a, b in FIG.
The amplitude-frequency characteristic shown by c is configured to change stepwise or along a road surface line depending on the signal applied to the control terminal C. If no distortion occurs in the phase characteristics when changing this frequency characteristic, for example, the third
As shown in a, b, and c of the figure, the output signal waveform for a rectangular input signal can be varied, and in particular, when a predetermined signal frequency component is to be enhanced, a known preshoot, as shown in the characteristics, can be used. The applied signal waveforms can be sent to all terminals B with approximately the same amplitude due to the aftershoot, and the sharpness can be improved. Even when using a simple configuration that causes phase distortion when changing the distorted frequency characteristics, the above-mentioned preshoot and aftershoot become non-uniform, but the sharpness is substantially improved.

前記の第2j!Z1.第3図のCで示した信号周波数の
通過帯域幅を狭くすることは、特に無線周波の信号を受
信して再生する現在のテレビジョン受信機では比較的高
周波の雑音成分音減少するのに好適であり、従って多く
の受信機で用いられておりこれは鮮鋭度の改善とは異な
る目的のために利用されている。
Said 2j! Z1. Narrowing the passband width of the signal frequency indicated by C in Figure 3 is suitable for reducing relatively high-frequency noise components, especially in current television receivers that receive and reproduce radio frequency signals. , and is therefore used in many receivers for purposes other than improving sharpness.

上述した既知の画質調整回路では原理的に到来入力信号
の中の所定の周波数成分に対して一定の増強作用を与え
るものであるために種々の欠点をもっている。第1には
前記第2図のbで示すような周波数特性を与える場合に
は増強される周波数帯域幅の中のピーク周波数で略々決
定される時間幅のプリシュート、アフターシュートが生
じることは既知であり、例えばピーク周波数が2石柱度
であるならばそれぞれ0.25マイクロ秒程度となり、
これはステップ状に変化する入力信号の立ち上り、立ち
下りの変化時間とその振幅が等しい限り周朋、換言すれ
ば信号変化の繰り返し周波数に関係なく全て等しくプリ
シュート、アフターシュートが附7Jnされることにな
る。テレビジョン画像ではカメラ系を通じて発生された
信号成分は例えはカメラの空間周波数レスポンスの高周
波成分に対する劣化により生じるいわゆるアパーチャひ
ずみ等により被写体のステップ変化部分も多少ゆるやか
に変化する電気信号となるが標準テレビジョン方式が規
定された信号周波数帯域内の信号成分は十分に詮んでお
り、寸だ文字あるいは数字等、電気的に発生した情報信
号成分をも含んでいる。
The above-mentioned known image quality adjustment circuits have various drawbacks because they are designed to, in principle, give a certain enhancement effect to predetermined frequency components in the incoming input signal. Firstly, when the frequency characteristics shown in b in Fig. 2 are given, preshoot and aftershoot with a time width approximately determined by the peak frequency in the frequency bandwidth to be enhanced will occur. For example, if the peak frequency is 2 stone degrees, each time is about 0.25 microseconds,
This means that as long as the change times and amplitudes of the rise and fall of an input signal that changes stepwise are equal, the preshoot and aftershoot will be the same regardless of the repetition frequency of the signal change. become. In television images, the signal component generated through the camera system becomes an electrical signal in which the step change part of the subject changes somewhat gradually due to so-called aperture distortion caused by the deterioration of the camera's spatial frequency response to high frequency components. The signal components within the signal frequency band defined by the John system are sufficiently clear and even include electrically generated information signal components such as letters or numbers.

特に後者に対しては所定の周波数帯域制限処理を施して
伝送するのが通常であるが自然画像信号成分よりも立ち
上り、立ち下りの信号変化時間が短かい、候百すれば急
峻な変化をもち、その振幅も十分大きい。前記の0.2
5マイクロ秒の鮮鋭度改善のための附711]信号成分
は例えば到来入力信号が0.25マイクロ秒の幅のパル
スであるときにはプリシュート、アフターシュート伯号
の幅と略々等しくなり、さらに幅の狭いパルス状の信号
に対しては鮮鋭度改善のための附加信号の幅が広くなり
すぎて画質として好1しくなくなる。既知のこのような
方法は比較的信号の幅か広い、換占fると低周波信号成
分の輪郭部分を強調するのには好適であるが実際にテレ
ビジョン信号に含丑れる高周波のパルス状の信号成分に
も一様に作用するために画像の内容によっては過大とな
る欠点をもっている。もちろん、上記の説明で用いた周
波数特性増強のためのピーク周波数をさらに高くするこ
とが画質の改善のための一つの方法と考えられるがリン
ギングあるいは平均的画像に対する鮮鋭度改善の効果が
不足する等の欠点を生じるため利用することが困難であ
る。
In particular, for the latter, it is normal to perform predetermined frequency band limiting processing before transmitting, but the rising and falling signal change times are shorter than for natural image signal components, and in some cases, the signal changes abruptly. , its amplitude is also sufficiently large. The above 0.2
Attachment 711 for sharpness improvement of 5 microseconds] For example, when the incoming input signal is a pulse with a width of 0.25 microseconds, the signal component is approximately equal to the width of the preshoot and aftershoot, and For a narrow pulse-like signal, the width of the additional signal for improving sharpness becomes too wide, resulting in unfavorable image quality. Although this known method is suitable for emphasizing the contours of low-frequency signal components with a relatively wide signal width, it is suitable for emphasizing the contours of low-frequency signal components that are relatively wide in signal width. Since it acts uniformly on the signal components of Of course, one way to improve image quality is to further increase the peak frequency to enhance the frequency characteristics used in the above explanation, but it may cause ringing or lack of sharpness improvement effect on average images. It is difficult to use because of the following drawbacks.

1だ第2には周波数特性増強は雑音等の不切望な成分を
も画一的に増強するために(M−号対雑音比を劣化させ
ることでありこれは弱電界のみならず通常の受信電界強
度の中でも欠点となることでありよく知られている。
Firstly, secondly, frequency characteristic enhancement uniformly enhances undesirable components such as noise (by degrading the M-signal-to-noise ratio, which affects not only weak electric fields but also normal reception). It is well known that it is a drawback in terms of electric field strength.

さらに無線周波の信号を受信して再生する場合等におい
ては伝送系の周波数特性が受信チャネルによって異なる
場合があり、この影響に対しても画一的な作用を与える
ために鮮鋭度のための附加信は振幅か過大あるいは不足
する等の欠点をもっている。
Furthermore, when receiving and reproducing radio frequency signals, the frequency characteristics of the transmission system may differ depending on the receiving channel, and in order to provide a uniform effect to this effect, additional information for sharpness is added. The signal has drawbacks such as excessive or insufficient amplitude.

上述したように既知の画質調整の方法においては利点を
もつ反面欠点も大きぐ十分な性能を得るものではなかっ
た。
As mentioned above, although the known image quality adjustment methods have advantages, they also have major drawbacks and cannot provide sufficient performance.

発明の目的 本発明は改良された鮮鋭度をもつテレビジョン画像を門
生することを第1の目的とする。
OBJECTS OF THE INVENTION It is a primary object of the present invention to produce television images with improved sharpness.

本発明の第2の目的は雑廿等の不所望な成分が鮮鋭度改
善1u路によって著しく増強されることを防止し、これ
によって画質を改善することにある。
A second object of the present invention is to prevent undesirable components such as noise from being significantly enhanced by the sharpness improvement path, thereby improving image quality.

発明の構成 不発明にもとすく画質調整回路は到来入力16号の中の
所定の信号周波数成分全検出し、この検出された信号成
分で周波数特性を制御する機構を有し、鮮鋭度改善に有
効な画像部分に重みづけを行なう特徴音もっている。こ
の鮮鋭度教書のための周波数特性は少なくとも振幅−周
波数特性の中で所定の信号周波数成分およびその近傍の
成分を増強する既知の方法を含んでなり、位相−周波数
特性に関しては本発明によって制限されることなく必要
に応じて適宜選択される。もちろん前記の振幅−周波数
特性も本発明によってその特性カーブが制限を受けるの
でなく、その増強する振幅あるいはピーク周波数等が不
発明では画像の内容によって制御されるものである。
Structure of the Invention Inventively, the image quality adjustment circuit has a mechanism for detecting all predetermined signal frequency components in the incoming input No. 16 and controlling the frequency characteristics using the detected signal components, thereby improving sharpness. It has a characteristic sound that weights the effective image parts. The frequency characteristic for this sharpness textbook comprises at least the known method of enhancing a given signal frequency component and its neighboring components in the amplitude-frequency characteristic, and is limited by the present invention with respect to the phase-frequency characteristic. It is selected as appropriate without any need. Of course, the characteristic curve of the amplitude-frequency characteristic described above is not limited by the present invention, but the amplitude to be enhanced or the peak frequency, etc., is controlled according to the content of the image.

実施例の説明 本発明の実施例につき以下図面を参照して詳細に説明す
る。
DESCRIPTION OF EMBODIMENTS Embodiments of the present invention will be described in detail below with reference to the drawings.

第4図では周波数特性調整回路1に輝度信号が信号入力
端子A y、通じて入力され、一方本発明によって配置
された信号成分検出回路2にも同様の輝1斐信号が供給
されている。この検出回路2は入力の輝度信号の中より
比較的大きい振幅変化をともなうとともに略々中域の信
号周波数成分のみ音検出し、これケ線形の所定の増幅処
理等を行うがあるいは直流信号成分に変換して出力する
ものであって例えば第5図の特性Xで示す如く、周波数
が高くなると出力信号電圧が低下するような特性とする
と、この制御信号電圧が端子Cを介して供給さねた調整
回路1は前記の第2図のa、b、cで示す如くの周波数
特性がステノブ状あるいはアナログ的に変更される。検
出回路2によって制御される周波数特性調整回路1は信
号入力端子Aに例えは前記の第3図aに示すような矩形
波状の信号が印加された場合、その出力端子Bには第6
図で示すような信号が出力される。信号のレベルがEl
からE2に変化し、比較的広いパルス幅T1ヲ有する信
号に対しては本発明ではプリシュートおよびアフターシ
ュートがE4−E2の振幅で夫々の変化都に附加され、
こ扛は例えば既知の方法によるものと増幅の程度は同じ
である。一方、入力信号のレベル変化が前記と同様にE
lからE2 でそのパルス幅か′f2と比較的狭い信号
成分に対しては不発明ではE3−E2のプリシュート、
アフタシュートが附カHされるがこの振幅は前記のもの
より小さく略半分である。これ゛ら2つの信号の立ち上
り、立ち下りの変化時間は夫々等しいことを仮定してお
り、前記第5図の特性Xの傾斜により鮮鋭度改善のため
に附加する信号のレベル比は適宜選択あるいは変更でき
、また非直線の変化を!テえることも可能である。
In FIG. 4, a luminance signal is input to the frequency characteristic adjustment circuit 1 through the signal input terminal Ay, while a similar luminance signal is also supplied to the signal component detection circuit 2 arranged according to the present invention. This detection circuit 2 detects only the signal frequency component with a relatively larger amplitude change than the input luminance signal, and performs a predetermined linear amplification process on this signal, or converts it into a DC signal component. If the control signal voltage is converted and output, and the output signal voltage has a characteristic such that the output signal voltage decreases as the frequency increases, as shown by characteristic X in Figure 5, then this control signal voltage cannot be supplied via terminal C. The frequency characteristics of the adjustment circuit 1 as shown by a, b, and c in FIG. 2 are changed in a steno knob shape or in an analog manner. When the frequency characteristic adjustment circuit 1 controlled by the detection circuit 2 receives a rectangular wave signal as shown in FIG.
A signal as shown in the figure is output. The signal level is El
For a signal that changes from E2 to E2 and has a relatively wide pulse width T1, in the present invention, a preshoot and an aftershoot are added to each change with an amplitude of E4-E2,
This amplification has the same degree of amplification as, for example, known methods. On the other hand, the level change of the input signal is E
For signal components whose pulse width is relatively narrow from l to E2 or 'f2, the preshoot of E3-E2 is
Although the aftershoot is added, its amplitude is smaller than that of the above-mentioned one, and is approximately half that. It is assumed that the change times of the rise and fall of these two signals are the same, and the level ratio of the signal added to improve sharpness is selected or adjusted as appropriate depending on the slope of the characteristic X shown in FIG. Changeable and non-linear changes! It is also possible to do so.

検出回路2が第6図の特性Yで示したような検出特性を
もつと仮定すると、この検出回路は信号のパルス幅が比
較的広いことを意味するT1とそれよりも広い成分に対
してE5の出力信号電圧を発生し、−!、たパルス幅が
狭いことを意味するT2ではE6の信号電圧を発生し、
これらのT1とT2のパルス幅の間の信号成分について
略々直線的に変化する信号電圧を出力することを示して
いる。この検出回路の出力によって制御さ扛る特性調整
回路1はパルス幅T1ヲもつ到来入力信号に対しては第
6図で示したものと同様に比較的大きい鮮鋭度改善信号
成分に対する増強作用を与え、一方パルス幅T2會もつ
入力信号成分に対してはその増強の程度が小とされ、こ
れらの間の信号成分に対して略々直線的な変化を与える
。上記は一例であって、検出回路2は例えば第5図のパ
ルス幅T。全中心とし、その出力信号′亀圧が1!−5
とE6の2値をとるように構成してもよ〈棟々変形する
ことが可能である。
Assuming that the detection circuit 2 has a detection characteristic as shown by characteristic Y in FIG. generates an output signal voltage of –! , a signal voltage of E6 is generated at T2, which means that the pulse width is narrow,
It is shown that a signal voltage that changes approximately linearly is output for signal components between the pulse widths of T1 and T2. A characteristic adjustment circuit 1 controlled by the output of this detection circuit applies an enhancement effect to a relatively large sharpness improvement signal component for an incoming input signal having a pulse width T1, similar to that shown in FIG. , on the other hand, the degree of enhancement is small for the input signal component having the pulse width T2, and a substantially linear change is given to the signal component between these. The above is just an example, and the detection circuit 2 has the pulse width T shown in FIG. 5, for example. The output signal 'tortoise pressure' is 1! -5
It may be configured to take two values: and E6.

第7図は本発明にもとすく画質調整回路の第2の実施例
を示したものである。図においては信号出力端子八に印
加された映像信号が遅延回路3と微分回路21に夫々供
給されている。微分回路21は例えは入力の信号成分が
第8図aで示す如くのものであれば同図すの如くの2次
微分信号成分をその出力端子に送出する。制御パルス発
生器22は前記の2次微分信号成分全入力として第8図
Cで示す如くのパルス幅T。なる負極性信号全同図すの
正極性パルスが印加される毎にその出力端子に発生され
るが出力に負極性iM@に生じている期間に印カロされ
る人力の正極aパルスにも応答するように構成される。
FIG. 7 shows a second embodiment of the image quality adjustment circuit according to the present invention. In the figure, a video signal applied to signal output terminal 8 is supplied to delay circuit 3 and differentiation circuit 21, respectively. For example, if the input signal component is as shown in FIG. 8a, the differentiating circuit 21 sends out a second-order differentiated signal component as shown in FIG. 8a to its output terminal. The control pulse generator 22 has a pulse width T as shown in FIG. 8C as all inputs of the second-order differential signal components. The negative polarity signal is generated at the output terminal every time the positive polarity pulse shown in the figure is applied, but it also responds to the human-powered positive polarity a pulse that is applied during the period when the negative polarity iM@ is generated in the output. configured to do so.

従って82で示すような入力の連@するパルス群に対し
てはその出カケ維持するのでT0′で示すような幅の広
い負極性信号を生じる。
Therefore, for a series of input pulses as shown at 82, the output is maintained, resulting in a wide negative polarity signal as shown at T0'.

この匍」伸jパルス発生器22の出力は特性調整回路1
の制御信号として用いられ、遅延回路3によって遅延さ
れた到来入力信号に対して制御信号か負である期間には
鮮鋭度改善のための作用を停止あるいはその増強の程度
を減じるように動作し、従って第8図eで示すような信
号が信号出力端子Bに得られる。前記の遅延回路3は制
fllパルス発生器が皐−の人力パルスに応答して負極
性パルス信号をその出力端子に送出する時間To + 
/Zの遅延時間を基本的に有するが、これに1ラインあ
るいは1ラインの整数倍の遅延を加えても映像信号が走
査線方向に相関をもつ限り許容される。寸た上記の遅延
回路3のかわりに微分回路、副側1パルス発生器側に配
置することももちろん可能である。
The output of this pulse generator 22 is the characteristic adjustment circuit 1.
is used as a control signal for the incoming input signal delayed by the delay circuit 3, and operates to stop the sharpness improvement action or reduce the degree of enhancement during a period in which the control signal is negative with respect to the incoming input signal delayed by the delay circuit 3; Therefore, a signal as shown in FIG. 8e is obtained at the signal output terminal B. The delay circuit 3 determines the time To + for the control pulse generator to send out a negative polarity pulse signal to its output terminal in response to the human input pulse.
Basically, it has a delay time of /Z, but adding a delay of one line or an integral multiple of one line to this is permissible as long as the video signals have a correlation in the scanning line direction. It is of course possible to arrange a differentiating circuit in place of the above-mentioned delay circuit 3 on the side of the sub-side 1-pulse generator.

第9図は不発明の他の実施例を示したものである。図に
おいては微分回路21の出力信号が制御パルス発生器2
2縁よび遅延回路23に夫々印加され、これらの出力が
ゲート回路24に供給されている。微分回路21および
制御i11パルス発生器22は前記の第7図のものと同
様に動作をし、第10図Cで示すような負極性の信号か
制御パルス発生器22の出力に得られる。遅延回路23
は微分回路21の出力信号を制御パルス発生器22が準
−の入力パルスに応答して負極性パルス信号をその出力
端子に送出する時間T。+aの遅延時間を有しており第
10図dで示すタイミングでゲート回路24に供給され
る。このゲート回路24は第101ン)Cで示すゲート
信号が正の期間のみ遅延回路23の出力を加算器11に
供給し、この遅延回路23と略々同じ遅延時間を有する
遅延回路3の出力と加模することにより第10図eに示
す信号が得られ信号出力端子Bに送出さ扛る。
FIG. 9 shows another embodiment of the invention. In the figure, the output signal of the differentiating circuit 21 is transmitted to the control pulse generator 2.
2 edges and a delay circuit 23, and their outputs are supplied to a gate circuit 24. The differentiating circuit 21 and the control i11 pulse generator 22 operate in the same manner as those shown in FIG. 7, and a negative polarity signal as shown in FIG. 10C is obtained at the output of the control pulse generator 22. Delay circuit 23
is the time T during which the control pulse generator 22 sends a negative polarity pulse signal to its output terminal in response to a quasi- input pulse of the output signal of the differentiating circuit 21. It has a delay time of +a and is supplied to the gate circuit 24 at the timing shown in FIG. 10d. This gate circuit 24 supplies the output of the delay circuit 23 to the adder 11 only during the period when the gate signal indicated by the 101st line C is positive. By the addition, the signal shown in FIG. 10e is obtained and sent to the signal output terminal B.

言う丑でもなく前述した第8図の遅延回路と同様に遅延
回路3の遅延時間を種々選択することはiJ能であり、
遅延回路23も加算器11での2つの信号の間の相対位
相を合わせる目的の範囲で変更することができる。
Needless to say, it is possible to select various delay times for the delay circuit 3 in the same way as the delay circuit shown in FIG. 8 described above.
The delay circuit 23 can also be changed within a range for the purpose of matching the relative phases between the two signals in the adder 11.

」二連した不発明の実施例においては制御ノ々ルス発生
器22の出力パルス幅が例えばその最小幅がo、25マ
イクロ秒程度であるならば2川に相当する繰り返し周助
會もつ信号成分、すなわち略160本の水平解像本数ケ
与える信号成分ケ境界として、より多くの解像本数を生
じる信号に対しては少なく、また160本以下の解像本
数を生じる信号に対しては所望の周波数成分増強作用ヲ
与えることができるがその境界となる解像本数あるいは
周波数成分の増強の程度は適宜選択されよう。
In the uninvented embodiment of the invention, if the output pulse width of the control pulse generator 22 has a minimum width of, for example, about 25 microseconds, then the signal component has a repeating synchronization corresponding to two waves, In other words, as a boundary between the signal components that give approximately 160 horizontal resolution lines, the desired frequency is lower for signals that produce a larger number of resolution lines, and the desired frequency for signals that produce less than 160 resolution lines. Although it is possible to give a component enhancement effect, the number of resolution lines or the degree of enhancement of frequency components that serve as the boundary may be selected as appropriate.

1だ上記の実施例においては映像信号の振幅変化を検出
するに際して微分回路を一例として示したが本発明はこ
の回路の具体構成に何ら限定されるものではなく、さら
に本発明によって配置される検出回路を2系統り、」二
装置することにより第6図に示したような信号パルス幅
に対してその検出出力信号電圧を略々線形に変化するよ
うに構成することもできこれらは方発明の範囲内のもの
である。
1. In the above embodiment, a differential circuit was shown as an example for detecting the amplitude change of a video signal, but the present invention is not limited to the specific configuration of this circuit, and furthermore, the present invention is not limited to the specific configuration of this circuit. By installing two circuits and two devices, it is possible to configure the detection output signal voltage to vary approximately linearly with respect to the signal pulse width as shown in FIG. It is within the range.

発明の効果 本発明は上述した如く、到来入力信号である映像信号に
含−!扛る信号パルスの幅に応じて鮮鋭度改善のための
周波数成分増強作用の程度を制御することに特徴をもっ
ており、比較的幅の広い信号成分と狭い信号成分のそ扛
それに適した鮮鋭度改善信号を附加することができるの
で画質全人幅に改善することができる。
Effects of the Invention As described above, the present invention includes a video signal that is an incoming input signal. The feature is that the degree of frequency component enhancement effect for sharpness improvement is controlled according to the width of the signal pulse to be distorted, and the sharpness improvement is suitable for the distortion of relatively wide and narrow signal components. Since a signal can be added, the image quality can be improved to the full width.

また雑音?多く含む信号に対しては本発明の検11釧ワ
1路が動作しつづけるので実質的に鮮鋭度改善動作が自
動的に停止するのでイイト音の不所望な増強が防止でき
る効果をもつなど工業価値が犬である。
Noise again? For signals containing a large amount of signals, the detection circuit 11 of the present invention continues to operate, so that the sharpness improvement operation substantially automatically stops, which has the effect of preventing undesired enhancement of good sound. Value is a dog.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の画質調整回路を示す回路図、第2図、第
3図は第1図の回路を説明するための特ゲ1ミ図、第4
図は本発明の一実施例における画質調整回路の基本構成
図、第5図、第6図は同実施例のa明のための特性図お
よび波形図、第7図および第9図は本発明の他の芙施例
を示すブロック図、第8図および第1o図は動作説明の
ための信号波形図である。 1・・・・・・特性調整回路、2 ・・・・検出回路、
3・・・遅延回路、21・・・・・微分回路、22・・
・・・制御パルス発生器、23・・・・遅延回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第2図 用波紋 第3図 第4図 / 第5図 2 第6図 第7図 838図 第9図 第10図
Figure 1 is a circuit diagram showing a conventional image quality adjustment circuit, Figures 2 and 3 are special game 1 diagrams for explaining the circuit in Figure 1, and Figure 4
The figure is a basic configuration diagram of an image quality adjustment circuit according to an embodiment of the present invention, FIGS. 5 and 6 are characteristic diagrams and waveform diagrams for a brightness of the same embodiment, and FIGS. 7 and 9 are diagrams according to the present invention. FIG. 8 and FIG. 1o are block diagrams showing other embodiments, and are signal waveform diagrams for explaining the operation. 1...Characteristic adjustment circuit, 2...Detection circuit,
3... Delay circuit, 21... Differential circuit, 22...
...Control pulse generator, 23...Delay circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Ripples for Figure 2 Figure 3 Figure 4 / Figure 5 2 Figure 6 Figure 7 838 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 映像信号成分を入力とし、少なくとも振幅−周波数特性
変化手段を有し、前記映像信号を入力として所定の信号
周波数成分を検出する信号検出手段を設けるとともに、
前記検出手段が前記周波数特性変化手段全制御してなる
ことを特徴とする画質調整回路。
A signal detection means is provided which receives a video signal component as an input, has at least an amplitude-frequency characteristic changing means, and receives the video signal as an input and detects a predetermined signal frequency component;
An image quality adjustment circuit characterized in that the detection means fully controls the frequency characteristic changing means.
JP59008745A 1984-01-20 1984-01-20 Picture quality adjusting circuit Pending JPS60153268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008745A JPS60153268A (en) 1984-01-20 1984-01-20 Picture quality adjusting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008745A JPS60153268A (en) 1984-01-20 1984-01-20 Picture quality adjusting circuit

Publications (1)

Publication Number Publication Date
JPS60153268A true JPS60153268A (en) 1985-08-12

Family

ID=11701466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008745A Pending JPS60153268A (en) 1984-01-20 1984-01-20 Picture quality adjusting circuit

Country Status (1)

Country Link
JP (1) JPS60153268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196771A (en) * 1990-11-28 1992-07-16 Hitachi Ltd Waveform equalization device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04196771A (en) * 1990-11-28 1992-07-16 Hitachi Ltd Waveform equalization device
JP2865853B2 (en) * 1990-11-28 1999-03-08 株式会社日立製作所 Waveform equalizer

Similar Documents

Publication Publication Date Title
US4041531A (en) Television signal processing apparatus including a transversal equalizer
US5237414A (en) Video enhancer with separate processing of high and low level transitions
US4823190A (en) Apparatus for enhancing contours of television signal
EP0391690B1 (en) Image pickup device capable of picking up images while electronically enlarging the same
US4839726A (en) Video enhancement method and system
CA1061448A (en) Automatic luminance channel frequency response control apparatus
US3984865A (en) Transient suppression in television video systems
JPH07250264A (en) Noise reducing circuit
JPS60153268A (en) Picture quality adjusting circuit
US5396157A (en) Method and apparatus for improving vertical sharpness of picture tubes
JPH05211619A (en) Limiter circuit
EP0644699B1 (en) Noise reducing apparatus
JP3264683B2 (en) Brightness signal clarification circuit
EP0268332B1 (en) Method and apparatus for generating an adaptive peaking signal increasing the sharpness of a video signal
JPH065901B2 (en) Image quality improvement device
JPH03120963A (en) Contour correction device
JPS60192468A (en) Picture quality adjusting device
KR800000317B1 (en) Automatic luminance channel frequency response control apparatus
JPH0662278A (en) Video signal processor
JPH03188769A (en) Picture quality adjustment circuit
JPS63122368A (en) Picture quality adjusting device
JPH04369179A (en) Contour correction device
JPS60208175A (en) Noise reduction circuit
JPH0923356A (en) Outline correction circuit
JPS59111482A (en) Noise suppression circuit