JPS60152947A - Continuous quantitative analysis of uric acid and inorganic phosphorus - Google Patents
Continuous quantitative analysis of uric acid and inorganic phosphorusInfo
- Publication number
- JPS60152947A JPS60152947A JP59008794A JP879484A JPS60152947A JP S60152947 A JPS60152947 A JP S60152947A JP 59008794 A JP59008794 A JP 59008794A JP 879484 A JP879484 A JP 879484A JP S60152947 A JPS60152947 A JP S60152947A
- Authority
- JP
- Japan
- Prior art keywords
- uric acid
- inorganic phosphorus
- electrode
- specimen
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する分野〕
この発明は、水浴性酵素と固定化酵素膜を用いて被検液
中の尿酸と無機リン濃度をポーラログラ〔従来技術とそ
の問題点〕
臨床検査分野における尿酸の定量は、体内の生成先進(
痛風など)と腎からの排泄異常などの指標として重要視
されている。さらζこ尿酸は代謝異常性扶患との関連で
興味がもたれでいる。才だ、臨床検査分野における無機
リンの定量は、主として骨および鉱質代細動態を知るう
えに必要である〇さらに環境計測分野では水質の富栄養
化の指標として重要な測定項目である。[Detailed Description of the Invention] [Field to which the invention pertains] This invention relates to a polarographic method for measuring uric acid and inorganic phosphorus concentrations in a test solution using a water bath enzyme and an immobilized enzyme membrane [Prior art and its problems] Clinical examination The determination of uric acid in the field is based on the advanced production of uric acid in the body (
It is considered important as an indicator of abnormalities in renal excretion (such as gout) and abnormal renal excretion. In addition, ζ-kouric acid is of interest in relation to metabolic disorders. Quantification of inorganic phosphorus in the field of clinical testing is mainly necessary to understand the dynamics of bone and mineral deposits.Furthermore, in the field of environmental measurement, it is an important measurement item as an indicator of eutrophication of water quality.
この種の尿酸と無機リンの定量法は、一般に正確、簡便
かつ迅速であることが要請され、特に血液の場合は、遠
心分離操作を必要としない全血のままの測定が強く望ま
れている。This type of method for quantifying uric acid and inorganic phosphorus is generally required to be accurate, simple, and rapid, and in the case of blood in particular, there is a strong desire to measure whole blood without the need for centrifugation. .
酵素1L極を用いた尿酸と無機リンの同一反応セル内で
の連続定量法は特に知られていない。There is no known method for continuously quantifying uric acid and inorganic phosphorus in the same reaction cell using an enzyme 1L electrode.
尿酸の定量法は、大別して還元法と酵素法の二種類に分
類できる。還元法の代表的なものは、リンタングステン
酸を還元して青色の色素を比色定量する方法である。酵
素法の場合には、尿酸を尿酸分解酵素ウレアーゼ(EC
I、7,3.3)で分解し、紫外部の吸光度の差から尿
酸濃度をめる方法と、ウリカーゼを作用させたときに生
成する過酸化水素を比色が可能な他の還元酵素と共役さ
せ、可視部で簡便に定量する方法が知られている。Methods for quantifying uric acid can be broadly classified into two types: reduction methods and enzyme methods. A typical reduction method is a method in which phosphotungstic acid is reduced and a blue pigment is determined colorimetrically. In the case of the enzymatic method, uric acid is treated with uric acid degrading enzyme urease (EC
I, 7, 3.3) and determine the concentration of uric acid from the difference in absorbance in the ultraviolet region, and other reductases that can colorimetrically compare the hydrogen peroxide produced when uricase acts. A method of conjugating and easily quantifying in the visible region is known.
これらの方法は、尿酸類似化合物ζこよって正誤差が生
じたり、試料中に共存するアスコルビン酸やグルタチオ
ンなどにより負誤差が生じるといった欠点がある。さら
には体液などの着色試料をそのまま使用することができ
ず、測定に要する時間が長いといった欠点がある。These methods have the disadvantage that positive errors occur due to uric acid-like compounds ζ, and negative errors occur due to ascorbic acid, glutathione, etc. coexisting in the sample. Furthermore, there are disadvantages in that colored samples such as body fluids cannot be used as they are, and the time required for measurement is long.
近年、これらの欠点を除去する方法として固定化酵素を
用いる酵素電極法が知られてきた。In recent years, an enzyme electrode method using immobilized enzymes has become known as a method for eliminating these drawbacks.
Updikeら(Nature、 214.886(1
967)]こより酵素電極の概念が報告されていらい尿
酸への適用も行なわれているが、尿酸と無機リンを連続
して足鉛、する方法は知られていない。Updike et al. (Nature, 214.886 (1
967)] The concept of an enzyme electrode has been reported and its application to uric acid has also been carried out, but there is no known method for continuously converting uric acid and inorganic phosphorus.
無機リン定量法としてはFiske−8ubba Ro
w法(J、Biol、Chem、66、375(192
5))による還元発色法が一般的であるが、この方法に
は呈色の安定性や感度などに難点がある。近年、これら
の影響を軽減した酵素(プリンヌクレオシドホスフオリ
ラーゼ。Fiske-8ubba Ro is a method for quantifying inorganic phosphorus.
w method (J, Biol, Chem, 66, 375 (192
The reduction coloring method described in 5)) is common, but this method has drawbacks such as color stability and sensitivity. In recent years, enzymes (purine nucleoside phosphorylases) have reduced these effects.
キサンチンオキシダーゼおよびペルオキシダーゼ)を用
いた比色法が用いられる様になったが、1)使用する三
つの酵素を使い捨てにするため経済的でない、2)体液
のような着色試料をそのまま使うことができない、3)
測定に要する時間が長いといった問題点がある。基質イ
ノシンと酵素ブリンヌクレオシドホスフオリラーゼと酵
素キサンチンオキシダーゼを用い、無機リンの存在下で
生成するH2O2を、直接H702選択透過性膜で被覆
した過酸化水素電極でアンペロメ) IJラック定量し
、試料中の無411Jン濃度を分析する方法も報告され
ている(両生検査、32(3)、342(1983))
。A colorimetric method using xanthine oxidase and peroxidase (xanthine oxidase and peroxidase) has been used, but 1) it is not economical because the three enzymes used are disposable, and 2) colored samples such as body fluids cannot be used as is. ,3)
There is a problem that the measurement takes a long time. Using the substrate inosine, the enzyme brine nucleoside phosphorylase, and the enzyme xanthine oxidase, H2O2 generated in the presence of inorganic phosphorus is directly quantified using an IJ rack using a hydrogen peroxide electrode coated with an H702 selectively permeable membrane. A method for analyzing the 411J concentration of
.
この方法は、比色法と比較すると、着色試料の分析がで
きる、測定時間を短縮することができるといった特長を
有するが、1)測定時間は5分を必要とする、2)低濃
度の無機リン測定では、生成するH2O2が少ないため
検出系は高精度で安定した特性が要求される、3)H2
02選択透過膜にセルロースアセテート膜を用いている
ため、全血試料を長期にわたって測定するとめすまりを
おこす可fiF性が高いといった解決すべき問題点があ
る。Compared to the colorimetric method, this method has the advantages of being able to analyze colored samples and shortening the measurement time. In phosphorus measurement, the detection system must have highly accurate and stable characteristics because the amount of H2O2 produced is small; 3) H2
Since a cellulose acetate membrane is used as the 02 selectively permeable membrane, there is a problem that needs to be solved, such as a high fiF property that causes clotting when whole blood samples are measured over a long period of time.
この発明は上述の欠点を除去して、迅速、簡便かつ高い
選択性を有し、全血および着色試料の測定ができる酵素
′電極を用いた尿酸と無機リンの連続分析法を提供する
ことを目的とする。The present invention aims to eliminate the above-mentioned drawbacks and provide a continuous analysis method for uric acid and inorganic phosphorus using an enzyme electrode that is rapid, simple, highly selective, and capable of measuring whole blood and colored samples. purpose.
試料を緩衝溶液で満たされた反応セル内に注入し、まず
試料中に含まれる尿酸を酸素電極で検出し、次に無機リ
ン測定用混合試薬を注入し、無機リンをイノシンと共存
した状態で酵素プリンヌクレオシドホスフオリラーゼ(
PNP、EC2,4゜2.1)と反応させ、まずヒポキ
サンチンとリボース−1−リン酸に変換し、次に生成し
たヒポキサンチンを02存在下で酵素キサンチンオキシ
ダーゼ(XOD、ECI、2,3.2)により尿酸と過
酸化水素に変換し、前記反応セル内に設置された固定化
ウリカーゼ膜を被へした過酸化水素電極で生成した尿酸
および過酸化水素をポーラログラフ法により検出し、予
め作成した検量線から無機リン濃度を定量することによ
り達成される。無機リン濃度は、前記反応の際に消費さ
れる酸素と生成する尿酸を反応セル内に設置された固定
化ウリカーゼ膜を被覆した酸素電極を用いて検出するこ
とにより定量することもできる。A sample is injected into a reaction cell filled with a buffer solution, and uric acid contained in the sample is first detected with an oxygen electrode.Next, a mixed reagent for inorganic phosphorus measurement is injected, and inorganic phosphorus coexists with inosine. Enzyme purine nucleoside phosphorylase (
PNP, EC2,4゜2.1) and first converted into hypoxanthine and ribose-1-phosphate, and then the generated hypoxanthine was treated with the enzyme xanthine oxidase (XOD, ECI, 2,3) in the presence of 02. .2) was converted into uric acid and hydrogen peroxide, and the uric acid and hydrogen peroxide produced by the hydrogen peroxide electrode covered with the immobilized uricase membrane installed in the reaction cell were detected by the polarographic method, and the uric acid and hydrogen peroxide prepared in advance were detected. This is achieved by quantifying the inorganic phosphorus concentration from the calibration curve obtained. The inorganic phosphorus concentration can also be quantified by detecting the oxygen consumed and the uric acid produced during the reaction using an oxygen electrode covered with an immobilized uricase membrane installed in the reaction cell.
この発明による尿酸と無機リンの連続定量法は、以下の
測定原理ζこ基づくものである。The continuous determination method for uric acid and inorganic phosphorus according to the present invention is based on the following measurement principle.
尿酸の検出は次の固定化ウリカーゼ膜内で進行する反応
により生成するH2O2又は消費される02をポーラロ
グラフ法で測定し行なわれる。Uric acid is detected by measuring H 2 O 2 or O 2 consumed by the subsequent reaction proceeding within the immobilized uricase membrane using a polarographic method.
尿酸+02+H20朋箇コ旦り刃ノた写1アラントイン
+H2O2+CO2(1)尿酸を定量したのち、以下の
反応を利用して無機リンを定量する。無機リンは、pH
7,35+7)緩衝溶液中では大部分HPO4として存
在し、基質イノシンの共存下でブリンヌクレオシドホス
フオリラーゼにより次の反応が進行する。Uric acid + 02 + H20 Tomokakodanriba no ta copy 1 Allantoin + H2O2 + CO2 (1) After quantifying uric acid, inorganic phosphorus is determined using the following reaction. Inorganic phosphorus has a pH
7,35+7) In the buffer solution, most of HPO4 exists, and the next reaction proceeds by brine nucleoside phosphorylase in the presence of the substrate inosine.
イノンン+npoニー−ヒポキサンチン+リポースー1
−リン酸 (2)ヒポキサンチンはキサンチンオキシダ
ーゼにより次式により尿酸と過酸化水素に変換される。Inon + npo knee - hypoxanthine + liposu 1
-Phosphoric acid (2) Hypoxanthine is converted to uric acid and hydrogen peroxide by xanthine oxidase according to the following formula.
ヒポキサンチン+202 + 2 H20−一→尿酸+
H2O2(3)本発明は生成する尿酸とH2O2又は生
成する尿酸と消費される02をポーラログラフ的に検出
し、一定時間後の反応電流の変化量から間接点に無機リ
ン碇度を定量するものである。Hypoxanthine +202 + 2 H20-1 → Uric acid +
H2O2 (3) The present invention polarographically detects the generated uric acid and H2O2 or the generated uric acid and the consumed 02, and determines the degree of inorganic phosphorus anchorage at the indirect point from the amount of change in the reaction current after a certain period of time. be.
ここで特長的なことは、尿酸の定量を行った後の無機リ
ンの定量において生成する尿酸と過酸化水素あるいは生
成する尿酸と消費される酸素を、固定化ウリカーゼ膜を
被覆した過酸化水素電極あるいは酸素電極を用いて、(
3)式に従って生成する過酸化水素あるいは消費される
酸素を検出するのみでなく、同時に生成する尿酸を選択
性に優れた固定化ウリカーゼ膜−電極法により検出して
いることである。The unique feature here is that the uric acid and hydrogen peroxide produced during the quantification of inorganic phosphorus after the quantification of uric acid, or the uric acid produced and the oxygen consumed, are collected using a hydrogen peroxide electrode coated with an immobilized uricase membrane. Alternatively, using an oxygen electrode (
3) In addition to detecting hydrogen peroxide produced or oxygen consumed according to the formula, uric acid produced at the same time is detected using an immobilized uricase membrane-electrode method with excellent selectivity.
本発明は固定化酵素膜を使用することにより、尿酸と無
機リンを連続して測定できるようにしたのみならず、無
機リン濃度の測定においても尿酸の検出を可能としたた
め、無ta IJンの定播感ルよの上昇をもたらし、か
つ同定化ウリカーゼ膜は共存物質の影響を受けにくく、
さらに血球、タンパクなどの汚染物質から電極および酵
素層を保肢するため、妨害物質の影響を受けずに長期に
わたって安定した出力が得られるとの考え方に基づいて
いる。By using an immobilized enzyme membrane, the present invention has not only made it possible to measure uric acid and inorganic phosphorus continuously, but also made it possible to detect uric acid when measuring inorganic phosphorus concentration. The identified uricase membrane is less susceptible to the effects of coexisting substances.
Furthermore, since the electrodes and enzyme layer are protected from contaminants such as blood cells and proteins, it is based on the idea that stable output can be obtained over a long period of time without being affected by interfering substances.
第1図に尿酸と無機リンの検出部の構成を示す。 Figure 1 shows the configuration of the uric acid and inorganic phosphorus detection section.
ここで10は過酸化水素電極、12はそのリード線、1
4は温度補償用サーミスタ、16はそのリード線、18
は反応セル、2oは緩衝溶液で満たされた反応セル室を
それぞれ示す。22は試料および試薬溶液の注入口、2
4は反応セル室内攪拌用のダイヤフラム、26はステン
レスパイプをそれぞれ示す。反応セル室2oは一定の容
積(0,4m1)を有し、図示されていない手段によっ
て一定温度(27〜37°C)に保持されている。Here, 10 is a hydrogen peroxide electrode, 12 is its lead wire, 1
4 is a temperature compensation thermistor, 16 is its lead wire, 18
indicates a reaction cell, and 2o indicates a reaction cell chamber filled with a buffer solution. 22 is an injection port for sample and reagent solution;
4 is a diaphragm for stirring inside the reaction cell, and 26 is a stainless steel pipe. The reaction cell chamber 2o has a constant volume (0.4 ml) and is maintained at a constant temperature (27 to 37° C.) by means not shown.
次に本発明に使用する固定化ウリカーゼ膜で被酸された
過酸化水素電極の例を第2図に示す。ここで30は白金
極、34は電極であり、32はこれら両電極間の絶縁層
である。才た36はOIJソング持用ガイド、38はo
リング、4oはウリカーゼの固定化酵素膜であり、白金
極3oと電極34の表面に密着されている。ここで白金
極3oには電極34に対して+0.6〜0.8 Vの範
囲の一定電圧を印加しておく。一方、第2図で示した過
酸化水素電極10は、白金極30に電極34に対して−
0,6〜0.8■の範囲の一定電圧を印加することで、
酸素′(5)極としても使用することができる。Next, FIG. 2 shows an example of a hydrogen peroxide electrode acidified with an immobilized uricase membrane used in the present invention. Here, 30 is a platinum electrode, 34 is an electrode, and 32 is an insulating layer between these two electrodes. 36 is OIJ song carrying guide, 38 is o
The ring 4o is an immobilized enzyme membrane of uricase, which is closely attached to the surfaces of the platinum electrode 3o and the electrode 34. Here, a constant voltage in the range of +0.6 to 0.8 V is applied to the platinum electrode 3o with respect to the electrode 34. On the other hand, the hydrogen peroxide electrode 10 shown in FIG.
By applying a constant voltage in the range of 0.6 to 0.8
It can also be used as an oxygen '(5) electrode.
さらに第3図に尿酸と無機リンの検出装置の例を示す。Further, FIG. 3 shows an example of a detection device for uric acid and inorganic phosphorus.
ここで52は第1図に示した検出部であり、そこへ緩衝
液50が液送ポンプ54により給送される。56は廃液
溜めである。電極をポーラログラフ装置58に接続し、
さらに出力記録部6゜に接続する。Here, 52 is the detection section shown in FIG. 1, to which the buffer solution 50 is fed by a liquid feed pump 54. 56 is a waste liquid reservoir. connecting the electrode to a polarographic device 58;
Furthermore, it is connected to the output recording section 6°.
゛ 第1〜3図を参照して本発明の方法の実施例を説明
すれば次の通りである。An embodiment of the method of the present invention will be described below with reference to FIGS. 1 to 3.
実施例1゜
過酸化水素電極10に固定化ウリカーゼ膜4゜を装着し
て用いた。緩衝液5oとして0.1Mトリス緩衝液(p
H7,35)を用いた。無機リン定量段階で使用する基
質であるイノシンは、3.88 mM、PNPは1.3
8unit/rr]7.%X ODは13.8uni
t/rnlの濃度になるように三独試薬を混合して調製
した。溶解液Lt 0. I M トIJス緩衝液(p
H7,35)を用いた。ここでイノシン、PNPおよυ
XODは市販されている試薬を用いることができる。Example 1 A hydrogen peroxide electrode 10 was equipped with an immobilized uricase membrane 4°. 0.1 M Tris buffer (p
H7, 35) was used. Inosine, the substrate used in the inorganic phosphorus determination step, was 3.88 mM, and PNP was 1.3
8 units/rr]7. %X OD is 13.8uni
The Sandoku reagent was mixed and prepared to have a concentration of t/rnl. Solution Lt 0. IM to IJ buffer (p
H7, 35) was used. Here, inosine, PNP and υ
For XOD, commercially available reagents can be used.
試料を注入口22から反応セル室20円に注入すると、
シリコンダイヤフラム24により攪拌され、反応セル室
20内で緩衝液により均一に士、11釈される。かくし
て、試料中の尿酸は固定化ウリカーゼ膜40と接触して
かつ酸化されてH2O,を発生し、これにより過酸化水
素電極10の電流値は上昇して暫時定常状態に達する。When the sample is injected into the reaction cell chamber 20 yen from the injection port 22,
The mixture is stirred by a silicon diaphragm 24 and uniformly mixed with a buffer solution in the reaction cell chamber 20. Thus, the uric acid in the sample comes into contact with the immobilized uricase membrane 40 and is oxidized to generate H2O, thereby causing the current value of the hydrogen peroxide electrode 10 to rise and temporarily reach a steady state.
この時の′動;流増加分はt酸ti’、に比例するので
、その定量ができる。At this time, since the increase in flow rate is proportional to t acid ti', it can be quantified.
次に)−91定娘度のイノシン、PN’PおよびXOD
から成る混合試薬溶液を注入口22から注入すると、試
料中の無機リンが注入されたイノシン1、PNPおよび
XODと反応し、反応セル室20内に尿酸とH2O2を
発生し、固定化ウリカーゼ膜を被覆した過酸化水素電極
10の電流値が再び増加する。一定時間後の増加世また
は増加率ζこより、無tfl IJン′a屁を定量する
ことができる。定量後は緩衝液50により反応セル室2
0内を洗浄し、その廃液は液送ポンプ54により廃液溜
め56に送られる。洗浄により電流値が試料注入前の値
に戻ったら、再び新たに試料と混合試薬を逐次注入する
ことができ、かくして反覆連続測定を行うことができる
。試料および試薬の注入は、自動サンプラーを取り付け
れば自動曲に行うことも可能である。Then) -91 constant density inosine, PN'P and XOD
When the mixed reagent solution consisting of The current value of the coated hydrogen peroxide electrode 10 increases again. From the increase or increase rate ζ after a certain period of time, it is possible to quantify the amount of tflIJn'a fart. After quantitative determination, buffer solution 50 is added to reaction cell chamber 2.
The waste liquid is sent to a waste liquid reservoir 56 by a liquid feed pump 54. When the current value returns to the value before sample injection due to cleaning, a new sample and mixed reagent can be sequentially injected again, thus making it possible to perform repeated and continuous measurements. Injection of samples and reagents can also be performed automatically if an automatic sampler is attached.
実施例2
実施例1.により実際に尿酸と無機リンを同一反応セル
室内で連続して定量した場合の電流変化を第4図に示す
。尿酸8.2m g /c1 l と無機リン4.7m
g / d lを含む試料を20μl注入すると(時
点100)、電極電流値は急激に上昇し、約15秒後に
定常状態に達した。30秒後にイノシン、PNPおよび
XODから成る混合試薬を20μl注入すると(時点1
02)、約15秒後から反応電流の増加が再び観測され
、20秒後(時点104)から直線的増加を示した。試
薬を注入してから3分波ζこ反応セル室20内を緩衝液
50で洗浄し始め(時点106)、30秒後に電流は試
料注入前の値に戻った。Example 2 Example 1. Figure 4 shows the current changes when uric acid and inorganic phosphorus were actually continuously quantified in the same reaction cell chamber. Uric acid 8.2 mg/c1 l and inorganic phosphorus 4.7 m
Upon injection of 20 μl of the sample containing g/dl (time point 100), the electrode current value rose sharply and reached a steady state after about 15 s. After 30 seconds, 20 μl of a mixed reagent consisting of inosine, PNP, and XOD was injected (time point 1).
02), an increase in the reaction current was again observed after about 15 seconds, and a linear increase was observed after 20 seconds (time point 104). After the reagent was injected, the interior of the 3-minute wave ζ reaction cell chamber 20 began to be washed with the buffer solution 50 (time point 106), and 30 seconds later, the current returned to the value before sample injection.
尿酸および無機リン標準液で予め検量線を作成するか或
いは装置を較正しておけば、第4図のΔ11から尿酸を
、またΔ12から無機リンをそれぞれ定量し、表示させ
ることができる。If a calibration curve is prepared in advance using uric acid and inorganic phosphorus standard solutions or the device is calibrated, uric acid can be determined from Δ11 in FIG. 4, and inorganic phosphorus can be determined from Δ12 in FIG. 4 and displayed.
上記方法により作成した尿酸の検量線を第5図に、無機
リンの検量線を第6図にそれぞれ示す。The calibration curve for uric acid prepared by the above method is shown in FIG. 5, and the calibration curve for inorganic phosphorus is shown in FIG. 6.
無機リン濃度2.5 mg/d 1以上では直線関係か
ら逸脱するが、10mg/d7まで再現性のよい濃度依
存性を示した。At an inorganic phosphorus concentration of 2.5 mg/d 1 or more, the relationship deviated from a linear relationship, but up to 10 mg/d 7 a concentration dependence with good reproducibility was shown.
実施例3゜
実施例2で示した無機リンを定量する際の計測時間(時
点104〜106)を、40秒、1分40秒、2分40
秒にそれぞれ設定し、無機リン濃度5mg/dlの溶液
を用いて10回の連続測定を行い、同時再現性を検討し
た。得られたC、V、値はそれぞれ235チ、1.47
係、1.26係と良好な結果であり、計測時間が40秒
でも十分な精度が得られることがわかる。このことから
、試料注入後2〜3分間で尿酸と無機リン濃度の連続分
析が行なえることは明らかである。Example 3 The measurement time (time points 104 to 106) for quantifying inorganic phosphorus shown in Example 2 was changed to 40 seconds, 1 minute 40 seconds, and 2 minutes 40 seconds.
10 consecutive measurements were performed using a solution with an inorganic phosphorus concentration of 5 mg/dl, and the simultaneous reproducibility was examined. The obtained C and V values are 235 chi and 1.47, respectively.
The ratio is 1.26, which is a good result, and it can be seen that sufficient accuracy can be obtained even with a measurement time of 40 seconds. From this, it is clear that continuous analysis of uric acid and inorganic phosphorus concentrations can be performed within 2 to 3 minutes after sample injection.
実施例4
さらに全血試料を用いて連続100回の測定を試みたが
、固定化ウリカーゼ膜の汚染に基づく出力の低下は認め
られず、“長期使用に耐え得ることがわかった。Example 4 Further, 100 consecutive measurements using whole blood samples were attempted, but no decrease in output due to contamination of the immobilized uricase membrane was observed, indicating that the device could withstand long-term use.
実施例5゜
無機リン測定に及ぼす固定化ウリカーゼ膜の効果を検討
するためlこ、実施例2に従い過酸化水素電極10に固
定化ウリ、カーゼ膜40を装着して測定した場合と、過
酸化水素電極10に膜厚6μのアセチルセルロース膜を
装着して測定した場合の反応電流を測定した。標準過酸
′化水素水溶液(120ppm)を用い、電極活性と膜
厚補正を行なった。得られる反応電流を比較し、固定化
ウリカーゼ膜を用いることによりアセチルセルロース膜
で得られる反応電流の2倍の値が得られ、生成した尿酸
とH2O2を測定していることにより精度の向上が図れ
ることがわかった。Example 5 To investigate the effect of an immobilized uricase membrane on inorganic phosphorus measurement The reaction current was measured by attaching an acetyl cellulose membrane with a thickness of 6 μm to the hydrogen electrode 10. Electrode activity and film thickness correction were performed using a standard hydrogen peroxide aqueous solution (120 ppm). Comparing the reaction currents obtained, it was found that by using the immobilized uricase membrane, a value twice the reaction current obtained with the acetylcellulose membrane was obtained, and the accuracy was improved by measuring the generated uric acid and H2O2. I understand.
実施例6
実施例1の過酸化水素電極10を用い、白金極30に一
〇、60Vを印加して酸素電極として作用させ、実施例
2に従って尿酸と無機リンを連続して定量した場合の還
元電流の変化を第7図に示す。Example 6 Reduction when uric acid and inorganic phosphorus were continuously determined according to Example 2 by using the hydrogen peroxide electrode 10 of Example 1 and applying 10.60 V to the platinum electrode 30 to act as an oxygen electrode. Figure 7 shows the changes in current.
試料を20μノ注入すると(時点200)、電極電流は
急激に減少し、30秒後に定常状態となる。Upon injection of 20 μm of sample (time point 200), the electrode current decreases rapidly and reaches a steady state after 30 seconds.
30秒後に混合試薬20μlを注入すると(時点202
)、約15秒後から再び還元電流の減少が観測された。After 30 seconds, 20 μl of mixed reagent is injected (time point 202).
), a decrease in reduction current was observed again after about 15 seconds.
このようにして実施例2と同様に、第7図中のΔ11か
ら尿酸濃度を、Δ12から無機リン濃度をそれぞれ分析
できる。In this way, similarly to Example 2, the uric acid concentration can be analyzed from Δ11 in FIG. 7, and the inorganic phosphorus concentration can be analyzed from Δ12.
以上の説明かられかる様に、本発明によれば酵素電極法
による検出部を構成したため、同一反応セル内での尿酸
と無機リンの連続定分が可能となった。さらに無機リン
をイノシン、PNP、XODと反応させて酵素的に尿酸
と過酸化水素を生成させ、これを同定化ウリカーゼ膜を
被覆した過酸化水素電極あるいは酸素電極を介して定量
するようにしたため、反応電流の倍化をもたらし、その
結果反応時間の短縮が可能となり、かつ精度の向上を図
ることができた。又、固定化酵素膜を使用しているため
、長期の全血測定に対しても安定した出力が得られるよ
うになった。さらに酵素電極法により無機リンを定量す
るため、連続的に迅速・簡便に、かつ共存物質の影響を
受けずに、尿酸と無機リンの分析操作を行うことが可能
となった。As can be seen from the above description, according to the present invention, since the detection section is configured using the enzyme electrode method, continuous determination of uric acid and inorganic phosphorus within the same reaction cell is possible. Furthermore, inorganic phosphorus is reacted with inosine, PNP, and XOD to enzymatically generate uric acid and hydrogen peroxide, which are then quantified using a hydrogen peroxide electrode or an oxygen electrode coated with an identified uricase membrane. This resulted in a doubling of the reaction current, thereby making it possible to shorten the reaction time and improve accuracy. Furthermore, since an immobilized enzyme membrane is used, stable output can be obtained even for long-term whole blood measurements. Furthermore, since inorganic phosphorus is quantified using the enzyme electrode method, it has become possible to analyze uric acid and inorganic phosphorus continuously, quickly and easily, and without being affected by coexisting substances.
第1図は本発明の方法に使用する装a♀の検出部の平面
図、第2図はポーラログラフ用過醒化水素電極の構造を
示す横断面図、第3図は本発明の方法を実施する尿酸お
よび無機リン分析装置の一系統図、第4図は過酸化水素
電極を用いた場合のポーラログラフ装置の出力、すなわ
ち本発明の定−ζν法の状態をかす線図、第5図は本発
明のポーラログラフ装置の出力と尿酸濃度の関係を示す
線区、第6図は本発明のポーラログラフ装置の出力と無
機リン濃度の関係を示す紗図、第7図は酸素電極を用い
た場合のポーラログラフ装置の出力、すなわち本発明の
定盆法の状態を示す線図である。
10・過酸化水素′1L極、18 反応セル、20・・
反応セル室、22 注入口、30 ・白金極、34 電
極、40 固定化ウリカーゼ股、5゜緩衝液、52−検
出部、58 ポーラログラフ装置、60 ・出力記録部
。
′−゛
8丁1ノ1.゛、τλ−11ノロに;九、−m−バー
第1 図
ヤZ閃
才3閃
θ l 2 3 4
糸[伍碕関 (今〕
才4(2)
0 to 20 、 30 4θ
屈蔽(笥J六ρ)
オj 閃
0 、f tQ
U魚摂°りン) / gl /li/l )才ろ 喝Fig. 1 is a plan view of the detection part of the device a♀ used in the method of the present invention, Fig. 2 is a cross-sectional view showing the structure of a superheated hydrogen electrode for polarography, and Fig. 3 is a plan view of the detection part of the device a♡ used in the method of the present invention. Fig. 4 is a diagram showing the output of the polarographic device when a hydrogen peroxide electrode is used, that is, the state of the constant-ζν method of the present invention, and Fig. 5 is a diagram showing the state of the constant-ζν method of the present invention. Lines showing the relationship between the output of the polarographic device of the invention and uric acid concentration, Figure 6 is a gauze diagram showing the relationship between the output of the polarographic device of the present invention and inorganic phosphorus concentration, and Figure 7 is a polarographic graph when an oxygen electrode is used. FIG. 3 is a diagram showing the output of the device, that is, the state of the tray method of the present invention. 10. Hydrogen peroxide'1L pole, 18 Reaction cell, 20...
Reaction cell chamber, 22 injection port, 30 - platinum electrode, 34 electrode, 40 immobilized uricase, 5° buffer, 52 - detection section, 58 polarographic device, 60 - output recording section. '-゛8cho1no1.゛, τλ-11 noro; 9, -m-bar 1st Figure Ya Z sensai 3 flash θ l 2 3 4 Thread [Gosaki Seki (now) Sai 4 (2) 0 to 20, 30 4θ deflection (笥Jrokuρ) Oj Sen0, f tQUfishets°rin) / gl /li/l) Sairo ki
Claims (1)
ウリカーゼ膜と過酸化水素電極からなる酵素電極を備え
、かつ緩衝溶液で満たされた反応セルに試料溶液を導入
し、前記酵素電極で試料中の尿酸濃度をポーラログラフ
的に測定し、次にブリンヌクレオシドホスフオリラーゼ
とイノシンとキサンチンオキシダーゼを含む混合溶液を
反応セル内に導入し、被検液と反応させ、逐次生成する
尿酸と過酸水素を前記酵素電極でポーラログラフ的に検
出し、間接的に無機リン濃度を定量することを特徴とす
る尿酸と無機リンの連続定量法。 2)試料中の尿酸と無機リンの定量法において、固定化
ウリカーゼ膜と酸素電極からなる酵素電極を備え、かつ
緩衝溶液で満たされた反応セルに試料溶液を導入し、前
記酵素電極で試料中の尿酸濃度をポーラログラフ的に測
定し、次にプリンヌクオンドホスフオリラーゼとイノシ
ンとキサンチンオキシダーゼを含む混合溶液を反応セル
内に導入し、被検液と反応させ、逐次生成する尿酸と溶
存酵素の減少量を前記酵素電極でポーラログラフ的に検
出し、間接的に無機リン濃度を定量することを特徴とす
る尿酸と無機リンの連続定量法。[Claims] 1) In a method for quantifying uric acid and inorganic phosphorus in a sample, a sample solution is introduced into a reaction cell equipped with an enzyme electrode consisting of an immobilized uricase membrane and a hydrogen peroxide electrode and filled with a buffer solution. Then, the uric acid concentration in the sample was measured polarographically using the enzyme electrode, and then a mixed solution containing brine nucleoside phosphorylase, inosine, and xanthine oxidase was introduced into the reaction cell, reacted with the test solution, and sequentially 1. A continuous method for quantifying uric acid and inorganic phosphorus, characterized in that the produced uric acid and hydrogen peroxide are polarographically detected using the enzyme electrode, and the inorganic phosphorus concentration is indirectly determined. 2) In the method for quantifying uric acid and inorganic phosphorus in a sample, a sample solution is introduced into a reaction cell equipped with an enzyme electrode consisting of an immobilized uricase membrane and an oxygen electrode and filled with a buffer solution, and the enzyme electrode Measure the uric acid concentration polarographically, then introduce a mixed solution containing purine nucleondophosphorylase, inosine, and xanthine oxidase into the reaction cell and react with the test solution, successively producing uric acid and dissolved enzyme. A method for continuously quantifying uric acid and inorganic phosphorus, characterized in that the amount of decrease is polarographically detected using the enzyme electrode to indirectly quantify the inorganic phosphorus concentration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59008794A JPS60152947A (en) | 1984-01-20 | 1984-01-20 | Continuous quantitative analysis of uric acid and inorganic phosphorus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59008794A JPS60152947A (en) | 1984-01-20 | 1984-01-20 | Continuous quantitative analysis of uric acid and inorganic phosphorus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60152947A true JPS60152947A (en) | 1985-08-12 |
Family
ID=11702770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59008794A Pending JPS60152947A (en) | 1984-01-20 | 1984-01-20 | Continuous quantitative analysis of uric acid and inorganic phosphorus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60152947A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5288613A (en) * | 1988-02-17 | 1994-02-22 | Her Majesty The Queen In Right Of Canada, As Represented By The National Research Council Of Canada | Enzyme-based biosensor system for monitoring the freshness of fish |
-
1984
- 1984-01-20 JP JP59008794A patent/JPS60152947A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5288613A (en) * | 1988-02-17 | 1994-02-22 | Her Majesty The Queen In Right Of Canada, As Represented By The National Research Council Of Canada | Enzyme-based biosensor system for monitoring the freshness of fish |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hadwan | New method for assessment of serum catalase activity | |
Wangsa et al. | Fiber-optic biosensors based on the fluorometric detection of reduced nicotinamide adenine dinucleotide | |
EP0020623B1 (en) | Analytical process and means for measuring the amount of hydrogen peroxide in aqueous media and of organic substrates generating hydrogen peroxide by enzymatic oxidation | |
Orsonneau et al. | Simple and sensitive determination of urea in serum and urine | |
Fogh-Andersen et al. | Direct reading glucose electrodes detect the molality of glucose in plasma and whole blood | |
Wiener | Whole blood glucose: what are we actually measuring? | |
US4353867A (en) | Method and apparatus for the determination of substances in biological solutions by differential pH measurement | |
Vadgama et al. | Determination of urea in blood plasma by enzyme-pH electrode | |
JPS60152947A (en) | Continuous quantitative analysis of uric acid and inorganic phosphorus | |
Campanella et al. | Determination of inorganic phosphate in drug formulations and biological fluids using a plant tissue electrode | |
Rindfrey et al. | Kinetic determination of glucose concentrations with glucose dehydrogenase | |
Li et al. | A novel analysis method for lactate dehydrogenase activity in serum samples based on fluorescence capillary analysis | |
Qu et al. | Simultaneous determination of maltose and glucose using a dual-electrode flow injection system | |
JPS60151551A (en) | Quantitative determination method of inogranic phosphorus | |
CN112029820B (en) | Creatinine content detection kit for resisting calcium dobesilate interference and application thereof | |
JPS6328264B2 (en) | ||
Campanella et al. | Analysis Ofl-dopa in pharmaceutical preparations and of total phenols content in urine by means of an enzyme—amperometric sensor | |
JPS63164900A (en) | Quantitative determination of creating kinase | |
JP2011149878A (en) | Potential difference measuring device and potential difference measuring method | |
Guilbault | Enzymatic glucose electrodes | |
JP2515005B2 (en) | Measuring method and apparatus using enzyme electrode | |
Griebel et al. | Measurement of serum lipase activity with the oxygen electrode. | |
Weigelt et al. | Determination of pyruvate kinase and creatine kinase using multienzyme electrodes | |
Shamberger | Lactate dehydrogenase isoenzyme 1 as determined by inhibition with 1, 6-hexanediol and by two other methods in patients with myocardial infarction or cardiac-bypass surgery. | |
JPS60151560A (en) | Quantitative determination of creatinine |