JPS60152946A - Humidity sensor and preparation thereof - Google Patents

Humidity sensor and preparation thereof

Info

Publication number
JPS60152946A
JPS60152946A JP59008496A JP849684A JPS60152946A JP S60152946 A JPS60152946 A JP S60152946A JP 59008496 A JP59008496 A JP 59008496A JP 849684 A JP849684 A JP 849684A JP S60152946 A JPS60152946 A JP S60152946A
Authority
JP
Japan
Prior art keywords
humidity sensor
humidity
sintered body
aluminum
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59008496A
Other languages
Japanese (ja)
Inventor
Masasuke Takada
雅介 高田
Hiroaki Yanagida
柳田 博明
Shoichi Okamoto
岡本 祥一
Kenkichirou Kobayashi
健吉郎 小林
Hiroki Ishizaki
石崎 浩喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP59008496A priority Critical patent/JPS60152946A/en
Publication of JPS60152946A publication Critical patent/JPS60152946A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • G01N27/225Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity by using hygroscopic materials

Abstract

PURPOSE:To enhance the sensitivity of a humidity sensor and to attain the miniaturization thereof, by using a sintered body obtained from a mixture comprising two or more of selected aluminum oxides in a detection part to provide the humidity sensor and detecting humidity on the basis of the change in electrostatic capacity corresponding to the humidity of the atmosphere. CONSTITUTION:Anmonium a lum is perfectely dissolved in distilled water and a mixture comprising two or more of aluminum hydroxide, aluminum chloride and aluminum sulfate is selected and precipitated by using an aqueous urea solution as a reagnet while the precipitate is dried and formed into a powder. This powder is pressed into a disc shape to form a gamma-alumina disc and, further, a sintered body of a compound during transfer to alpha-alumina is molded while both end surfaces 1a, 1b of the molded body are used as electrodes to respectively extend a pair of lead wires 2a, 2b and the detection part 1 of a humidity sensor S1 is formed. By this method, the change with the elapse of time can be reduced and sensitivity can be improved over an almost all humidity range.

Description

【発明の詳細な説明】 技術分野 本発明は、半導体セラミックスを利用する湿度センサと
その製造方法に関し、より詳細にはアルミナの焼結体か
ら成る湿度センサとその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a humidity sensor using semiconductor ceramics and a method of manufacturing the same, and more particularly to a humidity sensor made of a sintered body of alumina and a method of manufacturing the same.

従来技術 従来の湿度センサはzn○、 zn 02 、Al20
3 、Fe2O3及びFe3O4等を主成分としたザー
ミスタタイプが主流であったが、これは湿度に対する抵
抗値の変化を利用しており、80乃至100%の高湿度
範囲における感度の経時変化が大きいという欠点を有し
ている。そこで、この様な欠点を解消するセンサとして
、電極としての基体上に7−A(1203系やMn 2
03.Ti 02系の陽極酸化膜やその他の方法による
酸化膜を形成した湿度センサが提案されている。この場
合、湿度変化に応じた酸化膜の抵抗変化若しくは静電容
量変化により湿度を検出するが、11乃至98%の湿度
範囲に亘るそれらの変化量は1乃至2桁程度であり感度
が不充分である。又、これら薄膜はヒステリシスが大き
く且つ感度の経時変化が大きいという欠点を有している
Conventional technology Conventional humidity sensors are zn○, zn 02, Al20
3. Thermistor type, which mainly consists of Fe2O3 and Fe3O4, etc., was the mainstream, but this utilizes changes in resistance value due to humidity, and the sensitivity changes significantly over time in the high humidity range of 80 to 100%. It has the following drawbacks. Therefore, as a sensor that eliminates such drawbacks, 7-A (1203 series or Mn 2
03. Humidity sensors have been proposed in which a TiO2-based anodic oxide film or an oxide film formed by other methods is formed. In this case, humidity is detected by changes in the resistance or capacitance of the oxide film in response to changes in humidity, but the amount of change in these changes over the humidity range of 11 to 98% is about one to two orders of magnitude, and the sensitivity is insufficient. It is. Furthermore, these thin films have the drawbacks of large hysteresis and large changes in sensitivity over time.

目 的 本発明は以上の点に鑑みてなされたものであって、雰囲
気湿度に対する感度が略全湿度範囲に亘って充分であり
且つ経時変化が小さい湿度センサとその製造方法を提供
することを目的とする。
Purpose The present invention has been made in view of the above points, and it is an object of the present invention to provide a humidity sensor that has sufficient sensitivity to atmospheric humidity over almost the entire humidity range and has a small change over time, and a method for manufacturing the same. shall be.

構 成 以下、本発明の構成について具体的な実施例に基づき詳
細に説明する。第1図は本発明の1実施例としての温度
センサS1を示した斜視図であり、好適にはγ−八へ2
03 (γ−アルミナ)がα−Al203 (α−アル
ミナ)に移行する間の混成体から成る検知部1が例えば
ディスク状に形成され、その両端面1a、1bを電極と
してここから夫々1対のリード線2’a、2bが延出さ
れている。
Configuration Hereinafter, the configuration of the present invention will be explained in detail based on specific examples. FIG. 1 is a perspective view showing a temperature sensor S1 as one embodiment of the present invention, preferably γ-8 to 2.
03 (γ-alumina) to α-Al203 (α-alumina) is formed into a disk shape, for example, and a pair of electrodes are connected to each end surface 1a, 1b of the disk. Lead wires 2'a and 2b are extended.

ここで、本発明方法の1実施例として、上述の如く構成
された湿度センサS1の検知部1の製造方法について、
説明する。まず、蒸溜水にAl2NH4・(SO4)2
 ・12H20(アンモニウムミョウバン)を完全に溶
解させる。尚、検知部1の出発原料としては、この他に
Al(○H)3(水酸化アルミニウム)、Al1Cρ3
 ・6H20(塩化アルミニウム)及びAl2 (SO
4)3 ・14〜18H20(硫酸アルミニウム)の1
種若しくはこれら化合物の2種以上の混合物が使用可能
である。次いで、アンモニウムミョウバンの水溶液に沈
澱試薬としてアンモニア水を添加してPl」(水素イオ
ン濃度)が7.5乃至9.0の範囲に収まる様に調整し
、溶解していたアンモニウムミョウバンを沈澱させる。
Here, as an embodiment of the method of the present invention, a method for manufacturing the detection section 1 of the humidity sensor S1 configured as described above will be described.
explain. First, add Al2NH4・(SO4)2 to distilled water.
- Completely dissolve 12H20 (ammonium alum). In addition, the starting materials for the detection part 1 include Al(○H)3 (aluminum hydroxide), Al1Cρ3
・6H20 (aluminum chloride) and Al2 (SO
4) 1 of 3 ・14-18H20 (aluminum sulfate)
Species or mixtures of two or more of these compounds can be used. Next, aqueous ammonia is added as a precipitation reagent to the aqueous solution of ammonium alum to adjust the Pl (hydrogen ion concentration) to fall within the range of 7.5 to 9.0, thereby precipitating the dissolved ammonium alum.

この場合、沈澱試薬としては他に、Co (NH2) 
2 (尿素水)等も使用可能である。得られた沈澱物を
好適には2度以上濾過洗浄した後、95°Cの温度下で
24乃至48時間乾燥させ、この乾燥物をアルミナ乳針
で粉砕し粉末状にする。
In this case, Co (NH2) is also used as the precipitation reagent.
2 (urea water) etc. can also be used. The obtained precipitate is preferably filtered and washed twice or more, then dried at a temperature of 95° C. for 24 to 48 hours, and the dried product is ground with an alumina milk needle to form a powder.

次に、得られた粉末状の生成物に例えば1 、000k
cI/cm’程度の高圧力を加えて直径がiQn+m程
の円板状にプレス成形する。そして、このプレス成形物
を200乃至500℃の温度下で焼成(−次焼成)して
脱水しγ−アルミナを得る。次いで、更に、得られたγ
−アルミナにより高温の800乃至1,100°Cの温
度下における焼成処理(二次焼成)を施し、γ−アルミ
ナがα−アルミナに移行する間の混成物の焼結体を得る
。この焼結体を所望の例えば、本例ではディスク状に成
形すれば、湿度センサの検知部1が完成する。
Next, the obtained powdered product is subjected to, for example, 1,000 k
A high pressure of about cI/cm' is applied to press-form the material into a disk shape with a diameter of about iQn+m. Then, this press-formed product is fired (-second firing) at a temperature of 200 to 500°C to dehydrate it and obtain γ-alumina. Then, the obtained γ
- Alumina is subjected to a firing treatment (secondary firing) at a high temperature of 800 to 1,100°C to obtain a sintered body of a mixture in which γ-alumina transitions to α-alumina. By molding this sintered body into a desired shape, for example, a disk shape in this example, the detection section 1 of the humidity sensor is completed.

上述の二次焼成工程における焼成温度の変化に対するア
ルミナの結晶構造の変換を、X線回折分析によるスペク
トル図で示すと、第2〈a〉図乃至第2(d)図の如く
なる。尚、縦軸はX線の強度、横軸は計数管の回転角2
θを夫々表わしている。第2(a)図に焼成温度が80
0°Cのγ−アルミナ、第2(d)図に焼成温度が1,
100℃のα−アルミナ、の各スペクトル図が表わされ
ており、焼成温度を900℃(第2(b)図)及び1.
OOO’C(第2(C)図)と上昇させるに従って徐々
にγ−アルミナの結晶構造からα−アルミナの結晶構造
に移行してゆくのが分かる。第2(C)図が、γ−アル
ミナとα−アルミナの混成物のスペクトル図である。
The transformation of the crystal structure of alumina with respect to the change in firing temperature in the above-mentioned secondary firing step is shown in spectrograms obtained by X-ray diffraction analysis as shown in Figures 2(a) to 2(d). The vertical axis is the X-ray intensity, and the horizontal axis is the rotation angle of the counter 2.
θ respectively. Figure 2(a) shows that the firing temperature is 80°C.
γ-alumina at 0°C, Fig. 2(d) shows calcination temperature of 1,
Each spectrum diagram of α-alumina at 100°C is shown, and the firing temperature was set to 900°C (Figure 2(b)) and 1.
It can be seen that the crystal structure of γ-alumina gradually shifts to the crystal structure of α-alumina as the temperature increases to OOO'C (Fig. 2(C)). FIG. 2(C) is a spectrum diagram of a hybrid of γ-alumina and α-alumina.

以上の如くして製造された湿度センサの有用な効果を確
認する為に本願発明者が実施した実験結果について説明
する。第3図は雰囲気の相対湿度(横軸)に対する湿度
センサの検知部1の静電容量の応答曲線を、夫々異なる
焼結温度(焼結体を得る為の二次の焼成温度)で得られ
た結晶構造の異なる焼結体サンプル別に示したものであ
る。第3図から、焼結温度が800℃及び900℃の焼
結体I、IIは相対湿度に対する静電容量の変化、即ち
センサとしての感度が高湿度雰囲気で特に大きくなり最
終的には飽和状態になっていることが分かる。又、焼結
温度が1,100℃及び1,200℃と高く実質的にα
−アルミナ化している焼結体■、■は、逆に湿度センサ
感度が極めて小さくなっており、特に焼結体Vは殆んど
応答していない。而して、焼結温度がi、ooo℃の焼
結体■は応答曲線が略直線的に形成されており相対湿度
の略全範囲において安定して略一定の感度を示している
。以上の結果から、湿度センサの検知部としては、少く
とも焼結体Vは不適であり、適する焼結体I、 II、
 Hの内でも、11%乃至98%の範囲の相対湿度に対
する感度としての静電容量の変化量が、10゜乃至10
”llFの3桁の範囲に亘って充分に太きく、且つその
感度が略一定である焼結体■が最適であることが分かる
。本実施例における湿度センサの検知部1は、前述した
如く焼結温度を800乃至1,100℃の範囲に設定し
ており、従って得られる焼結体は第3図における工乃至
■タイプに相当する。尚、この結果は湿度センサに通じ
る電流の周波数が1kHzの場合であり、例えば焼結温
度が1,000℃の焼結体サンプルにおける感度を周波
数をパラメータとして示すと第7図の如くなる。
The results of an experiment conducted by the inventor of the present invention to confirm the useful effects of the humidity sensor manufactured as described above will be described. Figure 3 shows the response curves of the capacitance of the detection part 1 of the humidity sensor to the relative humidity of the atmosphere (horizontal axis) obtained at different sintering temperatures (secondary firing temperature to obtain a sintered body). The graph shows sintered body samples with different crystal structures. From Figure 3, it can be seen that for sintered bodies I and II with sintering temperatures of 800°C and 900°C, the change in capacitance with respect to relative humidity, that is, the sensitivity as a sensor, becomes especially large in a high humidity atmosphere, and eventually reaches a saturated state. You can see that it is. In addition, the sintering temperature is as high as 1,100°C and 1,200°C, which is essentially α
- On the contrary, the sintered bodies (1) and (2), which are aluminized, have extremely low humidity sensor sensitivity, and in particular, the sintered body (V) hardly responds. Thus, the sintered body (2) whose sintering temperature is i, ooo°C has a substantially linear response curve and exhibits a stable and substantially constant sensitivity over substantially the entire range of relative humidity. From the above results, at least the sintered body V is unsuitable for the detection part of the humidity sensor, and the suitable sintered bodies I, II,
Among H, the amount of change in capacitance as a sensitivity to relative humidity in the range of 11% to 98% is 10° to 10°.
It can be seen that the optimal sintered body is the sintered body (2) which is sufficiently thick and has a substantially constant sensitivity over a three-digit range of 11F.The detection section 1 of the humidity sensor in this embodiment is The sintering temperature was set in the range of 800 to 1,100°C, and the obtained sintered bodies therefore correspond to types 7 to 1 in Fig. 3.This result shows that the frequency of the current passing through the humidity sensor is In the case of 1 kHz, for example, the sensitivity of a sintered body sample at a sintering temperature of 1,000° C., using frequency as a parameter, is shown in FIG.

この場合、雰囲気の温度は室温(約21℃)に設定しで
ある。第7図から、周波数1 kHzの場合が最も感度
が大きいことが分かる。
In this case, the temperature of the atmosphere is set to room temperature (about 21° C.). From FIG. 7, it can be seen that the sensitivity is highest when the frequency is 1 kHz.

又、湿度センサの感度の経時変化について確認した結果
が第4図に示されている。第4図は、上述した5個の焼
結体サンプルの内のサンプル■について、11乃至98
%の相対湿度範囲において適数点を選び、各点において
応答する焼結体サンプル■の静電容量値(縦軸)の経過
日数(横軸)に対する変化を示したものである。この場
合も、周波数を1kHz、雰囲気温度を室温に、夫々設
定しである。これから、各相対湿度において応答する静
電容量値が約140日間に亘って略一定で安定しており
、従って本例の湿度センサの感度の経時変化は相対湿度
が11乃至98%の範囲において極めて小さく安定した
センサであることが分かる。以上の結果から、本例の湿
度センサが感度の大きさ及び感度の安定性において充分
な性能を有していることが確認された。尚、本例の湿度
センサは、感度の大きさ及び安定性において優れている
だけでなく、セラミックスという素材の特性から、機械
的強度が大きく且つ耐熱性が大きくてセンサの表面熱処
理による劣化がないという長所も有している。
Furthermore, the results of confirming changes in the sensitivity of the humidity sensor over time are shown in FIG. Figure 4 shows samples 11 to 98 of the five sintered samples mentioned above.
An appropriate number of points were selected in the range of % relative humidity, and changes in the capacitance value (vertical axis) of sintered body sample (1) responding at each point with respect to the number of days elapsed (horizontal axis) are shown. In this case as well, the frequency is set to 1 kHz and the ambient temperature is set to room temperature. From this, it can be seen that the capacitance value that responds at each relative humidity is approximately constant and stable for about 140 days, and therefore the sensitivity of the humidity sensor of this example changes over time extremely in the relative humidity range of 11 to 98%. It can be seen that it is a small and stable sensor. From the above results, it was confirmed that the humidity sensor of this example had sufficient performance in terms of sensitivity and sensitivity stability. The humidity sensor of this example not only has excellent sensitivity and stability, but also has high mechanical strength and high heat resistance due to the characteristics of the ceramic material, so there is no deterioration due to surface heat treatment of the sensor. It also has the advantage of

次に、本発明の湿度センサの他の幾つかの実施例につい
て説明する。第5図の斜視図は、例えば直方体状に形成
した検知部3を1対のヒータ15が結合された発熱体4
上に固着して成る湿度センサS2を示している。発熱体
4は、酸化ルテニウム、酸化モリブデン又は酸化タング
ステン等で形成すればよい。検知部3には1対の電極3
a、3bが設けられ、これに1対のリード線6a、6b
が夫々結合されている。又、第6図の斜視図には、直方
体状の検知部7の内部に同様に形成された発熱体ヒータ
8を埋設して成る湿度センサs3が示されている。同様
に、1対の電極7a、7bが検知部7に設けられ、これ
に1対のリード線9a。
Next, some other embodiments of the humidity sensor of the present invention will be described. The perspective view of FIG. 5 shows a heating element 4 to which a pair of heaters 15 are connected, for example, a detection part 3 formed in the shape of a rectangular parallelepiped.
A humidity sensor S2 is shown fixedly attached thereto. The heating element 4 may be made of ruthenium oxide, molybdenum oxide, tungsten oxide, or the like. The detection unit 3 includes a pair of electrodes 3
a, 3b are provided, and a pair of lead wires 6a, 6b are provided thereto.
are combined respectively. Further, the perspective view of FIG. 6 shows a humidity sensor s3 in which a similarly formed heating element heater 8 is embedded inside a rectangular parallelepiped-shaped detection section 7. Similarly, a pair of electrodes 7a and 7b are provided on the detection section 7, and a pair of lead wires 9a are connected thereto.

9bが夫々結合されている。この様に夫々発熱体4.8
を設け、これに例えば高周波電流を通じて各検知部3.
7を400乃至600’Cにパルス加熱することにより
、各検知部3,7表面に付着した不純物を除去でき、常
時正確な湿度検出機能を維持できる。
9b are connected to each other. In this way, each heating element is 4.8
are provided, and each detection unit 3.
By pulse heating 7 to 400 to 600'C, impurities adhering to the surfaces of each detection section 3 and 7 can be removed, and accurate humidity detection function can be maintained at all times.

効 果 以上詳述した如く、本発明によれば、選定されたアルミ
ニウム酸化物及びこれらの2種以上の混合物を出発原料
として得られる焼結体を検知部として湿度センサを形成
し、雰囲気湿度に応答して変化する検知部の静電容」の
変化から湿度を検出することにより、静電容量の応答変
化量、即ち感度が大きく、且つその感度の経時変化が全
湿度範囲に亘って小さい高品質の湿度センサを得ること
ができる。又、高温度における無機材料の焼結体という
素材の特性から、機械的強度及び耐熱性に擾れた湿度セ
ンサを得ることができる。尚、本発明は上記の特定の実
施例に限定されるべきものではなく、本発明の技術的範
囲において挿々の変形が可能であることは勿論である。
Effects As detailed above, according to the present invention, a humidity sensor is formed using a sintered body obtained using a selected aluminum oxide or a mixture of two or more thereof as a starting material as a detection part, and the humidity sensor is used to detect atmospheric humidity. By detecting humidity from the change in the capacitance of the detection unit that changes in response, the response change in capacitance, that is, the sensitivity is large, and the change in sensitivity over time is small over the entire humidity range. humidity sensor can be obtained. Further, due to the characteristics of the material of the sintered body of inorganic material at high temperatures, a humidity sensor with excellent mechanical strength and heat resistance can be obtained. It should be noted that the present invention should not be limited to the specific embodiments described above, and it goes without saying that occasional modifications can be made within the technical scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示した斜視図、第2(a)
図乃至第2(d)図は夫々γ−アルミナからα−アルミ
ナに至る各段階における結晶構造を示すX線回折による
各スペクトル図、第3図は検知部の感度を焼結温度別に
示したグラフ図、第4図は感度の経時変化を相対温度別
に示したグラフ図、第5図及び第6図は夫々本発明の他
の幾つかの実施例を示した各斜視図、第7図は感度の周
波数依存性を示したグラフ図である。 (符号の説明) 1、 3. 7: 検知部 1a、 1b、 3a、 3b、 7a、 7b:電極
2θ[度] 第3図 相対湿度 [%〕 第4図 経過日数[8] 第5図
Fig. 1 is a perspective view showing one embodiment of the present invention, Fig. 2(a)
Figures 2(d) and 2(d) are X-ray diffraction spectra showing the crystal structure at each stage from γ-alumina to α-alumina, and Figure 3 is a graph showing the sensitivity of the detection unit at different sintering temperatures. 4 is a graph showing changes in sensitivity over time according to relative temperature, FIGS. 5 and 6 are perspective views showing several other embodiments of the present invention, and FIG. 7 is a graph showing changes in sensitivity over time. FIG. 2 is a graph diagram showing the frequency dependence of . (Explanation of symbols) 1, 3. 7: Detection part 1a, 1b, 3a, 3b, 7a, 7b: Electrode 2θ [degrees] Figure 3 Relative humidity [%] Figure 4 Number of days elapsed [8] Figure 5

Claims (1)

【特許請求の範囲】 1、アンモニウムミョウバン、水酸化アルミニウム、塩
化アルミニウム及び硫酸アルミニウムからなる群より選
ばれた1種の物質若しくは2種以上の混合物から得られ
る焼結体を検知部とし、該検知部にリード線を備えた1
対の電極を設け、雰囲気の湿度変化に応じた静電容量の
変化により湿度を検出することを特徴とする湿度センサ
。 2、上記第1項において、前記検知部を加熱体の上に固
着したことを特徴とする湿度センサ。 3、上記第1項において、前記検知部の内部に加熱体を
埋設したことを特徴とする湿度センサ。 4、アンモニウムミョウバン、水酸化アルミニウム、塩
化アルミニウム及び硫酸アルミニウムからなる群より選
ばれた1種の物質若しくは2種以上の混合物を水に溶解
させた後に塩基性沈澱試薬を添加して水素イオン濃度を
弱塩基とし溶解物を沈澱させる工程と、前記沈澱物を濾
過・洗浄した後粉砕して粉末化する工程と、前記粉末化
された沈澱物を所定温度で加熱脱水する焼成工程と、前
記焼成物を更に高温度で焼成し焼結体とする焼結工程と
を有することを特徴とする湿度センサの製造方法。 5、上記第4項において、前記沈澱試薬はアンモニア水
又は尿素水であることを特徴とする湿度センサの製造方
法。 6、上記第4項において、焼成工程における前記所定温
度は200乃至600℃であることを特徴とする湿度セ
ンサの製造方法。 7、上記第4項において、焼結工程における前記高温度
は800乃至1,100°Cであることを特徴とする湿
度センサの製造方法。
[Claims] 1. A sintered body obtained from one substance or a mixture of two or more substances selected from the group consisting of ammonium alum, aluminum hydroxide, aluminum chloride, and aluminum sulfate is used as the detection part, and the detection 1 with a lead wire in the part
A humidity sensor characterized by having a pair of electrodes and detecting humidity by a change in capacitance according to a change in atmospheric humidity. 2. The humidity sensor according to item 1 above, characterized in that the detection section is fixed on a heating body. 3. The humidity sensor according to item 1 above, characterized in that a heating element is embedded inside the detection section. 4. After dissolving one substance or a mixture of two or more selected from the group consisting of ammonium alum, aluminum hydroxide, aluminum chloride, and aluminum sulfate in water, a basic precipitation reagent is added to adjust the hydrogen ion concentration. a step of precipitating the dissolved material with a weak base; a step of filtering and washing the precipitate and then pulverizing it to powder; a firing step of heating and dehydrating the powdered precipitate at a predetermined temperature; and a step of heating and dehydrating the powdered precipitate at a predetermined temperature; A method for manufacturing a humidity sensor, comprising a sintering step of further firing at a high temperature to form a sintered body. 5. The method for manufacturing a humidity sensor according to item 4 above, wherein the precipitation reagent is ammonia water or urea water. 6. The method for manufacturing a humidity sensor according to item 4 above, wherein the predetermined temperature in the firing step is 200 to 600°C. 7. The method for manufacturing a humidity sensor according to item 4 above, wherein the high temperature in the sintering step is 800 to 1,100°C.
JP59008496A 1984-01-23 1984-01-23 Humidity sensor and preparation thereof Pending JPS60152946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008496A JPS60152946A (en) 1984-01-23 1984-01-23 Humidity sensor and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008496A JPS60152946A (en) 1984-01-23 1984-01-23 Humidity sensor and preparation thereof

Publications (1)

Publication Number Publication Date
JPS60152946A true JPS60152946A (en) 1985-08-12

Family

ID=11694721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008496A Pending JPS60152946A (en) 1984-01-23 1984-01-23 Humidity sensor and preparation thereof

Country Status (1)

Country Link
JP (1) JPS60152946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8739623B2 (en) 2012-03-09 2014-06-03 The University Of Kentucky Research Foundation Moisture sensors on conductive substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8739623B2 (en) 2012-03-09 2014-06-03 The University Of Kentucky Research Foundation Moisture sensors on conductive substrates

Similar Documents

Publication Publication Date Title
US4656455A (en) Humidity-sensing element
JPS6054259B2 (en) Moisture sensitive ceramic
JPS6121717A (en) Separation of oxygen
JPS60152946A (en) Humidity sensor and preparation thereof
JPS5814043B2 (en) humidity sensor element
US20220291160A1 (en) Gas sensor and method for producing alkaline earth ferrite
JP2676469B2 (en) Method for manufacturing NTC thermistor
JPS62223054A (en) Humidity sensor material and manufacture
TWI664146B (en) Dielectric ceramic material, method for manufacturing the same, dielectric composite material and uses thereof
CN109626419B (en) Capacitive humidity-sensitive sensing element material and preparation method thereof
JPS5840801A (en) Humidity sensor element
JP3451309B2 (en) High performance electrostrictive ceramics
JP2677991B2 (en) Moisture sensitive element
JPS63104304A (en) Manufacture of oxide semiconductor for thermistor
JPS628137B2 (en)
KR920009164B1 (en) Making method for resistor materials
CN115436434A (en) Humidity sensor based on external electric field polarization bismuth ferrite and preparation method and application thereof
JPS6030082B2 (en) Manufacturing method of moisture sensing element
JPS6077169A (en) Moisture sensitive material and moisture sensitive element
JPS5910843A (en) Dew condensation sensor
JPS6066144A (en) Production of electrode of element for oxygen concentration detector
JPH05238822A (en) Zirconia electrolyte and its production
JPS628138B2 (en)
JPS628501A (en) Moisture sensor and manufacture thereof
JPH0552793A (en) Humidity sensitive element