TWI664146B - Dielectric ceramic material, method for manufacturing the same, dielectric composite material and uses thereof - Google Patents
Dielectric ceramic material, method for manufacturing the same, dielectric composite material and uses thereof Download PDFInfo
- Publication number
- TWI664146B TWI664146B TW107141292A TW107141292A TWI664146B TW I664146 B TWI664146 B TW I664146B TW 107141292 A TW107141292 A TW 107141292A TW 107141292 A TW107141292 A TW 107141292A TW I664146 B TWI664146 B TW I664146B
- Authority
- TW
- Taiwan
- Prior art keywords
- dielectric
- ceramic material
- dielectric ceramic
- cerium
- nickel
- Prior art date
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
本發明為利用氨水及乙二醇當作溶劑的草酸溶劑法製備氧化鑭鍶鎳陶瓷粉末。藉由不同莫耳混合比例的草酸鎳、硝酸鍶及硝酸鑭金屬前驅物來製備粉末,並與樹脂混合製備成高介電常數的複合材料。由La:Sr:Ni莫耳比為1:3:1所製成的複合材料含有50wt.%的陶瓷粉末,其最高的介電常數為112,且具有最低的阻抗特性。經指紋辨識測試其對比率達31,表示本發明所製備的氧化鑭鍶鎳陶瓷複合材料對指紋辨識具有高的敏感度。The invention provides a cerium oxide nickel ceramic powder prepared by an oxalic acid solvent method using ammonia water and ethylene glycol as a solvent. The powder is prepared by using different molar mixing ratios of nickel oxalate, cerium nitrate and cerium nitrate metal precursor, and is mixed with a resin to prepare a composite having a high dielectric constant. The composite made of La:Sr:Ni molar ratio of 1:3:1 contains 50 wt.% of ceramic powder, and has the highest dielectric constant of 112 and the lowest impedance characteristics. The contrast ratio of the fingerprint identification test reached 31, indicating that the yttrium nickel oxide ceramic composite prepared by the invention has high sensitivity to fingerprint recognition.
Description
本發明關於一種介電陶瓷材料、一種介電陶瓷材料的製造方法、一種介電複合材料及一種介電複合材料的用途。The invention relates to a dielectric ceramic material, a method of fabricating a dielectric ceramic material, a dielectric composite material and a use of a dielectric composite material.
目前市場的指紋辨識感測器,可由兩種類型組成。一種為指紋感測器(Fingerprint Sensor),主要目的是採集一枚完整的指紋影像,可分別電容式(Capacity)與光學式(Optical)兩種。另一種為指紋辨識演算法(Fingerprint Algorithm),當前端的指紋感測器採集指紋影像後,後續交由演算法進行指紋影像處理與指紋特徵點抽取,生成指紋模板後將原始指紋圖像丟棄,最後再進行指紋比對。其中,電容式感測器可稱為半導體晶片式感測器(Semiconductor Sensor),且其具有薄型化與小型化的優點,因此可被大量運用在手持裝置上。At present, the fingerprint identification sensor of the market can be composed of two types. One is a Fingerprint Sensor. The main purpose is to collect a complete fingerprint image, which can be either capacitive or optical. The other is Fingerprint Algorithm. After the fingerprint sensor of the current end collects the fingerprint image, the fingerprint image processing and fingerprint feature point extraction are performed by the algorithm. After the fingerprint template is generated, the original fingerprint image is discarded. Finally, the fingerprint image is discarded. Then perform fingerprint comparison. Among them, the capacitive sensor can be called a semiconductor wafer sensor, and has the advantages of thinning and miniaturization, and thus can be widely used in a handheld device.
由IC的封裝結構來討論,目前應用在手機上的電容式感測器可分為三種:第一種是在晶片上貼一個藍寶石材料,藉由通過藍寶石來增益電容信號,提高感測器的靈敏度;第二種是不將指紋的感測器做到IC裡面,而是做到PCB上;第三種是在基材上噴塗上高介電膠材,然後於其上表面噴塗硬塗層,以防止手指的汗水與酸鹼會對晶片表面的侵蝕以及達到靜電防護的效果。Discussed by the package structure of the IC, the capacitive sensors currently used in mobile phones can be divided into three types: the first is to attach a sapphire material to the wafer, and to increase the capacitance signal by sapphire to improve the sensor. Sensitivity; the second is not to make the fingerprint sensor inside the IC, but to do it on the PCB; the third is to spray the high dielectric glue on the substrate, and then spray the hard coating on the upper surface. In order to prevent the sweat and acid and alkali of the fingers from eroding the surface of the wafer and achieving the effect of static electricity protection.
然而,藍寶石需採用雙面抛片,得耗兩倍產能,且藍寶石基板價格高,以致於藍寶石基板的手機售價高於一般手機。在基材上噴塗上高介電膠材的製程雖然比較容易且低價,但多層的材料堆疊在一起後,造成介電層厚度太厚(50~100μm),反而使指紋成像效果變差。However, sapphire needs to use double-sided throwing, which consumes twice the capacity, and the sapphire substrate is so expensive that the sapphire substrate is sold at a higher price than the average mobile phone. Although the process of spraying the high dielectric adhesive on the substrate is relatively easy and low-cost, the multilayered materials are stacked together, causing the thickness of the dielectric layer to be too thick (50-100 μm), which in turn makes the fingerprint imaging effect worse.
再者,關於高介電膠材,其中所含的氧化鎳基陶瓷介電材料的製備方法大都採用固態反應法(Solid-state Reaction, SSR),固態反應法是將各類的氧化物粉末混合在一起後,在高溫及長時間下製備而成。專利文獻1提出一種Li xSc 0.02Ni 0.98-xO的製造方法,是將Li 2CO 3、Sc 2O 3及NiO加乙醇混合使用球磨24小時之後,於1000 oC煆燒10小時;非專利文獻1提出一種A 5/3Sr 1/3Ni 1-xAl xO 4(A=La, Nd, x=0.2, 0.3)的合成方法,是將SrCO 3、La 2O 3及Al 2O 3以莫耳比為2:1:1加入乙醇及氧化鋯球,利用球磨機研磨24小時,然後在1200 oC煆燒3小時。 Furthermore, regarding the high dielectric adhesive material, the preparation method of the nickel oxide-based ceramic dielectric material is mostly a solid-state reaction (SSR), and the solid state reaction method is to mix various types of oxide powders. After being together, it is prepared at high temperature and for a long time. Patent Document 1 proposes a method for producing Li x Sc 0.02 Ni 0.98-x O by mixing a mixture of Li 2 CO 3 , Sc 2 O 3 and NiO with ethanol for 24 hours, and then calcining at 1000 o C for 10 hours; Patent Document 1 proposes a synthesis method of A 5/3 Sr 1/3 Ni 1-x Al x O 4 (A=La, Nd, x=0.2, 0.3), which is SrCO 3 , La 2 O 3 and Al 2 O 3 in molar ratio of 2: 1: 1 ethanol was added and the zirconia balls using a ball mill for 24 hours and then fired at 1200 o C Xia for 3 hours.
[習知技術文獻] 專利文獻1 美國專利第7616786 B2號 非專利文獻1 Y. Liu, W. Wang, J. Huang, C. Zhu, C. Wang, Y. Cao, J. Mater. Sci.: Mater. Electron, 2014, 25, 1298-1302.[Technical Literature] Patent Document 1 Non-Patent Document 1 of US Patent No. 7616786 B2 Y. Liu, W. Wang, J. Huang, C. Zhu, C. Wang, Y. Cao, J. Mater. Sci.: Mater. Electron, 2014, 25, 1298-1302.
本發明為鑒於上述先前技術所完成者。本發明提供一種介電陶瓷材料的製造方法,有別於傳統的固態反應法,利用草酸溶劑加熱法初步製成氧化鑭鍶鎳,再透過煆燒而得到介電陶瓷材料。The present invention has been accomplished in view of the above prior art. The invention provides a method for manufacturing a dielectric ceramic material, which is different from the traditional solid state reaction method, and initially prepares a cerium oxide nickel by an oxalic acid solvent heating method, and then obtains a dielectric ceramic material by sintering.
在本發明的一實施例中,介電陶瓷材料的製造方法包含:提供含有鑭離子、鍶離子及鎳離子的一氨水溶液;加入乙二醇至該氨水溶液中而得到一混合溶液;加熱該混合溶液而在該混合溶液中生成一沉澱物;乾燥該沉澱物;煆燒該沉澱物而得到該介電陶瓷材料,其中,該介電陶瓷材料為含有鑭、鍶及鎳的氧化物混合物。In an embodiment of the present invention, a method for manufacturing a dielectric ceramic material includes: providing an aqueous ammonia solution containing cerium ions, cerium ions, and nickel ions; adding ethylene glycol to the aqueous ammonia solution to obtain a mixed solution; heating the The solution is mixed to form a precipitate in the mixed solution; the precipitate is dried; and the precipitate is obtained by firing the precipitate, wherein the dielectric ceramic material is an oxide mixture containing cerium, lanthanum and nickel.
較佳地,介電陶瓷材料的製造方法進一步包含:在加熱該混合溶液時,乙二醇被氧化並生成乙醯氧乙酸,且乙醯氧乙酸與鑭離子及鍶離子形成金屬錯合物。Preferably, the method of manufacturing a dielectric ceramic material further comprises: when heating the mixed solution, the ethylene glycol is oxidized to form acetoxyacetic acid, and the acetoxyacetic acid forms a metal complex with the cerium ions and the cerium ions.
較佳地,鑭離子的來源為硝酸鑭;鍶離子的來源為硝酸鍶;以及鎳離子的來源為草酸鎳。Preferably, the source of cerium ions is cerium nitrate; the source of cerium ions is cerium nitrate; and the source of nickel ions is nickel oxalate.
較佳地,在該混合溶液中以莫耳比計算,鑭離子、鍶離子及鎳離子的比例為La:Sr:Ni=1~5:1~5:1~3。Preferably, the ratio of cerium ions, cerium ions and nickel ions in the mixed solution is La:Sr:Ni=1 to 5:1 to 5:1 to 3.
較佳地,加熱該混合溶液的方式為迴流法,且加熱溫度為120 oC~180 oC。 Preferably, the mixture solution was heated to reflux way, and the heating temperature is 120 o C ~ 180 o C.
較佳地,加熱該混合溶液的反應時間為1~7小時。Preferably, the reaction time for heating the mixed solution is from 1 to 7 hours.
較佳地,煆燒的溫度為650 oC~1300 oC。 Preferably, the temperature of the calcination is from 650 o C to 1300 o C.
本發明提供一種介電陶瓷材料,為氧化鑭鍶鎳的陶瓷介電材料。The invention provides a dielectric ceramic material which is a ceramic dielectric material of yttrium nickel oxide.
在本發明的另一實施例中,介電陶瓷材料為透過上述方法得到,並且包含:正方晶系的Sr 0.5La 1.5NiO 4、六方晶系的NiO及六方晶系的LaNiO 3。 In another embodiment of the present invention, the dielectric ceramic material is obtained by the above method, and includes: tetragonal Sr 0.5 La 1.5 NiO 4 , hexagonal NiO, and hexagonal LaNiO 3 .
本發明又提供一種介電複合材料,在本發明的又一實施例中,介電複合材料包含:樹脂及上述的介電陶瓷材料。The invention further provides a dielectric composite material. In still another embodiment of the invention, the dielectric composite material comprises: a resin and the dielectric ceramic material described above.
本發明再提供一種介電複合材料的用途,在本發明的又一實施例中,為將上述的介電複合材料應用在指紋辨識的用途。The invention further provides the use of a dielectric composite material, in another embodiment of the invention, the use of the above dielectric composite material for fingerprint identification.
根據本發明的介電陶瓷材料的製造方法,由於透過草酸溶劑加熱法可降低反應溫度、縮短反應時間,因此可以大幅地縮短製程時間並提高生產效率。所得到的介電陶瓷材料中可同時具有正方晶系的Sr 0.5La 1.5NiO 4、六方晶系的NiO及六方晶系的LaNiO 3三種氧化物。此外,混合介電陶瓷材料及樹脂而製成的介電複合材料由於具有高介電常數及低阻抗,因此將其噴塗在基材上來製作指紋感測器時,可在不增加接觸面積及介電層厚度時仍保有良好的指紋成像效果。 According to the method for producing a dielectric ceramic material of the present invention, since the reaction temperature is lowered and the reaction time is shortened by the oxalic acid solvent heating method, the process time can be greatly shortened and the production efficiency can be improved. The obtained dielectric ceramic material may have both a tetragonal Sr 0.5 La 1.5 NiO 4 , a hexagonal NiO, and a hexagonal LaNiO 3 oxide. In addition, since the dielectric composite material prepared by mixing a dielectric ceramic material and a resin has a high dielectric constant and a low impedance, when a fingerprint sensor is sprayed on a substrate, the contact area can be increased without intervening. Good fingerprint imaging is still maintained when the thickness of the electric layer is maintained.
本發明的介電陶瓷材料的製造方法,包含:提供含有鑭離子、鍶離子及鎳離子的氨水溶液;加入乙二醇至氨水溶液中而得到混合溶液;加熱混合溶液而在混合溶液中生成沉澱物;乾燥該沉澱物;以及煆燒該沉澱物而得到介電陶瓷材料。其中,介電陶瓷材料為含有鑭、鍶及鎳的氧化物混合物。The method for producing a dielectric ceramic material of the present invention comprises: providing an aqueous ammonia solution containing cerium ions, cerium ions, and nickel ions; adding ethylene glycol to an aqueous ammonia solution to obtain a mixed solution; heating the mixed solution to form a precipitate in the mixed solution Drying the precipitate; and calcining the precipitate to obtain a dielectric ceramic material. Among them, the dielectric ceramic material is an oxide mixture containing cerium, lanthanum and nickel.
氨水溶液的配置方式舉例但不限於:可將草酸鎳溶於氨水中並加去離子水至預定濃度,將含有鑭的鹽類及含有鍶的鹽類分別溶於去離子水,然後將所述三種溶液混合在一起而得到含有鑭離子、鍶離子及鎳離子的氨水溶液。The configuration of the aqueous ammonia solution is exemplified by, but not limited to, dissolving nickel oxalate in aqueous ammonia and adding deionized water to a predetermined concentration, and dissolving the salt containing cerium and the salt containing cerium in deionized water, respectively, and then The three solutions are mixed together to obtain an aqueous ammonia solution containing cerium ions, cerium ions, and nickel ions.
作為反應的金屬前驅物,鎳離子的來源可為草酸鎳(Nickel Oxalate,NiC 2O 4)。草酸鎳基本上不溶於水,但可溶於氨水中生成鎳的金屬錯離子(Ni(NH 3) 2+)及草酸根離子(C 2O 4 2–),如式(1)所示。鑭離子的來源只要是可溶於水而產生鑭離子(La 3+)的鹽類,則沒有任何的限制,但較佳鑭離子的來源可為硝酸鑭(Lanthanum Nitrate,La(NO 3) 3);硝酸鑭溶於水中的溶解式如式(2)所示。鍶離子的來源只要是可溶於水而產生鍶離子(Sr 2+)的鹽類,則沒有任何的限制,但較佳鑭離子來源可為硝酸鍶(Strontium Nitrate,Sr(NO 3) 2);硝酸鍶溶於水中的溶解式如式(3)所示。 NiC2O4·2H2O + NH4OH → Ni(NH3)2+ + C2O42– + 2H2O (1) La(NO3)3·6H2O + H2O → La3+ + 3NO3‒ + 7H2O (2) Sr(NO3)2 + H2O → Sr2+ + 2NO3‒ + H2O (3) As a metal precursor of the reaction, the source of nickel ions may be Nickel Oxalate (NiC 2 O 4 ). Nickel oxalate is substantially insoluble in water, but is soluble in aqueous ammonia to form nickel metal ions (Ni(NH 3 ) 2+ ) and oxalate ions (C 2 O 4 2– ) as shown in formula (1). The source of cerium ions is not limited as long as it is soluble in water to produce cerium ions (La 3+ ), but it is preferred that the source of cerium ions be lanthanum nitrate (Lanthanum Nitrate, La(NO 3 ) 3 ); the dissolution formula of cerium nitrate dissolved in water is as shown in formula (2). The source of the cerium ion is not limited as long as it is a salt soluble in water to generate strontium ions (Sr 2+ ), but it is preferable that the cerium ion source is strontium nitrate (Sr(N 3 ) 2 ). The dissolution formula of cerium nitrate dissolved in water is as shown in formula (3). NiC2O4·2H2O + NH4OH → Ni(NH3)2+ + C2O42– + 2H2O (1) La(NO3)3·6H2O + H2O → La3+ + 3NO3‒ + 7H2O (2) Sr(NO3)2 + H2O → Sr2+ + 2NO3 ‒ + H2O (3)
在混合溶液中以莫耳比計算,金屬前驅物(鑭離子、鍶離子及鎳離子)的比例可為La:Sr:Ni=1~5:1~5:1~3。The ratio of the metal precursor (cerium ion, cerium ion, and nickel ion) in the mixed solution may be La:Sr:Ni = 1 to 5:1 to 5:1 to 3.
接著,將乙二醇加入含有鑭離子、鍶離子及鎳離子的氨水溶液而得到混合溶液,加熱此混合溶液使其反應產生沉澱物。加熱時間可為1~7小時。Next, ethylene glycol is added to an aqueous ammonia solution containing cerium ions, cerium ions, and nickel ions to obtain a mixed solution, and the mixed solution is heated to cause a precipitate to be produced. The heating time can be from 1 to 7 hours.
加熱的方式舉例但不限於將迴流管架設於裝有混合溶液的反應器的開口,使揮發的乙二醇迴流。加熱的溫度可為120 oC~180 oC。當溫度到達120 oC後,乙二醇(CH 2OHCH 2OH)會部分被氧化產生乙醛(CH 3CHO),如式(4)所示。而乙醛還會繼續被氧化,最後形成乙醯氧乙酸(CH 3COOCH 2COOH),如式(5)至式(8)所示。所生成的乙醯氧乙酸會與金屬離子產生錯合物,並且在具有氧氣的環境下沉澱生成含有鑭、鍶及鎳的沉澱物。收集上述反應所生成的沉澱物,用去離子水沖洗沉澱物以洗去乙二醇,然後置於烘箱中烘乾(例如,60 oC)。接著將烘乾的沉澱物用650 oC的高溫爐煆燒,進而可得到介電陶瓷材料,該介電陶瓷材料為粉末狀且主要可包含Sr 0.5La 1.5NiO 4、La(OH) 3、NiO,如式(9)所示。此外,當La(OH) 3、NiO並存時,煆燒溫度在650 oC~1300 oC下還可進一步形成LaNiO 3,如式(10)所式。較佳地,當煆燒溫度為1000 oC~1300 oC時,可形成較多含量的的LaNiO 3,更佳地,當煆燒溫度為1200 oC時,可形成最多含量的LaNiO 3。所得到的產物當中,Sr 0.5La 1.5NiO 4較佳可為正方晶系;NiO及LaNiO 3可為六方晶系。 The manner of heating is exemplified by, but not limited to, erecting a reflux tube to the opening of the reactor containing the mixed solution to reflux the volatilized ethylene glycol. The heating temperature can be from 120 o C to 180 o C. When the temperature reaches 120 o C, ethylene glycol (CH 2 OHCH 2 OH) is partially oxidized to produce acetaldehyde (CH 3 CHO) as shown in formula (4). The acetaldehyde will continue to be oxidized and finally form acetoxyacetic acid (CH 3 COOCH 2 COOH) as shown in the formulas (5) to (8). The produced acetoxyacetic acid forms a complex with metal ions and precipitates in the presence of oxygen to form precipitates containing cerium, lanthanum and nickel. The precipitate formed by the above reaction was collected, and the precipitate was washed with deionized water to wash away the ethylene glycol, and then dried in an oven (for example, 60 o C). The dried precipitate is then calcined with a 650 o C high temperature furnace to obtain a dielectric ceramic material which is powdery and mainly contains Sr 0.5 La 1.5 NiO 4 , La(OH) 3 , NiO is as shown in formula (9). In addition, when La(OH) 3 and NiO coexist, LaNiO 3 can be further formed at a calcining temperature of 650 o C to 1300 o C, as in the formula (10). Preferably, when the calcination temperature is from 1000 o C to 1300 o C, a larger amount of LaNiO 3 can be formed, and more preferably, when the calcination temperature is 1200 o C, the most content of LaNiO 3 can be formed. Among the obtained products, Sr 0.5 La 1.5 NiO 4 may preferably be a tetragonal system; NiO and LaNiO 3 may be a hexagonal system.
2CH2OHCH2OH + O2 → 2CH3CHO + 2H2O (4) 2CH3CHO + O2 → CH3COOH + 2H2O (5) CH3COOH + CH2OHCH2OH→ CH3COOCH2CH2OH + H2O (6) CH3COOCH2CH2OH+ O2 →CH3COOCH2CH2O+H2O (7) CH3COOCH2CH2O + O2 →CH3COOCH2COOH+ 2H2O (8) Ni(NH3)2++ La3+ + Sr2+ + CH3COOCH2COOH + O2 → Sr0.5La1.5NiO4 +La(OH)3+NiO (9) Sr0.5La1.5NiO4 + La(OH)3+ NiO → Sr0.5La1.5NiO4 + LaNiO3 + NiO (10) 2CH2OHCH2OH + O2 → 2CH3CHO + 2H2O (4) 2CH3CHO + O2 → CH3COOH + 2H2O (5) CH3COOH + CH2OHCH2OH→ CH3COOCH2CH2OH + H2O (6) CH3COOCH2CH2OH+ O2 →CH3COOCH2CH2O+H2O (7) CH3COOCH2CH2O + O2 →CH3COOCH2COOH+ 2H2O (8) Ni ( NH3)2++ La3+ + Sr2+ + CH3COOCH2COOH + O2 → Sr0.5La1.5NiO4 +La(OH)3+NiO (9) Sr0.5La1.5NiO4 + La(OH)3+ NiO → Sr0.5La1.5NiO4 + LaNiO3 + NiO (10)
上述介電陶瓷材料可再與樹脂混合製成介電複合材料(複合介電膠材),可用於塗佈在指紋辨感測晶片,以提高電容式指紋辨識靈敏度。The above dielectric ceramic material can be further mixed with a resin to form a dielectric composite material (composite dielectric adhesive material), which can be used for coating on a fingerprint sensing wafer to improve capacitive fingerprint identification sensitivity.
(實施例)(Example)
以下將透過實施例的方式來說明本發明的介電陶瓷材料(粉末)的製造方法,並且將介電陶瓷材料進一步製備成介電複合膠材,並且將介電複合膠材應用在指紋辨識的結果。然而,所述實施例僅為用以解釋本發明的精神,並非企圖據以對本發明做任何形式上的限制,是以,凡有在相同發明精神下所作有關本發明的任何修飾或變更,皆仍應包含在本發明意圖保護之範疇。Hereinafter, the method for manufacturing the dielectric ceramic material (powder) of the present invention will be described by way of examples, and the dielectric ceramic material is further prepared into a dielectric composite adhesive material, and the dielectric composite adhesive material is applied to fingerprint identification. result. However, the embodiments are only intended to explain the spirit of the invention, and are not intended to limit the invention in any way, so that any modifications or changes relating to the invention in the spirit of the same invention are It should still be included in the scope of the invention as intended.
[實施例1][Example 1]
--介電陶瓷材料(粉末)的製備----Preparation of dielectric ceramic materials (powder) --
首先,將0.01mole草酸鎳溶於10ml氨水(NH 4OH)中,並加去離子水至100ml定量瓶而製備0.1M草酸鎳溶液,接著將其與0.1M硝酸鑭溶液100ml及0.1M硝酸鍶溶液100ml混合於錐形瓶中後再加入100ml乙二醇,以得到La:Sr:Ni=1:1:1的混合溶液。先於加熱攪拌器上攪拌並加熱至180 oC後,再架設迴流管於錐形瓶口使揮發的乙二醇迴流得以持續反應而產生沉澱物,持續迴流6小時。最後將沈澱物以去離子水多次洗去乙二醇後,置於烘箱中以60 oC烘乾,然後置1200 oC的高溫爐中煆燒1小時,於是可得到含有鑭、鍶及鎳的氧化物的介電陶瓷材料(粉末)。將所述的介電陶瓷材料進行X射線繞射(XRD)鑑定。其中,草酸鎳、硝酸鑭及硝酸鍶(金屬前驅物)的使用量,以莫耳比的方式呈現在表2中。 First, 0.01 mole of nickel oxalate was dissolved in 10 ml of aqueous ammonia (NH 4 OH), and deionized water was added to a 100 ml quantitative flask to prepare a 0.1 M nickel oxalate solution, followed by 100 ml of a 0.1 M cerium nitrate solution and 0.1 M cerium nitrate. 100 ml of the solution was mixed in an Erlenmeyer flask, and then 100 ml of ethylene glycol was added to obtain a mixed solution of La:Sr:Ni=1:1:1. After stirring on a hot stirrer before and heated to 180 o C, and then set up a reflux tube to the tapered bottle volatiles ethylene glycol at reflux the reaction is continued to produce a precipitate, continued to reflux for 6 hours. Finally, the precipitate is washed away with ethylene glycol several times with deionized water, then dried in an oven at 60 o C, and then simmered in a high temperature furnace at 1200 o C for 1 hour, so that it can be obtained. A dielectric ceramic material (powder) of nickel oxide. The dielectric ceramic material was identified by X-ray diffraction (XRD). Among them, the amounts of use of nickel oxalate, cerium nitrate and cerium nitrate (metal precursor) are shown in Table 2 in the form of molar ratio.
--介電複合膠材的製備----Preparation of Dielectric Composite Adhesive --
將介電陶瓷材料與力勤實業的RG-9823及SK-7521的樹脂、以及湖北新景新材料的UVR-6110環氧樹脂以1:1(介電陶瓷材料為50wt.%)的比例混合。另以相對於樹脂重量的方式,額外加入如表1所示的添加劑,其目的在於使介電陶瓷材料的粉末能均勻分散在樹脂中並且所得到的複合膠材能夠有良好的操作性塗佈性。將介電陶瓷材料均勻混和在樹脂中之後,可得到介電複合膠材。The dielectric ceramic material is mixed with Liqin Industrial's RG-9823 and SK-7521 resin, and Hubei Xinjing New Material's UVR-6110 epoxy resin in a ratio of 1:1 (dielectric ceramic material is 50wt.%). . Further, an additive as shown in Table 1 is additionally added in a manner relative to the weight of the resin, the purpose of which is to uniformly disperse the powder of the dielectric ceramic material in the resin and to obtain a good workability coating of the obtained composite rubber. Sex. After the dielectric ceramic material is uniformly mixed in the resin, a dielectric composite rubber material can be obtained.
[表1] 材料 名稱 添加比例 (wt.%) 固化劑 BI-7963 30.0 平坦劑 DC-56AD 0.3 分散劑 Triton X-45 2.0 防沉劑 4200-10 2.0 金屬密合劑 C-515.71HR 2.0 流平劑 Levaslip 407 1.0 [Table 1] Material Name Addition Ratio (wt.%) Curing Agent BI-7963 30.0 Flat Agent DC-56AD 0.3 Dispersant Triton X-45 2.0 Anti-settling Agent 4200-10 2.0 Metal Adhesive C-515.71HR 2.0 Leveling Agent Levaslip 407 1.0
--介電試片的製備----Preparation of dielectric test strips --
如圖1所示,在玻璃片上以網版印刷塗佈一層100μm的銀膠,經150 oC熱固化30分鐘形成銀電極,當作下電極。將介電複合膠材以網版印刷法塗佈在下電極上,經150 oC熱固化30分鐘後形成介電層。最後在介電層上以網版印刷塗佈6mm×6mm的銀膠經150 oC固化30分鐘再形成銀電極,當作上電極,形成平板結構,以供後續量測介電性質。 , On the glass sheet by screen printing 100μm coated with a layer of silver paste shown in FIG. 1, 150 o C by heat cured for 30 minutes to form a silver electrode as the lower electrode. The dielectric lamination adhesive material applied to a screen printing method on the lower electrode by 150 o C heat-cured to form a dielectric layer 30 min. Finally, on the cured dielectric layer by screen printing of silver coated plastic 6mm × 6mm through 150 o C 30 minutes to form a silver electrode as the upper electrode, a flat plate structure, for use in subsequent measuring dielectric properties.
[實施例2][Embodiment 2]
以與實施1相同的方式製備含有鑭、鍶及鎳的氧化物的介電陶瓷材料及介電複合膠材,唯差異在於氨水用量由10ml改為20ml,且金屬前驅物的使用量莫耳比呈現在表2中。A dielectric ceramic material and a dielectric composite rubber containing an oxide of cerium, lanthanum and nickel were prepared in the same manner as in the first embodiment except that the amount of ammonia water was changed from 10 ml to 20 ml, and the amount of metal precursor used was molar ratio. Presented in Table 2.
[表2] 編號 金屬前驅物的莫耳比 NH4OH體積 (ml) La Sr Ni 實施例1 1 1 1 10 實施例2 20 [Table 2] No. Metal precursor Mohr ratio NH4OH volume (ml) La Sr Ni Example 1 1 1 1 10 Example 2 20
[實施例3~7][Examples 3 to 7]
以與實施1相同的方式製備含有鑭、鍶及鎳的氧化物的介電陶瓷材料及介電複合膠材,唯差異在於加熱迴流以進行合成反應時間不同,其合成反應時間呈現在表3中。A dielectric ceramic material and a dielectric composite rubber containing oxides of cerium, lanthanum and nickel were prepared in the same manner as in the first embodiment except that the reaction time was different by heating and refluxing, and the synthesis reaction time was shown in Table 3. .
[表3] 編號 合成反應時間 (hr) 實施例1 6 實施例3 1 實施例4 2 實施例5 3 實施例6 4 實施例7 5 實施例8 7 [table 3] No. Synthesis reaction time (hr) Example 1 6 Example 3 1 Example 4 2 Example 5 3 Example 6 4 Example 7 5 Example 8 7
[實施例8~9][Examples 8 to 9]
以與實施1相同的方式製備含有鑭、鍶及鎳的氧化物的介電陶瓷材料及介電複合膠材,唯差異在於煆燒溫度不同,其煆燒溫度呈現在表4中。A dielectric ceramic material and a dielectric composite rubber containing an oxide of cerium, lanthanum and nickel were prepared in the same manner as in the first embodiment except that the sinter temperature was different, and the sinter temperature was shown in Table 4.
[表4] 編號 煆燒溫度 (oC) 實施例1 1200 實施例8 1000 實施例9 1300 [Table 4] No. Ignition temperature (oC) Example 1 1200 Example 8 1000 Example 9 1300
[實施例10~18][Examples 10 to 18]
以與實施1相同的方式製備含有鑭、鍶及鎳的氧化物的介電陶瓷材料及介電複合膠材,唯差異在於金屬前驅物的莫耳比不同,其莫耳比呈現在表5中。A dielectric ceramic material and a dielectric composite rubber containing an oxide of cerium, lanthanum and nickel were prepared in the same manner as in the first embodiment except that the molar ratio of the metal precursor was different, and the molar ratio was shown in Table 5. .
[表5] 編號 金屬前驅物的莫耳比 NH4OH體積 (ml) La Sr Ni 實施例1 1 1 1 10 實施例2 20 實施例10 2 1 1 10 實施例11 3 實施例12 4 實施例13 5 實施例14 1 3 1 10 實施例15 4 實施例16 5 實施例17 1 3 2 10 實施例18 3 [table 5] Mole Ratio NH4OH Volume of Numbered Metal Precursor (ml) La Sr Ni Example 1 1 1 1 10 Example 2 20 Example 10 2 1 1 10 Example 11 3 Example 12 4 Example 13 5 Example 14 1 3 1 10 Embodiment 15 4 Embodiment 16 5 Embodiment 17 1 3 2 10 Embodiment 18 3
[實施例19][Embodiment 19]
--指紋辨識量測----Fingerprint Identification Measurement --
將實施例14中所取得的介電複合膠材(介電陶瓷材料占50wt.%),利用塗佈棒塗佈於電容式指紋辨感測晶片(力傳揚股份有限公司產品),如圖2所示。經150 oC熱固化30分鐘後,擷取指紋訊號後至驗證系統分析。其驗證系統感測器為以氮化矽晶片為主體並使用32位元Cortex M4 MCU之驗證系統做成像分析,將手指觸摸晶片觀察有無明顯之對比影像。成像成功後則繼續進行指紋的輸入及辨識。 The dielectric composite adhesive material (dielectric ceramic material accounted for 50 wt.%) obtained in Example 14 was coated on a capacitive fingerprint sensing chip (product of force transmission company) by using a coating bar, as shown in FIG. 2 . Shown. After heat curing at 150 o C for 30 minutes, the fingerprint signal is taken and the system is analyzed. The verification system sensor is an imaging system mainly based on a tantalum nitride wafer and using a 32-bit Cortex M4 MCU verification system, and the finger is touched on the wafer to observe whether there is a clear contrast image. After the imaging is successful, the fingerprint input and recognition are continued.
[實施例20~22][Examples 20 to 22]
以與實施19相同的方式指紋辨識量測,唯差異在於介電複合膠材中的介電陶瓷材料占整體的重量比例不同,其比例呈現在表6中。The fingerprint identification measurement was performed in the same manner as in the embodiment 19 except that the dielectric ceramic material in the dielectric composite material occupies a different weight ratio as a whole, and the ratio thereof is shown in Table 6.
[表6] 編號 介電陶瓷材料 (wt.%) 實施例19 50 實施例20 0 實施例21 30 實施例22 70 [Table 6] Number Dielectric Ceramic Material (wt.%) Example 19 50 Example 20 0 Example 21 30 Example 22 70
(實驗結果)(experimental results)
[乙二醇的氧化][Oxidation of ethylene glycol]
當合成反應溫度達120 oC時,取出部分反應溶液進行氣相層析質譜(GC-Mass)分析。由圖3a的分析圖譜可知,當分析時間為2.9分鐘時會產生乙醛峰值,表示溶劑乙二醇部分被氧化產生乙醛。在分析為9.76分鐘時會產生乙二醇峰值,表示部分乙二醇未被氧化。另在圖3b的電子離子質量分析圖譜,比對資料庫後其結果與乙醛主要訊號44、29,乙酸主要訊號60、45、43相符合。因此可證明乙醛的產生。 When the synthesis reaction temperature of 120 o C, the reaction solution was partially removed by gas chromatography mass spectrometry (GC-Mass) analysis. From the analysis chart of Fig. 3a, it is known that an acetaldehyde peak is generated when the analysis time is 2.9 minutes, indicating that the solvent ethylene glycol moiety is oxidized to produce acetaldehyde. A glycol peak was produced at 9.76 minutes of analysis, indicating that some of the ethylene glycol was not oxidized. In addition, in the electron ion mass spectrometry map of Fig. 3b, the results are compared with the main signals of acetaldehyde 44, 29 and the main signals of acetic acid 60, 45, 43 after comparison with the database. Therefore, the production of acetaldehyde can be confirmed.
[介電陶瓷材料的組成][Composition of dielectric ceramic materials]
將迴流反應所得到的沉澱物烘乾並加熱至650 oC持續1小時後,經由圖4的XRD圖譜證實:經草酸溶劑法合成獲得的沉澱物經650 oC加熱1小時可以獲得正方晶系(Tetragonal)結構的Sr 0.5La 1.5NiO 4(JCPDS 32-1241)、六方晶系(Hexagonal)La(OH) 3(JCPDS 36-1481)及六方晶系(Hexagonal)NiO(JCPDS 44-1159)。六方晶系(Hexagonal)的LaNiO 3結構僅少量出現在介電陶瓷材料中,因此XRD的訊號不明顯。 The reaction was refluxed resulting precipitate was dried and heated to 650 o C after 1 hour, XRD pattern of Figure 4 via confirmed: by oxalic acid, the solvent was synthesized by heating the precipitate to obtain 650 o C 1 hour to obtain a tetragonal (Tetragonal) structure of Sr 0.5 La 1.5 NiO 4 (JCPDS 32-1241), Hexagonal La(OH) 3 (JCPDS 36-1481) and Hexagonal NiO (JCPDS 44-1159). The LaNiO 3 structure of the Hexagonal system is only present in a small amount in the dielectric ceramic material, so the XRD signal is not obvious.
[不同氨水濃度對於介電複合膠材的介電常數的影響][Effects of different ammonia concentrations on the dielectric constant of dielectric composites]
草酸鎳可以溶於氨水中,因此,探討將草酸鎳分別溶於氨水10ml及20ml中對於介電複合膠材的介電常數的影響。透過實施例1、2所得到的實驗結果如圖5所示,由氨水10ml製備出粉末、並進一步調製成的介電複合膠材其介電常數高於氨水為20ml的結果,且如圖6所示,氨水為10ml的結果表現較低的阻抗。將兩者製成的粉末經1200 oC煆燒1小時後,所獲得的XRD圖譜的結果如圖7所示,觀察到兩組實驗得到的粉末皆由Sr 0.5La 1.5NiO 4、NiO及Hexagonal的LaNiO 3(JCPDS 33-0711)組成。其中,由氨水10ml製成的粉末含有較完整的LaNiO 3的結構,可能是此結果使得其介電複合膠材具有較高的介電常數及較低的電阻。 Nickel oxalate can be dissolved in ammonia water. Therefore, the effect of dissolving nickel oxalate in 10 ml and 20 ml of ammonia solution on the dielectric constant of dielectric composite rubber is discussed. The experimental results obtained in Examples 1 and 2 are shown in Fig. 5. The dielectric composite material prepared by powdering 10 ml of ammonia water and further prepared has a dielectric constant higher than that of ammonia water of 20 ml, and as shown in Fig. 6 As shown, the ammonia water of 10 ml results in a lower impedance. After the powder made by both calcination 1200 o C for 1 hour and the results of XRD pattern of the obtained 7, two sets of experiments were observed resulting powder rests Sr 0.5 La 1.5 NiO 4, NiO and Hexagonal The composition of LaNiO 3 (JCPDS 33-0711). Among them, the powder made of 10 ml of ammonia water contains a relatively complete structure of LaNiO 3 , which may be due to the fact that the dielectric composite rubber material has a high dielectric constant and a low electrical resistance.
[不同合成反應時間對於介電複合膠材的介電常數的影響][Effect of Different Synthesis Reaction Time on Dielectric Constant of Dielectric Composite Adhesives]
由於氨水10ml製成的粉末再用於製成介電複合膠材可具有高介電常數,因此,將草酸鎳固定溶於10ml氨水中,透過實施例1、實施例3~8來探討合成反應時間對於介電複合膠材的介電常數的影響。將不同合成反應時間而得的粉末與樹脂製成介電複合膠材後,其介電常數的結果如圖8所示。當介電複合膠材中的粉末合成反應時間從1小時增加至6小時,介電複合膠材的介電常數隨著增加,且當合成反應時間為6小時的條件下有最高的介電常數。然而,當反應時間增加為7小時,其介電複合膠材的介電常數卻降低下來。此結果與粉體的結構形態有關。將不同反應時間所製成的粉末經1200 oC煆燒1小時後,其XRD的結果如圖9所示。粉體的結構隨著不同合成反應時間有些不同,當合成反應時間1到2小時時,粉體的結構雖同時產生Sr 0.5La 1.5NiO 4、NiO及的LaNiO 3結構。然而Sr 0.5La 1.5NiO 4的(103)及(110)峰值未出現。隨著合成反應時間增加3至6小時,此兩個峰值皆出現在Sr 0.5La 1.5NiO 4結構裡,同時LaNiO 3的(101)峰也出現在結構裡。因此,粉末的合成反應時間為6小時的介電複合膠材有最大介電常數。然而,當粉末的合成反應時間為7小時,LaNiO 3的(101)、(103)、(110)及(220)峰會減少,此時粉末的主要成份為Sr 0.5La 1.5NiO 4及NiO結構,導致其介電複合膠材的介電常數降低。從以上結果可知,當粉末的合成反應時間控制在6小時,可以獲得最佳的結果。 Since the powder made of 10 ml of ammonia water can be used to form a dielectric composite rubber material and has a high dielectric constant, nickel oxalate is fixedly dissolved in 10 ml of ammonia water, and the synthesis reaction is investigated by Example 1, Examples 3 to 8. The effect of time on the dielectric constant of the dielectric composite. The results of the dielectric constant of the powder and the resin obtained by different synthesis reaction times were as shown in FIG. When the powder synthesis reaction time in the dielectric composite adhesive material is increased from 1 hour to 6 hours, the dielectric constant of the dielectric composite rubber material increases, and the highest dielectric constant is obtained when the synthesis reaction time is 6 hours. . However, when the reaction time was increased to 7 hours, the dielectric constant of the dielectric composite rubber was lowered. This result is related to the structural form of the powder. After the powder is made different reaction times by burning Xia 1200 o C for 1 hour and its XRD results shown in Figure 9. The structure of the powder differs somewhat with different synthesis reaction times. When the synthesis reaction time is 1 to 2 hours, the structure of the powder simultaneously produces Sr 0.5 La 1.5 NiO 4 , NiO and LaNiO 3 structures. However, the (103) and (110) peaks of Sr 0.5 La 1.5 NiO 4 did not appear. As the synthesis reaction time increases by 3 to 6 hours, both peaks appear in the Sr 0.5 La 1.5 NiO 4 structure, and the (101) peak of LaNiO 3 also appears in the structure. Therefore, the dielectric composite adhesive having a powder synthesis reaction time of 6 hours has a maximum dielectric constant. However, when the synthesis reaction time of the powder is 7 hours, the peaks of (101), (103), (110) and (220) of LaNiO 3 are reduced, and the main components of the powder are Sr 0.5 La 1.5 NiO 4 and NiO structure. This results in a decrease in the dielectric constant of the dielectric composite. From the above results, it was found that the best results were obtained when the synthesis reaction time of the powder was controlled to 6 hours.
[不同煆燒溫度對於介電複合膠材的介電常數的影響][Effects of different calcination temperatures on the dielectric constant of dielectric composites]
根據實施例1及實施例8~9,將金屬前驅物的莫耳比為La:Sr:Ni=1:1:1來製備的粉末經過不同煆燒溫度處理後,粉體顆粒尺寸隨著煆燒溫度上升而增加,如圖10a~圖10c依序顯示的1000 oC、1200 oC及1300 oC煆燒溫度的掃描式電子顯微鏡(SEM)影像。不同煆燒溫度與介電複合膠材的介電常數的關係如圖11所示。當粉末經煆燒溫度為1200 oC處理1小時後,其介電複合膠材有最高的介電常數值。粉末經1000 oC及1300 oC煆燒後其介電複合膠材都有較低的介電常數。另從圖12的XRD的結果發現,粉末經1000 oC及1300 oC煆燒後,LaNiO 3結構僅少量出現在粉末中,XRD的訊號不明顯,結果使得所製成的介電複合膠材有較低的介電常數。 According to the embodiment 1 and the examples 8 to 9, the powder prepared by the molar ratio of the metal precursor to La:Sr:Ni=1:1:1 is subjected to different calcination temperatures, and the powder particle size is the same as that of the crucible. As the temperature of the firing increases, a scanning electron microscope (SEM) image of 1000 o C, 1200 o C, and 1300 o C calcination temperature is sequentially shown in FIGS. 10a to 10c. The relationship between the different calcination temperatures and the dielectric constant of the dielectric composite adhesive is shown in FIG. When the calcination temperature of the powder was 1200 o C for 1 hour, the dielectric lamination adhesive sheet has the highest dielectric constant. The dielectric composite adhesive has a low dielectric constant after the powder is sintered at 1000 o C and 1300 o C. From the results of XRD in Fig. 12, it was found that after the powder was calcined at 1000 o C and 1300 o C, the LaNiO 3 structure appeared only in a small amount in the powder, and the XRD signal was not obvious, resulting in the resulting dielectric composite adhesive. There is a lower dielectric constant.
[不同比例的鑭前驅物對於介電複合膠材的介電常數的影響][Effects of different proportions of ruthenium precursors on the dielectric constant of dielectric composites]
根據實施例1以及實施例10~13,將Sr:Ni=1:1固定比例後分別添加不同莫耳比例的鑭前驅物,其粉末所製備的介電複合膠材的介電常數如圖13所示,當鑭前驅物的混合比例為1,所製得的粉末的介電複合膠材的介電常數有最大值。根據圖15的XRD圖譜,鑭前驅物的混合比例為1的粉末含有NiO結構,適當的NiO含量有助於介電常數的提高。然而,當鑭前驅物的混合比例增加為2時,其介電複合膠材的介電常數比鑭前驅物的比例為1時低,且在XRD圖譜中粉末的NiO峰值變小。鑭前驅物的混合比例持續增加為3至5時,三者介電複合膠材有相似的介電常數,然而比介電複合膠材含鑭前驅物的比例為2的介電常數降低更低。此外,其XRD圖譜中發現,結果當鑭前驅物的混合莫耳比為3以上時,粉末的結構產生較高比例立方晶系(Cubic)的La 2O 3(JCPDS 22-0369)。且鑭前驅物的混合莫耳比為3與4時,粉末的結構產生較高比例La(OH) 3結構。當La混合莫耳比為5時,粉末的La(OH) 3結構消失,但產生較高比例Hexagonal的La 2O 3(JCPD 05-0602)。粉末的晶粒尺寸會隨著La 2O 3的量的增加而降低,是因為大部分摻雜的La 3+離子從正常晶粒中析出,並停留在晶界處隨後使限制晶粒的生長,使得其介電常數降低。從以上結果可獲得粉末由La:Sr:Ni=1:1:1製備,製成的介電複合膠材有最高介電常數及較低的阻抗。 According to the first embodiment and the examples 10 to 13, the Sr:Ni=1:1 fixed ratio is added to the niobium precursor of different molar ratios, and the dielectric constant of the dielectric composite adhesive prepared by the powder is as shown in FIG. As shown, when the mixing ratio of the ruthenium precursor is 1, the dielectric composite of the obtained powder has a maximum dielectric constant. According to the XRD pattern of Fig. 15, the powder having a mixing ratio of ruthenium precursor of 1 contains a NiO structure, and an appropriate NiO content contributes to an improvement in dielectric constant. However, when the mixing ratio of the ruthenium precursor is increased to 2, the dielectric constant of the dielectric composite rubber is lower than that of the ruthenium precursor, and the peak of NiO of the powder becomes smaller in the XRD pattern. When the mixing ratio of the ruthenium precursor is continuously increased to 3 to 5, the dielectric composites of the three have a similar dielectric constant, whereas the dielectric constant of the dielectric composite has a lower dielectric constant of 2 than that of the ruthenium composite. . In addition, it was found in the XRD pattern that when the mixed molar ratio of the ruthenium precursor was 3 or more, the structure of the powder produced a higher proportion of cubic Cubic La 2 O 3 (JCPDS 22-0369). When the mixed molar ratio of the ruthenium precursor is 3 and 4, the structure of the powder produces a higher proportion of La(OH) 3 structure. When the La mixed molar ratio is 5, the La(OH) 3 structure of the powder disappears, but a higher proportion of Hexagonal La 2 O 3 (JCPD 05-0602) is produced. The grain size of the powder decreases as the amount of La 2 O 3 increases because most of the doped La 3+ ions precipitate from the normal grains and stay at the grain boundaries to subsequently limit the growth of the grains. So that its dielectric constant is lowered. From the above results, it was obtained that the powder was prepared from La:Sr:Ni=1:1:1, and the resulting dielectric composite adhesive material had the highest dielectric constant and low impedance.
此外,如圖14a所示,從阻抗分析的結果獲得當鑭前驅物的混合比例為1時,介電複合膠材有最低的阻抗,鑭前驅物的混合比例為2時,介電複合膠材電阻升高。又,如圖14b所示,當鑭前驅物的混合比例為3以上時,介電複合膠材皆有很大的電阻。In addition, as shown in FIG. 14a, from the results of the impedance analysis, when the mixing ratio of the ruthenium precursor is 1, the dielectric composite rubber has the lowest impedance, and when the mixing ratio of the ruthenium precursor is 2, the dielectric composite rubber The resistance increases. Further, as shown in Fig. 14b, when the mixing ratio of the ruthenium precursor is 3 or more, the dielectric composite rubber has a large electrical resistance.
[不同比例的鍶前驅物對於介電複合膠材的介電常數的影響][Effects of different proportions of ruthenium precursors on the dielectric constant of dielectric composites]
根據實施例1及實施例14~16,將La:Ni=1:1固定比例後分別添加不同比例的鍶前驅物,其粉末所製備的介電複合膠材的介電常數如圖16所示,當鍶前驅物的混合比例為3,所製得的粉末的介電複合膠材的介電常數有最大值。當鍶前驅物的混合比例增加為4至5時,其介電複合膠材的介電常數降低。此結果可知介電複合膠材的介電常數會隨著鍶前驅物的比例提高而增加,但鍶前驅物的比例過高時,其介電常數反而減少。其主要是粉末中若有過多的鍶含量會造成較高的雜亂(disordered)的結構產生,影響內部電荷,導致介電複合膠材介電常數降低。此外,如圖17a,當鍶前驅物的混合比例為1時,其介電複合膠材的阻抗大於鍶前驅物的混合比例為3時的阻抗。又,如圖17b所示,如當鍶前驅物的混合比例為4及5以上時,介電複合膠材皆有明顯的阻抗增加。圖18為不同鍶前驅物的混合比例製備粉末的XRD圖譜,從結構上發現鍶前驅物的混合比例為1與3時,粉末結構皆產生LaNiO 3,當鍶混合比例為4及5時,粉末中的LaNiO 3結構僅少量出現。因此,粉末中的LaNiO 3結構可以使其介電複合膠材具有高介電常數及低阻抗。 According to Example 1 and Examples 14 to 16, a different ratio of lanthanum precursor was added after a fixed ratio of La:Ni=1:1, and the dielectric constant of the dielectric composite rubber prepared by the powder is as shown in FIG. When the mixing ratio of the ruthenium precursor is 3, the dielectric constant of the prepared dielectric composite material has a maximum value. When the mixing ratio of the ruthenium precursor is increased to 4 to 5, the dielectric constant of the dielectric composite rubber material is lowered. This result shows that the dielectric constant of the dielectric composite material increases as the proportion of the ruthenium precursor increases, but when the ratio of the ruthenium precursor is too high, the dielectric constant decreases. It is mainly that if there is too much strontium content in the powder, a high disordered structure is generated, which affects the internal charge, resulting in a decrease in the dielectric constant of the dielectric composite adhesive. Further, as shown in Fig. 17a, when the mixing ratio of the ruthenium precursor is 1, the impedance of the dielectric composite rubber is larger than the impedance when the mixing ratio of the ruthenium precursor is 3. Further, as shown in Fig. 17b, if the mixing ratio of the ruthenium precursor is 4 or more, the dielectric composite adhesive material has a significant increase in impedance. Fig. 18 is an XRD pattern of a powder prepared by mixing ratios of different cerium precursors. When the mixing ratio of the cerium precursors is 1 and 3, the powder structure is LaNiO 3 , and when the mixing ratio is 4 and 5, the powder is obtained. The LaNiO 3 structure in the middle appears only in a small amount. Therefore, the LaNiO 3 structure in the powder can make its dielectric composite rubber have a high dielectric constant and a low impedance.
[不同比例的鎳前驅物對於介電複合膠材的介電常數的影響][Effects of different proportions of nickel precursors on the dielectric constant of dielectric composites]
根據實施例14及實施例17~18,將La:Sr固定混合莫耳比為1:3後分別添加不同比例的草酸鎳,其粉末所製備的介電複合膠材的介電常數如圖19所示。鎳前驅物的莫耳比為1時,製備的粉末其介電複合膠材有最高的介電常數。當鎳前驅物的混合比例增加為2至3時,其介電複合膠材的介電常數隨著降低,關於鎳前驅物混合比例影響介電行為的原因,可能影響的原因其一可歸因於,鎳離子的離子半徑( r 6 2+=0.74Å)小於鑭離子的離子半徑( r 6 2+=1.15Å)和鍶離子( r 6 2+=1.32Å)的離子半徑,使鎳離子產生置換,使晶格發生畸變。另一個可能的原因是很多缺陷(例如正,負和中性缺陷)產生,導致取向極化減少,任意的在表面產生,形成雜亂。此外,氧空位缺陷的增加也會抑制分子的運動和反轉。此外,如圖20所示,鎳前驅物的莫耳比為1時其介電複合膠材的阻抗有最小值。當鎳前驅物的莫耳比為2至3時,其介電複合膠材的阻抗增大許多。此結果表示,鎳的比例增加不利於介電性質的提昇及阻抗的降低。然而從如圖21的粉末的XRD圖譜發現,當鎳前驅物的混合比例增加為2至3時,粉末中的LaNiO 3含量減少,以致XRD的訊號不明顯。 According to Example 14 and Examples 17 to 18, the La:Sr fixed mixed molar ratio of 1:3 was added with different proportions of nickel oxalate, and the dielectric constant of the dielectric composite adhesive prepared by the powder was as shown in FIG. Shown. When the molar ratio of the nickel precursor is 1, the prepared powder has the highest dielectric constant of the dielectric composite rubber. When the mixing ratio of nickel precursor is increased to 2 to 3, the dielectric constant of the dielectric composite rubber decreases, and the reason why the mixing ratio of nickel precursor affects the dielectric behavior may be attributed to the cause. to, nickel ions ionic radius (r 6 2+ = 0.74Å) is smaller than the ionic radius of lanthanum ions (r 6 2+ = 1.15Å) and strontium ions (r 6 2+ = 1.32Å) ion radius, nickel ions A displacement is generated to distort the crystal lattice. Another possible reason is that many defects (such as positive, negative, and neutral defects) are generated, resulting in a decrease in orientation polarization, which is generated on the surface and becomes disordered. In addition, an increase in oxygen vacancy defects also inhibits the movement and reversal of molecules. Further, as shown in FIG. 20, when the molar ratio of the nickel precursor is 1, the impedance of the dielectric composite rubber has a minimum value. When the molar ratio of the nickel precursor is 2 to 3, the impedance of the dielectric composite adhesive material is greatly increased. This result indicates that an increase in the proportion of nickel is disadvantageous for the improvement of dielectric properties and the reduction of impedance. However, it was found from the XRD pattern of the powder of Fig. 21 that when the mixing ratio of the nickel precursor was increased to 2 to 3, the LaNiO 3 content in the powder was decreased, so that the XRD signal was not noticeable.
[介電複合膠材中不同粉末含量對於指紋辨識的影響][Effect of Different Powder Contents on Fingerprint Identification in Dielectric Composite Adhesives]
根據實施例19~22,將不同重量比例的La:Sr:Ni=1:3:1製成的粉末與樹脂混合,其介電複合膠材的介電常數如圖22所示,當粉末的重量比例增加時,其介電複合膠材的介電常數增加。此方法製備的介電複合膠材的介電常數在1MHz為112。將介電複合膠材塗佈在指紋辨識晶片上,經熱固化後,經系統採集指紋,其所獲得的比對率差之結果如圖23所示,其中以介電複合膠材含50wt.%的粉末有較高的比對率差。雖然介電複合膠材含70%wt.的粉末有較高的介電常數,但在實際在塗佈在晶片時,因漿料的黏度過大,容易造成表面不平整,因此,實際在指紋辨識的比對率差有較低的結果。此外,將介電複合膠材含50wt.%的La:Sr:Ni =1:3:1製成的粉末與介電複合膠材含50wt.%的BaTiO 3粉末(商用)的指紋辨識比對率差比較,所獲得的結果指出透過本發明製備的粉末能夠提供較高的指紋辨識比對率差。表示本發明所製成的介電複合膠材具有高度的指紋辨識靈敏度。 According to Examples 19 to 22, powders made of different weight ratios of La:Sr:Ni=1:3:1 were mixed with a resin, and the dielectric constant of the dielectric composite rubber was as shown in Fig. 22, when the powder was As the weight ratio increases, the dielectric constant of the dielectric composite adhesive increases. The dielectric composite material prepared by this method has a dielectric constant of 112 at 1 MHz. The dielectric composite adhesive material is coated on the fingerprint identification wafer, and after heat curing, the fingerprint is collected by the system, and the result of the difference in the obtained ratio is shown in FIG. 23, wherein the dielectric composite adhesive material contains 50 wt. % of the powder has a higher rate of contrast. Although the dielectric composite rubber has a high dielectric constant of 70% wt., when the actual coating is applied to the wafer, the viscosity of the slurry is too large, which may cause surface unevenness. Therefore, the actual fingerprint identification The difference in the comparison rate has a lower result. In addition, the fingerprint identification of the powder of the dielectric composite rubber containing 50 wt.% of La:Sr:Ni = 1:3:1 and the dielectric composite adhesive containing 50 wt.% of BaTiO 3 powder (commercial) Comparing the rate differences, the results obtained indicate that the powder prepared by the present invention can provide a high difference in fingerprint identification ratio. It is indicated that the dielectric composite adhesive material produced by the invention has high fingerprint recognition sensitivity.
根據以上的實驗結果,本發明的介電陶瓷材料的製造方法,透過草酸溶劑加熱法的加熱溫度僅在120 oC~180 oC,而反應時間則需1~7小時。相較於習知使用金屬草酸鹽類製備金屬氧化物的方法,仍需要將溫度提高至450 oC~500 oC熱裂解6小時,本發明合成金屬氧化物所需的反應溫度可大幅地降低。而透過本發明的草酸溶劑加熱法所得到的金屬氧化物,也僅需要1小時的煆燒時間即可得到由鑭、鍶及鎳的氧化物組成的介電陶瓷材料。因此可以大幅地縮短製程時間並提高生產效率。 According to the above experimental results, in the method for producing a dielectric ceramic material of the present invention, the heating temperature by the oxalic acid solvent heating method is only 120 o C to 180 o C, and the reaction time is 1 to 7 hours. Compared with the conventional method for preparing metal oxides using metal oxalates, it is still necessary to increase the temperature to 450 o C to 500 o C for 6 hours, and the reaction temperature required for synthesizing metal oxides of the present invention can be greatly reduced. . On the other hand, the metal oxide obtained by the oxalic acid solvent heating method of the present invention requires only one hour of calcination time to obtain a dielectric ceramic material composed of oxides of cerium, lanthanum and nickel. Therefore, the process time can be greatly shortened and the production efficiency can be improved.
此外,所得到的介電陶瓷材料中可同時具有正方晶系的Sr 0.5La 1.5NiO 4、六方晶系的NiO及六方晶系的LaNiO 3三種氧化物。由於這三種氧化物的結構,混合介電陶瓷材料及樹脂而製成的介電複合膠材可具有高介電常數及低阻抗,當將其噴塗在基材上來製作指紋感測器時,還可在不增加接觸面積及介電層厚度時仍保有良好的指紋成像效果。 Further, the obtained dielectric ceramic material may have both a tetragonal Sr 0.5 La 1.5 NiO 4 , a hexagonal NiO, and a hexagonal LaNiO 3 oxide. Due to the structure of the three oxides, the dielectric composite material prepared by mixing the dielectric ceramic material and the resin can have a high dielectric constant and a low impedance, and when it is sprayed on a substrate to produce a fingerprint sensor, Good fingerprint imaging can be maintained without increasing the contact area and thickness of the dielectric layer.
圖1為用於測量介電常數用的介電試片的結構圖。 圖2為將本發明的介電複合材料塗佈於電容式指紋辨感測晶片的照片。 圖3a為混合溶液的GC-Mass分析圖譜。 圖3b為混合溶液的電子離子質量分析圖譜 圖4為介電陶瓷材料經650 oC加熱1小時的XRD圖譜。 圖5為使用不同氨水體積而製備出的介電陶瓷材料其介電複合材料的介電常數圖。 圖6為使用不同氨水體積而製備出的介電陶瓷材料其介電複合材料的阻抗圖。 圖7為使用不同氨水體積而製備出的介電陶瓷材料的XRD圖譜。 圖8為不同合成反應時間而製備出的介電陶瓷材料其介電複合材料的介電常數圖。 圖9為不同合成反應時間而製備出的介電陶瓷材料的XRD圖譜。 圖10a至圖10c為不同煆燒溫度而製備出的介電陶瓷材料的SEM影像。 圖11為不同煆燒溫度而製備出的介電陶瓷材料其介電複合材料的介電常數圖。 圖12為不同煆燒溫度而製備出的介電陶瓷材料的XRD圖譜。 圖13為不同鑭莫耳比而製備出的介電陶瓷材料其介電複合材料的介電常數圖。 圖14a及圖14b為不同鑭莫耳比而製備出的介電陶瓷材料其介電複合材料的阻抗圖。 圖15為不同鑭莫耳比而製備出的介電陶瓷材料的XRD圖譜。 圖16為不同鍶莫耳比而製備出的介電陶瓷材料其介電複合材料的介電常數圖。 圖17a及圖17b為不同鍶莫耳比而製備出的介電陶瓷材料其介電複合材料的阻抗圖。 圖18為不同鍶莫耳比而製備出的介電陶瓷材料的XRD圖譜。 圖19為不同鎳莫耳比而製備出的介電陶瓷材料其介電複合材料的介電常數圖。 圖20為不同鎳莫耳比而製備出的介電陶瓷材料其介電複合材料的阻抗圖。 圖21為不同鎳莫耳比而製備出的介電陶瓷材料的XRD圖譜。 圖22為不同介電陶瓷材料含量的介電複合材料的介電常數圖。 圖23為不同介電陶瓷材料含量的介電複合材料其指紋辨識的比較圖。 Fig. 1 is a structural view of a dielectric test piece for measuring a dielectric constant. 2 is a photograph of a dielectric composite material of the present invention applied to a capacitive fingerprint sensing wafer. Figure 3a is a GC-Mass analysis of the mixed solution. Figure 3b is a mixed solution of electron ion mass spectrum of FIG. 4 is a dielectric ceramic material is heated 650 o C for 1 hour XRD pattern. Figure 5 is a graph showing the dielectric constant of a dielectric composite material prepared using different aqueous ammonia volumes. Figure 6 is an impedance diagram of a dielectric composite material of a dielectric ceramic material prepared using different volumes of ammonia water. Figure 7 is an XRD pattern of a dielectric ceramic material prepared using different volumes of aqueous ammonia. Fig. 8 is a graph showing the dielectric constant of a dielectric composite material of a dielectric ceramic material prepared by different synthesis reaction times. Figure 9 is an XRD pattern of a dielectric ceramic material prepared by different synthesis reaction times. 10a to 10c are SEM images of dielectric ceramic materials prepared at different calcining temperatures. Figure 11 is a graph showing the dielectric constant of a dielectric composite material of a dielectric ceramic material prepared by different calcination temperatures. Figure 12 is an XRD pattern of a dielectric ceramic material prepared at different calcining temperatures. Figure 13 is a graph showing the dielectric constant of a dielectric composite material of a dielectric ceramic material prepared by different molar ratios. 14a and 14b are impedance diagrams of a dielectric composite material of a dielectric ceramic material prepared by different molar ratios. Figure 15 is an XRD pattern of a dielectric ceramic material prepared in different molar ratios. Figure 16 is a graph showing the dielectric constant of a dielectric composite material of a dielectric ceramic material prepared by different molar ratios. 17a and 17b are impedance diagrams of a dielectric composite material of a dielectric ceramic material prepared by different molar ratios. Figure 18 is an XRD pattern of a dielectric ceramic material prepared in different molar ratios. Figure 19 is a graph showing the dielectric constant of a dielectric composite material of a dielectric ceramic material prepared by different nickel molar ratios. Figure 20 is an impedance diagram of a dielectric composite material of a dielectric ceramic material prepared by different nickel molar ratios. Figure 21 is an XRD pattern of a dielectric ceramic material prepared by different nickel molar ratios. Figure 22 is a graph showing the dielectric constant of a dielectric composite material having different dielectric ceramic material contents. Figure 23 is a comparison of fingerprint identification of dielectric composites with different dielectric ceramic materials.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107141292A TWI664146B (en) | 2018-11-20 | 2018-11-20 | Dielectric ceramic material, method for manufacturing the same, dielectric composite material and uses thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107141292A TWI664146B (en) | 2018-11-20 | 2018-11-20 | Dielectric ceramic material, method for manufacturing the same, dielectric composite material and uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI664146B true TWI664146B (en) | 2019-07-01 |
TW202019828A TW202019828A (en) | 2020-06-01 |
Family
ID=68049419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107141292A TWI664146B (en) | 2018-11-20 | 2018-11-20 | Dielectric ceramic material, method for manufacturing the same, dielectric composite material and uses thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI664146B (en) |
-
2018
- 2018-11-20 TW TW107141292A patent/TWI664146B/en active
Non-Patent Citations (2)
Title |
---|
M. Sh. Khalil and M. A. Wahba, "Sr-substitution Effects on La-NiO3, Sol-Gel Synthesis, Structural and Electrical Properties", Egypt. J. Chem., Volume 59, Issue 5, October 2016, P719~729. * |
T. H. Chiang, J. K.Wong, S. Huang, C. T. Wu, "Preparation of high dielectric constant of lanthanum strontium nickelate oxide-resin composites for application in fingerprint recognition", Composites Part B, Vol 160, 1 March 2019, Pages 321~328. * |
Also Published As
Publication number | Publication date |
---|---|
TW202019828A (en) | 2020-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI241601B (en) | Electronic device, dielectric ceramic composition and the production method | |
US8052954B2 (en) | Barium calcium titanate, production process thereof and capacitor | |
Pfaff | Sol–gel synthesis of barium titanate powders of various compositions | |
CA2643897A1 (en) | Method of preparing ceramic powders using chelate precursors | |
CN1294103C (en) | Low-temperature sintered zinc titanate high-frequency dielectric ceramic and preparation method thereof | |
CN106882963A (en) | A kind of method that CaCu 3 Ti 4 O is prepared based on sol-gal process | |
JP2014239226A (en) | Multilayer ceramic capacitor, dielectric ceramic, and method for manufacturing multilayer ceramic capacitor | |
JP2017178744A (en) | Ferroelectric ceramic and method for producing the same | |
JP2006089368A (en) | Barium calcium titanate, production process thereof and capacitor | |
CN109553406B (en) | Dielectric ceramic composition and electronic device | |
CN110092656A (en) | Dielectric ceramic composition, electronic component and laminated ceramic capacitor | |
JP5573729B2 (en) | Method for producing perovskite complex oxide | |
CN110092661A (en) | Dielectric ceramic composition, electronic component and laminated ceramic capacitor | |
TWI664146B (en) | Dielectric ceramic material, method for manufacturing the same, dielectric composite material and uses thereof | |
CN106007705A (en) | Perovskite-like laminated-structure solid-solution system material and preparation method thereof | |
JP7276659B2 (en) | Dielectric compositions and electronic components | |
US9842696B2 (en) | Composite perovskite powder, preparation method thereof, and paste composition for internal electrode having the same | |
CN1800099B (en) | Barium titanium oxalate power and method for manufacturing titanium type perovskite ceramic raw material powder | |
CN107739204A (en) | Excellent ceramic medium material of a kind of bias characteristic and preparation method thereof | |
CN1683276A (en) | Process for hydro-thermally synthesizing strontium-barium titanate ceramic powder at normal atmosphere | |
CN101386426B (en) | Method for preparing leadless piezoelectric potassium sodium niobate film | |
JP2014210685A (en) | Laminated electronic component | |
CN103664168B (en) | A kind of preparation method of BCTZ-xLa system multifunction electronic pottery | |
JP5299400B2 (en) | Method for producing composite oxide powder | |
JP4643443B2 (en) | Method for producing barium titanate powder |