JPS60152926A - Optical-fiber temperature sensor - Google Patents

Optical-fiber temperature sensor

Info

Publication number
JPS60152926A
JPS60152926A JP59008953A JP895384A JPS60152926A JP S60152926 A JPS60152926 A JP S60152926A JP 59008953 A JP59008953 A JP 59008953A JP 895384 A JP895384 A JP 895384A JP S60152926 A JPS60152926 A JP S60152926A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
loss
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59008953A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Takeru Fukuda
福田 長
Koichi Inada
稲田 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP59008953A priority Critical patent/JPS60152926A/en
Publication of JPS60152926A publication Critical patent/JPS60152926A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Abstract

PURPOSE:To measure temperature from a room temperature up to about 500 deg.C accurately, by using impurity-doped optical fiber, which indicates absorption characteristic in an ultraviolet-ray region, measuring a loss at the tail part on the side of a long wavelength of the absorption characteristic, and measuring the temperature from the change in said loss. CONSTITUTION:With pure SiO2 as a core, an optical fiber 3, on which GeO2 that yields absorption in an ultraviolet-ray region is doped, is fused and connected to light-signal transmitting optical fibers 1 and 2, which have few characteristic change due to temperature and have less absorption in the ultraviolet-ray region than the sensing optical fiber 3. A nickel layer is attached to a part, where an aluminum layer is removed, at the end part, and heat resistance is improved. Light having a wavelength of, e.g., 0.7mum, is inputted to one end of the fiber 1 through a laser diode 4. The light is outputted from one end of the fiber 2 and received by a light detecting part 7 through an optical system 6. The loss change is 0.1dB/km at 300 deg.C and 1.5dB/km at 450 deg.C. Thus the temperature can be obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、光ファイバを用いた温度センサに関する。[Detailed description of the invention] (b) Industrial application field The present invention relates to a temperature sensor using an optical fiber.

(ロ)従来技術 光ファイバを用いた温度センサとして、従来より、光フ
アイバ自体をセンシング媒体として用いるものと、光フ
ァイバではなく結晶あるいは他の物質をセンシング媒体
として用いるものとが知られているが、後者は光ファイ
バとセンシング媒体との接続が容易でない等の問題があ
る。
(B) Prior art As temperature sensors using optical fibers, there are conventionally known temperature sensors that use the optical fiber itself as a sensing medium and those that use crystals or other substances instead of optical fibers as the sensing medium. However, the latter has problems such as difficulty in connecting the optical fiber and the sensing medium.

(ハ)目的 この発明は、光フアイバ自体をセンシング媒体として用
い、光ファイバとの接続を容易化するとともに、常温か
ら500℃程度までの温度範囲で正確に温度測定するこ
とができる光フアイバ温度センサを提供することを目的
とする。
(c) Purpose This invention is an optical fiber temperature sensor that uses the optical fiber itself as a sensing medium, facilitates connection with the optical fiber, and can accurately measure temperature in the temperature range from room temperature to about 500°C. The purpose is to provide

(ニ)構成 この発明による光フアイバ温度センサは、紫外線領域で
吸収特性を示す不純物ドープ光ファイバを用い、上記光
ファイバの紫外線領域での吸収特性の長波長側テール部
における損失を測定し、この損失変化により温度を測定
するようにしたことを特徴とする。
(D) Structure The optical fiber temperature sensor according to the present invention uses an impurity-doped optical fiber that exhibits absorption characteristics in the ultraviolet region, and measures the loss in the long wavelength tail of the absorption characteristics of the optical fiber in the ultraviolet region. The device is characterized in that the temperature is measured based on changes in loss.

(ホ)実施例 第1図において、光信号伝送用光ファイバ1.2の間に
センシング媒体となる光ファイバ3が接続されている。
(e) Embodiment In FIG. 1, an optical fiber 3 serving as a sensing medium is connected between optical signal transmission optical fibers 1.2.

光ファイバ1.2はたとえば純粋Sin、をコアとする
もので温度による特性変化が少なく且つ光ファイバ3よ
りも紫外線領域における吸収の少ない光ファイバからな
り、この実施例では、外径125gm、コア径50pm
、比屈折率差1%のGI型(グレーデッドインデックス
型〕光ファイバに1701Lmの厚さのアルミニウムコ
ート層を設けたものを用いた。また、光ファイバ3とし
ては、紫外線領域で欠陥による吸収を生じる、たとえば
不純物としてGem2をドープした光ファイバを用い、
この実施例では外径125#Lm、コア径5011.m
、比屈折率差1%の5i02光フアイバにG e Ot
をドープしたSl型(ステップインデレクス型)光ファ
イバに170pLmの厚さのアルミニウムコート層を設
けたものを用いた。そして光ファイバ1.2を100m
の長さに、光ファイバ3を1mの長さに切断して。
The optical fiber 1.2 has a core made of pure Sin, for example, and is an optical fiber whose characteristics change little due to temperature and has less absorption in the ultraviolet region than the optical fiber 3. In this example, the outer diameter is 125 gm, and the core diameter is 125 gm. 50pm
A GI type (graded index type) optical fiber with a relative refractive index difference of 1% and an aluminum coating layer with a thickness of 1701 Lm was used as the optical fiber 3. For example, using an optical fiber doped with Gem2 as an impurity,
In this example, the outer diameter is 125 #Lm and the core diameter is 5011. m
, G e Ot in 5i02 optical fiber with a relative refractive index difference of 1%
An aluminum coat layer having a thickness of 170 pLm was provided on an SI type (step index type) optical fiber doped with . and optical fiber 1.2 for 100m
Cut the optical fiber 3 into a length of 1 m.

酸、塩基あるいは電気分解等により端部のアルミニウム
コート層を除去し、交互に融着接続する。
The aluminum coating layer at the ends is removed by acid, base, electrolysis, etc., and fusion splicing is performed alternately.

接続終了後、接続部のアルミニウムコート層除去部にス
パッタ法によりニッケルを厚さ0.1JLmにコートし
、さらにこの」二に電解法により厚さ8#1.mのニッ
ケル層を付着させた。なお、このように金属をコートし
たのは、コート材により耐熱性を増すためであり、コー
ト材としては上記のアルミニウムのほかに銅、ニッケル
等を用いることができ、スパッタ法やディップ法により
付着させられる。
After the connection is completed, the aluminum coat layer removed part of the connection part is coated with nickel to a thickness of 0.1JLm by sputtering, and then nickel is coated to a thickness of 8JLm by an electrolytic method. A nickel layer of m was deposited. The reason why the metal is coated in this way is to increase the heat resistance with the coating material. In addition to the above-mentioned aluminum, copper, nickel, etc. can be used as the coating material, and it can be attached by sputtering or dipping. I am made to do so.

このGeO2ドープ光フアイバ3は紫外線領域で吸収を
生じるが、この紫外線領域吸収特性の長波長側テール部
(0、6gm〜1.0ルm)における損失を1111定
してみると、温度によって変化することが分る。第2図
は重量パーセントで15%Ge0zをドープした」二記
の光ファイバ3における、紫外線領域吸収損失の温度に
よる影響を実測したグラフであるが、この第2図より、
波長0゜6ILm域では300℃〜500℃、波長0.
77zm域では250℃〜500℃、波長0.8pm域
では200°C〜500’Oで、それぞれ損失と温度と
の間にほぼ直線的な関係があることが分る。そこで、こ
の損失を測定すれば温度の計測が可能となる。
This GeO2-doped optical fiber 3 absorbs in the ultraviolet region, but when the loss at the long wavelength side tail (0.6 gm to 1.0 lm) of this ultraviolet region absorption characteristic is determined as 1111, it changes depending on the temperature. I know what to do. Figure 2 is a graph showing the effect of temperature on absorption loss in the ultraviolet region in the optical fiber 3 doped with 15% GeOz by weight.
In the wavelength 0°6ILm region, the wavelength is 300°C to 500°C, and the wavelength is 0.6ILm.
It can be seen that there is an approximately linear relationship between loss and temperature in the 77zm region from 250°C to 500°C and in the 0.8pm wavelength region from 200°C to 500'O. Therefore, by measuring this loss, it becomes possible to measure the temperature.

この実施例では光源であるレーザダイオード4(なお発
光ダイオードを用いることもできる)より光学系5を介
して光ファイバ1の一端に波長0 、77Lmの光を入
射し、光ファイバ1.3.2と伝達され光ファイバ2の
一端より出射した光信号を光学系6を介して光検出器7
で受光し、損失を測定することとした。そして光ファイ
バ3の部分を300°C〜500℃に加熱したところ、
損失の変化が、300℃でO,ldB/km、350’
cでo 、3dB/km、400℃テ0 、8 dB/
km、450℃−c’x 、5dB/kmとなった。し
たがって、この損失測定値から第2図を用いて温度をめ
ることができる。
In this embodiment, light with a wavelength of 0 and 77 Lm is incident on one end of the optical fiber 1 via the optical system 5 from a laser diode 4 (a light emitting diode may also be used) as a light source, and the optical fiber 1.3.2 The optical signal transmitted from one end of the optical fiber 2 is transmitted to a photodetector 7 via an optical system 6.
We decided to receive the light and measure the loss. Then, when the part of the optical fiber 3 was heated to 300°C to 500°C,
The change in loss is O, ldB/km at 300°C, 350'
c o , 3 dB/km, 400°C te 0 , 8 dB/km
km, 450°C-c'x, and 5 dB/km. Therefore, the temperature can be calculated from this loss measurement value using FIG.

つぎに第2の実施例について第3図を参照しながら説明
する。この実施例では通常の光信号伝送用の光ファイバ
8〜13とセンシング用光ファイバ14〜18とを交互
に接続し、0TDR法(オプティカル・タイムドメイン
・リフレクトメータ法)によって損失を測定することに
より5箇所での温度測定を行なう構成となっている。こ
こで用いた光ファイバ8〜13および光ファイ/<14
〜18は先の実施例の光ファイバ1.2および光ファイ
バ3と同様のもので、長さは前者がそれぞれLoom、
後者がそれぞれ20mとし、第1の実施例と同様に金属
層を除去して相互に接続した後金属層を付着し、全長7
00mとした。
Next, a second embodiment will be described with reference to FIG. In this example, optical fibers 8 to 13 for normal optical signal transmission and optical fibers 14 to 18 for sensing are connected alternately, and the loss is measured by the 0TDR method (optical time domain reflectometer method). It is configured to measure temperature at five locations. Optical fibers 8 to 13 used here and optical fiber/<14
-18 are similar to the optical fibers 1.2 and 3 of the previous embodiment, and the former has lengths of Loom and 3, respectively.
The latter were each 20 m long, and the metal layer was removed and interconnected as in the first embodiment, and then the metal layer was attached, resulting in a total length of 7 m.
00m.

レーザダイオード21は波長0.7gmの光を発生する
もので、パルス発振器22により直接パルス変調され、
このパルス光が方向性結合器23を通って光ファイバ8
の一端に入射する。このパルス光が光ファイバ8.14
.9、・・・を順次進行していくと各点でレーり散乱現
象を起し、これに起因する反射光が進行方向とは逆方向
に戻ってくる。この後方散乱光は、方向性結合器23に
より抽出され、光検出器24により電気信号に変換され
、増幅器25を経て増幅された後平均化処理装置26に
送られる。この平均化処理装置1126は、多数個のパ
ルス光の各々により得られたデータを処理することによ
り平均化し、その結果がCRT27の画面」二に示され
る。こうして、画面上には、まず、第4図の実線で示す
ような初期特性が表示される。つぎに光ファイバ14〜
18の各点をそれぞれ120℃、250℃、40℃、2
00’0.100℃に加熱したところ、これらの光ファ
イバで損失が増加し、第4図の点線のような結果が得ら
れた。したがって、各測定点での損失変化が測定でき、
この損失変化から第2図の特性に基づき温度を算出する
ことができる。
The laser diode 21 generates light with a wavelength of 0.7 gm, and is directly pulse-modulated by a pulse oscillator 22.
This pulsed light passes through the directional coupler 23 and is connected to the optical fiber 8.
incident on one end of This pulsed light is transmitted to the optical fiber 8.14.
.. 9, . . . , a Ray scattering phenomenon occurs at each point, and the reflected light caused by this returns in the opposite direction to the traveling direction. This backscattered light is extracted by the directional coupler 23, converted into an electrical signal by the photodetector 24, amplified by the amplifier 25, and then sent to the averaging processing device 26. This averaging processing device 1126 processes and averages the data obtained from each of the plurality of pulsed lights, and the results are displayed on the screen of the CRT 27. In this way, initial characteristics as shown by the solid line in FIG. 4 are first displayed on the screen. Next, optical fiber 14~
18 points respectively at 120℃, 250℃, 40℃, 2
When heated to 00'0.100° C., the loss increased in these optical fibers, and results as shown by the dotted line in FIG. 4 were obtained. Therefore, the loss change at each measurement point can be measured.
From this change in loss, the temperature can be calculated based on the characteristics shown in FIG.

なお、上記の2つの実施例では通常の損失測定法および
0TDR法を用いてセンシング用光ファイバの損失を測
定するようにしているが、他の方法で損失測定するよう
にしてもよい。
Note that in the above two embodiments, the loss of the sensing optical fiber is measured using the normal loss measurement method and the 0TDR method, but the loss may be measured using other methods.

(へ)効果 この発明によれば、光ファイバの損失を測定するだけで
よいので簡単であり、しかも通常の光信号伝送用光ファ
イバに接続することが容易で遠隔地から多数の測定点の
温度を測定することができるためきわめて便利である。
(F) Effects According to the present invention, it is easy to measure the loss of the optical fiber, and it is also easy to connect to a normal optical fiber for transmitting optical signals, and the temperature can be measured at a large number of points from remote locations. It is extremely convenient because it allows you to measure

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例のブロック図、第2図
はG e O2を15重量パーセントドープした5in
2光フアイバの波長0.6gm〜1.0#Lmでの温度
に対する紫外線領域吸収損失を表わすグラフ、第3図は
第2の実施例のブロッ斗 り図、第葵図は第2の実施例で得られた0TDR法によ
る測定結果を示すグラフである。 l、2.8〜13・・・光信号伝送用光ファイバ3.1
4〜18・・・センシング用光ファイバ4.21・・・
レーザダイオード 5.6・・・光学系 7.24・・・光検出器22・・
・パルス発振器 23・・・方向性結合器25・・・増
幅器 26・・・平均化処理装置27・・・CRT 出願人 藤倉電線株式会社 写1目 算3目 算2國 温度(6C)
FIG. 1 is a block diagram of a first embodiment of the present invention, and FIG. 2 is a 5-in.
A graph showing absorption loss in the ultraviolet region with respect to temperature at a wavelength of 0.6 gm to 1.0 #Lm of a dual-optical fiber, Fig. 3 is a block diagram of the second embodiment, and the Aoi diagram is a diagram of the second embodiment. It is a graph showing the measurement results obtained by the 0TDR method. l, 2.8-13... Optical fiber for optical signal transmission 3.1
4-18... Optical fiber for sensing 4.21...
Laser diode 5.6...Optical system 7.24...Photodetector 22...
・Pulse oscillator 23...Directional coupler 25...Amplifier 26...Averaging processing device 27...CRT Applicant Fujikura Electric Wire Co., Ltd. Photo 1 measurement 3 measurement 2 national temperature (6C)

Claims (1)

【特許請求の範囲】[Claims] (1)紫外線領域で吸収特性を示す不純物ドープ光ファ
イバを用い、上記光ファイバの紫外線領域での吸収特性
の長波長側テール部における損失を測定し、この損失変
化により温度を測定するようにしたことを特徴とする光
フアイバ温度センサ。
(1) Using an impurity-doped optical fiber that exhibits absorption characteristics in the ultraviolet region, the loss at the long-wavelength tail of the optical fiber's absorption characteristics in the ultraviolet region was measured, and temperature was measured based on this change in loss. An optical fiber temperature sensor characterized by:
JP59008953A 1984-01-20 1984-01-20 Optical-fiber temperature sensor Pending JPS60152926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59008953A JPS60152926A (en) 1984-01-20 1984-01-20 Optical-fiber temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59008953A JPS60152926A (en) 1984-01-20 1984-01-20 Optical-fiber temperature sensor

Publications (1)

Publication Number Publication Date
JPS60152926A true JPS60152926A (en) 1985-08-12

Family

ID=11707033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59008953A Pending JPS60152926A (en) 1984-01-20 1984-01-20 Optical-fiber temperature sensor

Country Status (1)

Country Link
JP (1) JPS60152926A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138225A (en) * 1986-11-29 1988-06-10 Furukawa Electric Co Ltd:The Monitoring method for temperature of liquefied gas tank
JPH0426332U (en) * 1990-06-26 1992-03-02

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138225A (en) * 1986-11-29 1988-06-10 Furukawa Electric Co Ltd:The Monitoring method for temperature of liquefied gas tank
JPH0426332U (en) * 1990-06-26 1992-03-02

Similar Documents

Publication Publication Date Title
CN110462476A (en) Using the distributed fiberoptic sensor and system of mixing doped core optical fiber
JPS6156449B2 (en)
CN108844919B (en) Cladding reflection type inclined fiber grating refractive index sensor and manufacturing and measuring methods thereof
US4714829A (en) Fibre optic sensing device and method
US5062686A (en) Optical sensors and optical fibre networks for such sensors
US5129022A (en) Method and apparatus for providing reference signals from points along an optical fiber transmission path
JPH04253002A (en) Optical-fiber communication network
US4883954A (en) Method of measuring optical radiation energy reflected by a reflection area
CN208595984U (en) A kind of high sensitivity optical fiber temperature sensor
GB2122337A (en) Fibre optic sensing device
JPS60152926A (en) Optical-fiber temperature sensor
GB1582768A (en) Temperature sensitive optical fibre
JPH05264370A (en) System for measuring temperature distribution in optical fiber
CN202403833U (en) Fiber optical temperature sensor
JPH10319241A (en) Interference type optical fiber sensor
JPS586431A (en) Temperature measuring method using optical fiber
JP2724246B2 (en) Optical fiber distributed temperature sensor
CN115355830B (en) Optical fiber MI sensor with bending structure, manufacturing method and sensing system
US5877853A (en) Method of evaluating an optical transmission path
JP2511999B2 (en) Liquid detection optical fiber and liquid detection system using the same
JPS644612B2 (en)
JP2601726B2 (en) Inspection method for hermetic coated optical fiber
JPH0763921A (en) Optical line having identifying member and its production
JPS629240A (en) Optical fiber type temperature sensor
JPH01129127A (en) Few-core optical fiber cable incorporating temperature sensor and monitoring method of temperature