JPS60152907A - Misalignment detector of shape or alingment of body - Google Patents

Misalignment detector of shape or alingment of body

Info

Publication number
JPS60152907A
JPS60152907A JP904484A JP904484A JPS60152907A JP S60152907 A JPS60152907 A JP S60152907A JP 904484 A JP904484 A JP 904484A JP 904484 A JP904484 A JP 904484A JP S60152907 A JPS60152907 A JP S60152907A
Authority
JP
Japan
Prior art keywords
correlation
signal
signals
video signal
correlator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP904484A
Other languages
Japanese (ja)
Other versions
JPH041847B2 (en
Inventor
Koichiro Miyagi
宮城 幸一郎
Katsuhisa Honda
勝久 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP904484A priority Critical patent/JPS60152907A/en
Publication of JPS60152907A publication Critical patent/JPS60152907A/en
Publication of JPH041847B2 publication Critical patent/JPH041847B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To make it possible to perform detection by a simple system constitution, by judging the change in central position of the width of a body, based on the change in interval from the position of the synchronization signal of the specified first and second image signals to the maximum position. CONSTITUTION:Scanning is performed by TV cameras 6a and 6b, which are arranged along the axis of a pipe 1, like scanning lines 3a and 3b approximately vertically with the axis of the pipe 1. Thus image signals 4a and 4b are obtained and inputted to a real-time electrooptical correlator 101 having two ultrasonic wave and light modulators (not shown) and a Fourier transformation optical system (not shown). A mutual correlation signal C(tau) of the signals 4a and 4b is detected by a peack detecting circuit 103. A deviation (e) from the center between horizontal synchronizing signals at the peak position is detected as the bending of the pipe 1.

Description

【発明の詳細な説明】 (技術分野) この発明は二つの映像信号から得られる相関信号を精査
あるいは比較対照することにより、物体の形状、配列な
どの不整を検出可能とした装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a device that can detect irregularities in the shape, arrangement, etc. of objects by examining or comparing and contrasting correlation signals obtained from two video signals.

(従来技術) 動いている物体、たとえば流れ作業工程中にある生産途
上物体が、規格に示された形状を維持しているかどうか
を判定する作業は、従来2人間の判断力に依存するとこ
ろが多かった。この種の作業を省力化し1機械化する努
力も多く試みらね。
(Prior art) The task of determining whether a moving object, such as an object in the process of being produced during an assembly line process, maintains the shape specified in the standard has traditionally relied on the judgment of two people. Ta. Many efforts have been made to save labor and automate this type of work.

実用化されているものもあるが、形状のわずかな違い、
たとえば管状物体の軸の曲り、棒状物品の軸向きの不揃
い(不整列)々どをオンラインで検出できる実用的装置
は実現さねていないと言ってもよい。生産工程に使用さ
れるこの塊の検出用装置には、(1)簡易なシステム構
成、(2)高速動作、(3)低価格の3景件が課せらす
る。しかも、この種の検出用装置の基本技術はパターン
認識であり1画像処理であるから、現在極度に技術の進
歩しているディニジタル画像処理を用いると、物体その
ものの形状、配列の整、不整を判断し、検出することは
不可能でないようにも思わjるが、簡易システムで、低
価格で、しかもオンライン処理に適応できる高速性が維
持できる装置の実現には課題が多へ(発明の要旨) この発明は第1に物体の形状もしくは配列の不整を簡単
なシステム構成で検出する装置を実現することを目的と
している。
Some are in practical use, but there are slight differences in shape,
For example, it can be said that a practical device that can detect on-line the bending of the axis of a tubular object, the misalignment of the axis of a rod-shaped object, etc. has not yet been realized. This lump detection device used in the production process has three requirements: (1) simple system configuration, (2) high-speed operation, and (3) low cost. Moreover, since the basic technology of this type of detection device is pattern recognition and single image processing, using digital image processing, which is currently extremely advanced in technology, it is possible to detect the shape, arrangement, or irregularity of the object itself. Although it seems that it is not impossible to judge and detect the problem, there are many problems in realizing a device that is simple, inexpensive, and can maintain high speed that can be adapted to online processing (Summary of the Invention) The first object of the present invention is to realize a device that detects irregularities in the shape or arrangement of objects with a simple system configuration.

この発明はそのために1台もしくは2台のテレビカメラ
によって、相互に比較すべ1!2つの映像信号t1″得
、そjら2つの映像信号の相関信号を作9、その相関信
号の形態ないしは構造から、物体の形状もしくは配列の
不整を検出するようにしている。
For this purpose, the present invention uses one or two television cameras to obtain two video signals t1'' for mutual comparison, creates a correlation signal between the two video signals, and calculates the form or structure of the correlation signal. Based on this, irregularities in the shape or arrangement of objects are detected.

2つの映像信号の相関信号を得るための相関装置として
、ディジタル信号処理をすることも可能ではあるが、特
に、音響光学的画像相関装置を用いると、確実にオンラ
インで検出装置を動作させることができる。この発明は
第2の目的である高速動作に適した方法を実現するもの
である。
Although it is possible to use digital signal processing as a correlation device to obtain a correlation signal between two video signals, in particular, when using an acousto-optic image correlation device, it is difficult to operate the detection device reliably online. can. The second objective of the present invention is to realize a method suitable for high-speed operation.

さらに、この発明は、テレビカメラと相関器とを用いる
構成を採用するので、システム構成が簡単で、結局は低
価格の装置を実現することができ。
Furthermore, since the present invention employs a configuration using a television camera and a correlator, the system configuration is simple and a low-cost device can be realized.

それを第3の目的としている。That is the third purpose.

(動作原理) この発明は後に述べるように、いくつかの実施態様が実
現できるが、まず1発明の理解のために2台のテレビカ
メラを用いて、そ葺ぞわから2つの映像信号を得て、そ
れらの映像信号の相関信号を得る場合について、動作原
理を説明する。謁1図によって、形状の不整を試験され
る物体は例えば管材1で、その長手方向軸が曲っている
ものとする。2台のテレビカメラは管軸に沿った異なる
2点で入力画像2をとらえる。それぞれ画角(点線矩形
) 2a、2bを有し管軸に対してほぼ垂直方向に矢印
の走査! 3a13bのごとく走査して、映像信号4a
、柿を得る。映像信号には水平同期信号HORa 。
(Principle of operation) This invention can be realized in several embodiments as described later, but first, in order to understand the invention, we will use two television cameras to obtain two video signals from the roof crease. , the operating principle will be explained for the case where a correlation signal of those video signals is obtained. Referring to Figure 1, it is assumed that the object to be tested for irregularities in shape is, for example, a tube 1 whose longitudinal axis is bent. The two television cameras capture the input image 2 at two different points along the tube axis. Each has an angle of view (dotted rectangle) 2a and 2b, and the arrow scans in a direction almost perpendicular to the tube axis! Scan as shown in 3a13b to obtain video signal 4a.
, get persimmons. The video signal includes a horizontal synchronizing signal HORa.

HOR,bがある。管の外径は一様で均一であるのが普
通であるから9通常は第1図に示したよう表映像信号4
a、4bが得られる0ただし、被検物体の存在によシ、
背景の黒レベルに対して、信号が白レベルで現れる場合
について述べてゆく。(逆の場合についても、同様に考
えることができることは明らかである。) つぎに、映像信号を用いた相関演算の原理を音響光学的
画像相関装置について説明する。第2図にその構成略図
を示す。この装置は一般に使用されているテレビカメラ
の映倫出力信号が電気光学的相関器の入力信号として適
当な繰返し周期と周波数帯域をもつことに看目し、電気
光学的相関器によって各水平走査ごとの映像信号の相関
信号を得、受像器画面上で相関画像を構成するものであ
る。wJ2図における画像相関装置では、入力画像2を
掃引信号発生器5.テレビカメラ6、同期信号分離回路
7より成る撮像装置100で撮影し、得られた映像信号
を相関器101に入力して各水平走査ごとの映像信号の
相関信号を得る。この相関信号を同期信号混合器8.受
像器9より成る受像装置102に入力し、前記受像器9
の画面上に前記入力画像2の相関画像を表示させる。
There is HOR,b. Since the outside diameter of the tube is generally uniform,9 the surface image signal 4 is normally as shown in Figure 1.
a, 4b can be obtained. However, due to the presence of the test object,
A case will be described in which a signal appears at a white level with respect to a black level of the background. (It is clear that the opposite case can be considered in the same way.) Next, the principle of correlation calculation using a video signal will be explained with respect to an acousto-optic image correlation device. FIG. 2 shows a schematic diagram of its configuration. This device takes into account that the video output signal of a commonly used television camera has an appropriate repetition period and frequency band as the input signal of an electro-optic correlator, and uses the electro-optic correlator to generate signals for each horizontal scan. A correlation signal of a video signal is obtained and a correlation image is constructed on the screen of a receiver. In the image correlating device in figure wJ2, the input image 2 is sent to a sweep signal generator 5. An image is taken by an imaging device 100 comprising a television camera 6 and a synchronization signal separation circuit 7, and the obtained video signal is input to a correlator 101 to obtain a correlation signal of the video signal for each horizontal scan. This correlation signal is sent to the synchronous signal mixer 8. input to an image receiving device 102 consisting of an image receptor 9;
A correlated image of the input image 2 is displayed on the screen of the input image 2.

次に映像信号を用いた光学的相関演算の原理を簡単に説
明する。前記相関器1(11は、2個の超音波光変調器
とフーリエ変換光学系t−iした。実時間電気光学的相
関器の一株で!!+1 2個の超音波光変調器に加える
電気信号をf、 (x)、 t2(x)とすれば、相関
出力信号C(t)は次式で与えられる。
Next, the principle of optical correlation calculation using video signals will be briefly explained. The correlator 1 (11 has two ultrasonic light modulators and a Fourier transform optical system ti.In one stock of real-time electro-optic correlator!!+1 Add to the two ultrasonic light modulators If the electrical signals are f, (x), t2(x), the correlation output signal C(t) is given by the following equation.

C(r)=/ Fl (x−t ) P2 (x+r 
)dx・・・・・・・・・(1)d ただし、F+(X) = (fA))” 、 F*6C
1= (ft(X))2であるが、’+ (x) 、f
t(x)がともに2値信号の場合にUP、(x)= f
、←)、F、←)=f、伐)が成立する。(1)式の積
分区間〔−d、d〕はフーリエ変換光学系の光束の幅に
よシ決まる値である。また、光学系内のレンズの作用で
積分演算が、超音波光変調器内での超音波伝搬でf (
x)の移動(遅延)Tが自動的に打力われるため(13
式の演算を実現することができる。(1)式を自己相関
演算の場合を例にとって説明する。第3図は前記撮像装
置100による映像信号の撮り方を示した図である。前
記掃引信号発生器2により前記テレビカメラ6を図のよ
うに双方向水平走査させ各水平走査ごとに走査方向が反
転している映像信号f(α、i)を得る。aは水平走査
方向座標、iは水平走査回数である。この映像信号f(
σ、i)は白黒2値の信号であるとする。f(a、i)
が前記相関器101に入力され、相関器内で行なわれる
相関演算の様子を第4図に示す。第4図(a> (d)
は入力された映像信号f(α、i)が相関器内の超音波
光変調器により互いに反対方向にτの速度で伝搬して行
く状態を示しており、中央部分2dで相関演算が行なわ
れる。2dの幅は相関器内の光束の幅であり。
C(r)=/Fl (x-t) P2 (x+r
)dx・・・・・・・・・(1)d However, F+(X) = (fA))”, F*6C
1= (ft(X))2, but '+ (x), f
UP when both t(x) are binary signals, (x) = f
, ←), F, ←) = f, cutting) holds true. The integral interval [-d, d] in equation (1) is a value determined by the width of the light beam of the Fourier transform optical system. In addition, the integral calculation is performed by the action of the lens in the optical system, and f (
Since the movement (delay) T of x) is automatically hit, (13
It is possible to realize the calculation of expressions. Equation (1) will be explained using an example of autocorrelation calculation. FIG. 3 is a diagram showing how to capture a video signal by the imaging device 100. The sweep signal generator 2 causes the television camera 6 to perform two-way horizontal scanning as shown in the figure to obtain a video signal f(α, i) in which the scanning direction is reversed for each horizontal scan. a is the coordinate in the horizontal scanning direction, and i is the number of times of horizontal scanning. This video signal f(
It is assumed that σ, i) is a black and white binary signal. f(a,i)
is input to the correlator 101, and the correlation calculation performed within the correlator is shown in FIG. Figure 4 (a> (d)
shows a state in which the input video signal f(α, i) propagates in opposite directions at a speed of τ by the ultrasonic optical modulator in the correlator, and correlation calculation is performed in the central portion 2d. . The width 2d is the width of the light beam within the correlator.

前述した積分区間に相当する。また、相関器内では映像
信号f(α、i)とf(α、i+1 )との相互相関が
行なわれる。同図(c)は積分区間2dにおけるf(α
This corresponds to the integral interval mentioned above. Further, in the correlator, a cross-correlation between the video signals f(α, i) and f(α, i+1) is performed. Figure (c) shows f(α
.

i)と((a、i+1) との相互相関出力を示してい
る。
It shows the cross-correlation output between i) and ((a, i+1).

図でも明らかなように光学的相関器内ではf(α−)キ
((a、i+i)が成立し、f (a、i )とf(”
+++1)との相互相関は次式のようにf (a、i 
)の自己相関C(T)を表わす。
As is clear from the figure, f(α−)ki((a,i+i)) holds true in the optical correlator, and f(a,i) and f(”
The cross-correlation with f (a, i
) represents the autocorrelation C(T) of

C(y、i )= /’ f(αゴ、1)f(α+r、
i)dα・・・・・・(2)→ ここで重要な点は、積分区間2dにおいてf(α、i)
とf(α、i+1)との相関演算を行なうためには、少
なくともf(α、i)、 f(α、i+1)の信号の前
後にこれらの信号の長さの1/2以上の無信号部分が存
在しなくてはならガいことである。すなわち、同図に示
すように水平同期時間ヲThとすれば入力画像よυ得た
映像信号の各水平走査ごとの長さはTh/2以下とし、
残りの部分は無信号区間とするか。
C(y,i)=/'f(αgo, 1)f(α+r,
i) dα...(2) → The important point here is that f(α, i) in the integral interval 2d
In order to perform a correlation calculation between f(α, i+1) and f(α, i+1), there must be at least 1/2 or more of the length of no signal before and after the signals of f(α, i) and f(α, i+1). It would be bad if the part had to exist. That is, as shown in the figure, if the horizontal synchronization time is Th, the length of each horizontal scan of the video signal obtained from the input image is less than Th/2,
Will the remaining portion be designated as a no-signal section?

または、映像信号を各走査毎に一つおきに無信号化し、
水平同期時間Thの長さの映像信号と無信号区間とを交
互に作り出す必要がある。
Alternatively, every other video signal is turned off for each scan,
It is necessary to alternately produce a video signal and a no-signal period with a length of horizontal synchronization time Th.

さて2本発明ではこの様な超音波とコヒーレント光との
相関演算を利用した音響光学的画像相関装置を用いて2
台のテレビカメラの映像信号を相互相関演算し、その最
大振幅値が出現する位置。
Now, in the present invention, we use an acousto-optic image correlation device that utilizes correlation calculation between ultrasonic waves and coherent light.
The position where the maximum amplitude value appears when the video signals from the TV camera are cross-correlated.

言いかえれば、電気信号では時刻に和尚する水平同期信
号からの経過時間の変化を検出し、テレビカメラで撮影
した物体の中心位置が一致している(たとえば水平走査
の中央位置にある)が否かを判定するようにする。
In other words, the electrical signal detects changes in the elapsed time from the horizontal synchronization signal that corresponds to the time, and determines whether or not the center positions of objects photographed by a television camera match (for example, at the center of the horizontal scan). to determine whether

相互相関演算によtば、積分区間内で相関をとるべき2
つの信号が、同じ方向に、(水平走査方向に)等しい距
離(位置もしくは時間)だけずれていたとしても、最大
出力値の位置には変化を生じないという特性がある。す
なわち、並進に対する相関出力の不変性または位相情報
の消去と呼ばれる特性である。この発明では、この特性
を利用して、映像信号から特徴の抽出をはかるようにし
ている。つまシ、この特性を利用することにより。
According to the cross-correlation calculation, 2 should be correlated within the integral interval.
Even if two signals are shifted in the same direction (in the horizontal scanning direction) by the same distance (position or time), there is no change in the position of the maximum output value. That is, this is a property called invariance of the correlation output with respect to translation or erasure of phase information. In the present invention, this characteristic is utilized to extract features from a video signal. By taking advantage of this property.

2台のテレビカメラの視野の画面内で1等しい距離だけ
水平走査方向にずわた位置に存在する物体の相互相関出
力は、テレビ画面の中央部に現れることになシ、物体が
テレビカメラの視野のどの位置に存在しても、その関係
は不変である。こゎに対して、大刃物体が2台のテレビ
カメラで互いに異なる視野位置にある場合は、相関出力
画像の位置は、前述の等しい位置に対する相関出力画像
位置(画面中央位置)からずれてくる。このずれの大き
さは被検物体の位置の差に比例した量となる。
The cross-correlation output of an object that is located one equal distance apart in the horizontal scanning direction within the fields of view of two television cameras indicates that the object will appear in the center of the television screen, and that the object will not appear in the field of view of the television cameras. No matter where they are located, their relationship remains unchanged. On the other hand, if the large blade object is located at different viewing positions for two television cameras, the position of the correlation output image will shift from the correlation output image position (center position of the screen) for the same position described above. . The magnitude of this shift is proportional to the difference in position of the object to be tested.

たとえば、直径が一様な棒状物体の任意の2点をテレビ
カメラで撮像し、その映像信号を2値化した後、相関演
算を施すと出力は二等辺三角形の形状を示す。等しい矩
形波形の相関は二等辺三角形になる。この場合には、こ
の三角形のピーク位置は電気回路で容易にかつ正確に検
出することができる。よって、被検物体の伺点かで得た
映像信号の相互相関出力のピーク位置を比較することに
より簡単衣システムで被検物体の形状もしくは配列の不
整、傾きや曲9などを検出することができる0 (構 成) つぎに、この発明を図面によシ具体的に説明する。第5
図は2台のテレビカメラsa、sbを用いて管の曲シを
検出するようにした本発明の実施例のフロック図である
。図中の記号は第1図ないし第4図と共通である。テレ
ビカメラは管軸にほぼ垂直の方向に、平行に走査(3a
、3b)シて映像信号4a。
For example, when two arbitrary points on a rod-shaped object with a uniform diameter are imaged with a television camera, the video signal is binarized, and a correlation calculation is performed, the output shows the shape of an isosceles triangle. The correlation of equal rectangular waveforms becomes an isosceles triangle. In this case, the peak position of this triangle can be easily and accurately detected with an electrical circuit. Therefore, by comparing the peak positions of the cross-correlation outputs of the video signals obtained from the intersecting points of the test object, it is possible to detect irregularities in the shape or arrangement of the test object, tilt, curve, etc. with a simple system. Possible 0 (Configuration) Next, this invention will be specifically explained with reference to the drawings. Fifth
The figure is a block diagram of an embodiment of the present invention in which bent pipes are detected using two television cameras sa and sb. The symbols in the figure are the same as in FIGS. 1 to 4. The television camera scans parallel to the tube axis in a direction almost perpendicular to it (3a
, 3b) and the video signal 4a.

4bを得ている。相関器101から出力される二つの゛
き映像信号の相互相関信号C(r)は水平同期信号間の
中央からeだけ離ねた位置にピークをもつ信号として図
示しである。こねは管軸の曲JKよって映倫信号4aが
中央からずれている信号であることに由来する。相互相
関信号C(τ)をピーク検出回路103によって、その
ピーク位置を強調するようにして出力すわば、中央から
のピーク位置のずれが即ち管の曲りとして検出すること
ができる。なお。
I got 4b. The cross-correlation signal C(r) of the two distorted video signals output from the correlator 101 is shown as a signal having a peak at a position e apart from the center between the horizontal synchronizing signals. The reason for this is that the Eirin signal 4a is off-center due to the tune JK on the tube axis. By outputting the cross-correlation signal C(τ) by the peak detection circuit 103 in a manner that emphasizes its peak position, deviation of the peak position from the center can be detected as a bend in the tube. In addition.

この実施例においては、管1の径が多小異々る(太さに
ばらつきがある)場合でも、映像の中央位置(管軸の位
置)で相互相関信号のピークが得られることになるから
、そのような管であっても。
In this embodiment, even if the diameter of the tube 1 is slightly different (variation in thickness), the peak of the cross-correlation signal can be obtained at the center position of the image (position of the tube axis). , even if such a tube.

管軸の直、不直(真直か2曲ったものか)を判定するこ
とができるという特長を備えていることが理解できよう
It can be seen that this method has the advantage of being able to determine whether the tube axis is straight or not (straight or curved).

また、第5図では1本の管の曲りについて図示しておる
が、第1のテレビカメラの画角2aと第2のテレビカメ
ラの画角2bとの中にある物体が異人る二つの物体であ
る場合には、゛水平走査と直角方向(長手方向あるい社
軸方向)の肉色゛の変化。
In addition, although FIG. 5 illustrates the bending of one tube, the objects located within the angle of view 2a of the first television camera and the angle of view 2b of the second television camera are two different objects. In this case, the change in flesh color in the direction perpendicular to the horizontal scan (longitudinal direction or shaft direction).

すなわち二物体の配列の不整が検出できることになる。In other words, irregularities in the arrangement of the two objects can be detected.

つぎに本発明の第二実施例を第6図のブロック図によっ
て説明する。この実施例の特徴は、1台のテレビカメラ
6で1時間を違えて二つの映像信号を得るようにしてい
る。図中記号は第1図ないし第5図と同じである。第6
図の実施例では相関器101に加えられる第〒の映像信
号4aは遅延回路104を経ており、タイミングを第二
の映像信号4bと合わせて、相関演算が行なわれている
。この実施例によれば、被試験物体が軸方向に移送され
ている場合に軸の曲りを検出できるし、軸に垂直方向に
幅の変化がある場合に41適用できる。
Next, a second embodiment of the present invention will be explained with reference to the block diagram of FIG. The feature of this embodiment is that one television camera 6 obtains two video signals one hour apart. The symbols in the figure are the same as in FIGS. 1 to 5. 6th
In the illustrated embodiment, the second video signal 4a applied to the correlator 101 passes through a delay circuit 104, and a correlation calculation is performed by matching the timing with the second video signal 4b. According to this embodiment, bending of the shaft can be detected when the object to be tested is being transported in the axial direction, and can be applied when there is a change in width in the direction perpendicular to the shaft.

以上の二つの実施例(第5図及び第6図)からも明らか
kように1本発明では次のような実施例が実現できる。
As is clear from the above two embodiments (FIGS. 5 and 6), the following embodiments can be realized according to the present invention.

0) 相互相関演算の代りにたたみ込み積分演算を利用
する演算処理。
0) Arithmetic processing that uses convolution and integral calculations instead of cross-correlation calculations.

(ロ) 管、棒などのように、中心軸が直線てなく。(b) The central axis is not straight, like a tube or rod.

たとえばドーナッツ状の円環形状の物体で、中心軸が正
しく円弧を描いているか否かを検査する装置。この場合
は円弧の描かれるべき位置がテレビカメラの視野の中心
となるようにセットすればよいO f−’> 相関器として、青畳光学的画像相関器に代え
て、ディジタル演算器を用いることもできる。これKは
将来、会費な高速ディジタル信号処理技術が、たとえば
専用LSI等で実用化されねばならない。
For example, a device that inspects whether or not the center axis of a toroidal object, such as a donut, is correctly tracing an arc. In this case, it is only necessary to set the position where the arc is to be drawn to be the center of the field of view of the television camera. can. In the future, expensive high-speed digital signal processing technology must be put into practical use, for example, in dedicated LSIs.

に)二本の平行走査に代えて、定食は常に同一の場所を
行々うこととし、走査時間の相違を利用して、移動する
物体の別な場所を走査したのと同じ効果を生じさせるよ
うにした装置構成。
(b) Instead of two parallel scans, the set meal is always scanned at the same location, and the difference in scanning time is used to create the same effect as scanning different locations on a moving object. The device configuration is as follows.

(効 来) 以上述べたように2本発明の物体の形状もしくは配列の
不整検出装置は、テレビカメラを用いて二つの映像信号
を得てから、その二映像信号の相関演算を行ない、その
相関演算出力を精査して判定を下すようにしたから、相
関演算のもつ並進に対する不変性によって、不整の特徴
を簡易なシステムて識別し判定できるようにした。
(Effects) As described above, the device for detecting irregularities in the shape or arrangement of objects according to the present invention obtains two video signals using a television camera, and then performs a correlation calculation on the two video signals. Since judgments are made by examining the calculation output, the invariance of correlation calculations to translation makes it possible to identify and judge the characteristics of irregularities using a simple system.

とくに、相関演算を実施するための装置として音響光学
的画像相関装置を利用すると、相関演算をオンラインで
実行できるので、現業生産工程で生監物の良否判定を即
時実施でき、したがって本発明の装置を工程のフィード
バック用センサとして採用可能とした。
In particular, if an acousto-optic image correlation device is used as a device for performing correlation calculations, the correlation calculations can be performed online, so quality judgment of raw materials can be immediately performed in the actual production process. It can be used as a process feedback sensor.

実施の態様は応用力法に合わせて、いろいろ々変形が可
能であシ1本発明の産業上の利用可能性は大きい。
The embodiments can be modified in various ways according to the applied force method, and the present invention has great industrial applicability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための図面。 第2図は本発明の必須構成要件である相関器の一実施例
の構成図、第3図及び第4図は第2図の相関器の動作全
説明するための図面、第5図および第6図は本発明の異
ガる実施例の構成図でるる。 図中、1:被試験物体、3:テレビカメラの走査線、4
:映像信号、100:撮像装置、101 :相関装置、
102:受像装置、C(r):相関信号。 第1図 第2閃 菊3囲 β
FIG. 1 is a drawing for explaining the present invention in detail. FIG. 2 is a block diagram of one embodiment of a correlator which is an essential component of the present invention, FIGS. 3 and 4 are diagrams for explaining the entire operation of the correlator shown in FIG. 2, and FIGS. FIG. 6 is a block diagram of a different embodiment of the present invention. In the figure, 1: Test object, 3: Television camera scanning line, 4
: video signal, 100: imaging device, 101: correlation device,
102: Image receiver, C(r): Correlation signal. Figure 1. 2. Sengiku 3. β

Claims (1)

【特許請求の範囲】 (11走査方向に対して有限長の幅を有する物体を走査
して第一の映像信号を得る撮像装置と;前記有限長と等
しいか、近似した@を有する同一もしくけ異なる物体を
走査して第二の映像信号金製る撮像装置と; 該第−および第二の映像信号を受領して1両信号の相関
信号を得る相関装置と; 該相関信号の四則信号位置から最大値位置までの間隔の
変化によって、前記物体の幅の中心位置が走査方向に変
化したことを判定する判定手段とを備えた物体の形状も
しくは配列の不整検出装置。 (2) 前記第一の映像信号を得る撮像装置と、前記第
二の映像信号を得る撮像装置とが同一の撮像装置である
ことを特徴とする特許請求の範囲第1項記載の物体の形
状もしくは配列の不整検出装置。 (3) 前記相関信号を得る装置11が音智光学的画像
相関装置であることを特徴とする特許請求の範囲第1項
または第2項記載の物体の形状もしくは配列の不整検出
装置。
[Claims] (11) An imaging device that scans an object having a width of a finite length in the scanning direction to obtain a first video signal; an imaging device that scans different objects and generates a second video signal; a correlation device that receives the first and second video signals and obtains a correlation signal of the two signals; four arithmetic signal positions of the correlation signal; and determining means for determining that the center position of the width of the object has changed in the scanning direction due to a change in the interval from The device for detecting irregularities in the shape or arrangement of objects according to claim 1, wherein the imaging device that obtains the video signal and the imaging device that obtains the second video signal are the same imaging device. (3) The apparatus for detecting irregularities in the shape or arrangement of objects according to claim 1 or 2, wherein the apparatus 11 for obtaining the correlation signal is an acoustic optical image correlation apparatus.
JP904484A 1984-01-20 1984-01-20 Misalignment detector of shape or alingment of body Granted JPS60152907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP904484A JPS60152907A (en) 1984-01-20 1984-01-20 Misalignment detector of shape or alingment of body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP904484A JPS60152907A (en) 1984-01-20 1984-01-20 Misalignment detector of shape or alingment of body

Publications (2)

Publication Number Publication Date
JPS60152907A true JPS60152907A (en) 1985-08-12
JPH041847B2 JPH041847B2 (en) 1992-01-14

Family

ID=11709639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP904484A Granted JPS60152907A (en) 1984-01-20 1984-01-20 Misalignment detector of shape or alingment of body

Country Status (1)

Country Link
JP (1) JPS60152907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2754892A1 (en) * 1996-10-22 1998-04-24 Framatome Sa METHOD AND DEVICE FOR GEOMETRICAL CONTROL OF A FUEL ASSEMBLY BY PHOTOGRAMMETRY

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418891A (en) * 1977-07-12 1979-02-13 Kansai Paint Co Ltd Preparation of corrosion resistant resin
JPS5633641A (en) * 1979-08-24 1981-04-04 Inst Erekutorohimii Akademii N Nonnsilver salt photosensitive composition
JPS56126703A (en) * 1980-03-10 1981-10-05 Nec Corp Detecting method for position and device therefor
JPS59157507A (en) * 1983-02-28 1984-09-06 Matsushita Electric Works Ltd Shape defect detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418891A (en) * 1977-07-12 1979-02-13 Kansai Paint Co Ltd Preparation of corrosion resistant resin
JPS5633641A (en) * 1979-08-24 1981-04-04 Inst Erekutorohimii Akademii N Nonnsilver salt photosensitive composition
JPS56126703A (en) * 1980-03-10 1981-10-05 Nec Corp Detecting method for position and device therefor
JPS59157507A (en) * 1983-02-28 1984-09-06 Matsushita Electric Works Ltd Shape defect detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2754892A1 (en) * 1996-10-22 1998-04-24 Framatome Sa METHOD AND DEVICE FOR GEOMETRICAL CONTROL OF A FUEL ASSEMBLY BY PHOTOGRAMMETRY
WO1998018137A1 (en) * 1996-10-22 1998-04-30 Framatome Method and device for geometrical control of a fuel assembly by photogrammetry

Also Published As

Publication number Publication date
JPH041847B2 (en) 1992-01-14

Similar Documents

Publication Publication Date Title
US4320415A (en) Method of and apparatus for measuring electrophoretic mobility of cells
JPS60152907A (en) Misalignment detector of shape or alingment of body
JPH02108392A (en) Method and apparatus for measuring picture movement
US4191477A (en) Process and apparatus for the separate evaluation of image contents in two coordinate directions of motion
JPS60152908A (en) Irregular shape detector of body
JPH0364831B2 (en)
US5177607A (en) Method and apparatus for measuring velocity of fluid
JPS594662B2 (en) Ultrasonic probe position detection method and device
GB2054839A (en) Determining electrophoretic mobility of cells
JPH03235007A (en) Speckle length measuring instrument
JPH0390856A (en) Ultrasonic microscope
JP4073987B2 (en) Output display method of ground penetrating radar device
JP2023035455A (en) Defect detection device, defect detection method, and program
JPH0599623A (en) Displacement measuring apparatus
JPS62299708A (en) Three-dimensional shape inspecting instrument
JPS6129645B2 (en)
JPH0244043B2 (en)
JPS6033356B2 (en) image correlation device
JPH04350554A (en) Ultrasonic inspection
JPS6367849B2 (en)
JPH08178633A (en) Three dimensional shape measuring device and measuring method
JPS5963560A (en) Automatic ultrasonic flaw detector
JPS61266907A (en) Detector for surface condition
JPH0261554A (en) Ultrasonic flaw detector
JPH01318952A (en) Method for recognizing shape of three-dimensional body using ultrasonic wave