JPS60152656A - Magnetic material having high performance and its manufacture - Google Patents

Magnetic material having high performance and its manufacture

Info

Publication number
JPS60152656A
JPS60152656A JP59007763A JP776384A JPS60152656A JP S60152656 A JPS60152656 A JP S60152656A JP 59007763 A JP59007763 A JP 59007763A JP 776384 A JP776384 A JP 776384A JP S60152656 A JPS60152656 A JP S60152656A
Authority
JP
Japan
Prior art keywords
magnetic material
sno2
high performance
base alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59007763A
Other languages
Japanese (ja)
Inventor
Yoshihiro Konno
良博 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP59007763A priority Critical patent/JPS60152656A/en
Publication of JPS60152656A publication Critical patent/JPS60152656A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a magnetic material having high performance by adding a specified amount of one or more among B2O3, GeO and SnO2 to an Fe base alloy contg. specified percentages of Al and Si. CONSTITUTION:An Fe base alloy consisting of 3-13wt% Al, 3-13wt% Si and the balance Fe is ground to powder of 1-10mum particle size, and this powder is mixed with 0.001-7wt% fine powder of one or more among B2O3, GeO and SnO2. The mixture is compression-molded and sintered at 360-1,000 deg.C to obtain a magnetic material having high performance. The magnetic material has high saturation magnetic flux density, a small loss in a high frequency range and high magnetic permeability.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高飽和磁束密度を有し、高周波域での損失が
低く、透磁率の高い高性能磁性材料おにびイの製造方法
に関するものである。 近年、ディジタル磁気記録、オーディオ、VTR等にお
いて、高密度記録化が要請され、ギャップ長及びトラッ
ク幅を狭くして、記録媒体面を効率的に使用する領内に
ある。しかしながらギャップ長及びトラック幅を狭くす
ると再生出力が低下する。このことはディジタル磁気記
録ではエラーの原因となり、オーディオ及びVTR等で
はSN比の低下の原因となる。したがって記録媒体の抗
磁力を増大させることにより、再生出力の低下を防止す
る考え方が一般的であり、かくのごとき高抗磁力媒体が
開発されている。そこで記録媒体の高抗磁力化にともな
い、それに入出力を行なう磁気ヘッドに使用される材料
も飽和磁束密度の増大化を必要とする。 従来の磁気ヘッド材お1であるフェライトおよびセンダ
ストは高密度記録用磁気ヘッドとじては不十分な材料で
ある。フ]ニライトは高周波域での損失が少なく、再生
能率の^い+A FIではあるが、飽和磁束密■が5.
500 Ga1lSS (’iIQであるため^抗磁力
媒体への^密を良記録(よ困難である。 一方、Fe−A I −3i系合金であるレングストは
飽和磁束密度が9,000 GaussでフエライI〜
より高いが、高周波域での渦電流損失が人さく、再生能
率が低い欠点がある、。 本発明は、Fe−^1−3i系合金においで結晶粒界に
抵抗層を形成(t シめることにj;す、電気的抵抗を
高め、渦電流の発生を防止し、再生能率を向上させる磁
性手111およびその製造方法を提供づることを1]的
とする。 次に本発明を説明する。本発明は、A1:3〜13wt
%、 Si : 3〜13wt%、残部:[eよりなる
基合金において、B 203.GeQ 、 sno 2
のうち少なくとも1種以上を0.001−7 w1%添
加した磁性材料であり、基合金粉体と添加合金微粉体を
混合し、焼結固化した焼結合金である。添加数値限定理
由は0.001wt%未渦では渦電流の発生が防止でき
ず、また7wt%を越えると飽和磁束密度が大幅に低下
するからである。さらに本発明はその製造方法として、
上記合金を1〜10膚の粉体とし、B203 、 Ge
m、 SnO2のうち少なくとも1種以上の微粉体を<
1.001〜7111t%添加混合後、圧縮成形し、3
60〜1,100℃で焼結するものであり、この結果基
合金の結晶粒界にB203.Gem、5nOzのうち少
なくとも1種以上の抵抗層が形成されると共に、閉空孔
率を0.5%以下にすることができる。360℃未満で
は焼結されず、1,100℃を越えると外部と反応して
しまう。次に300〜1 、000℃、500〜2 、
000/(!? / crAで熱間静水圧圧縮を行なう
ことで、結晶粒界に存在]る抵抗層を極めて薄くし、か
つ閉空孔率が0%近くになり、飽和磁束密度の減少を防
止することができる。300℃および5008FI/c
#1未満では緻密化されず、1 、000℃および2 
、00ON9 / crAを越えると外部と反応してし
まう。以下本発明の製造方法の一実施例を示す。
The present invention relates to a method for producing a high-performance magnetic material having high saturation magnetic flux density, low loss in a high frequency range, and high magnetic permeability. In recent years, there has been a demand for higher density recording in digital magnetic recording, audio, VTR, etc., and the gap length and track width have been narrowed to make efficient use of the recording medium surface. However, when the gap length and track width are narrowed, the reproduction output decreases. This causes errors in digital magnetic recording, and causes a reduction in the signal-to-noise ratio in audio, VTR, and the like. Therefore, it is a common idea to prevent a decrease in reproduction output by increasing the coercive force of the recording medium, and such high coercive force media have been developed. Therefore, as the coercive force of the recording medium increases, the material used for the magnetic head that performs input/output on the recording medium also needs to have an increased saturation magnetic flux density. Ferrite and sendust, which are conventional magnetic head materials, are insufficient materials for high-density recording magnetic heads. F]nirite has less loss in the high frequency range and has high reproduction efficiency +A FI, but the saturation magnetic flux density is 5.
500 Ga1lSS ('iIQ), so it is difficult to record well on a coercive medium. On the other hand, Lengst, which is an Fe-A I-3i alloy, has a saturation magnetic flux density of 9,000 Gauss and is very difficult to record well on coercive media. ~
However, it has the drawbacks of high eddy current loss in the high frequency range and low reproduction efficiency. The present invention aims to form a resistance layer at grain boundaries in Fe-^1-3i alloys, increase electrical resistance, prevent the generation of eddy currents, and improve regeneration efficiency. [1] The present invention is explained below.
%, Si: 3 to 13 wt%, balance: [In the base alloy consisting of e, B 203. GeQ, sno2
It is a magnetic material in which 0.001-7 w1% of at least one of these is added, and is a sintered alloy obtained by mixing base alloy powder and additive alloy fine powder and sintering and solidifying the mixture. The reason for limiting the addition value is that if the amount is 0.001 wt%, the generation of eddy current cannot be prevented, and if it exceeds 7 wt%, the saturation magnetic flux density will decrease significantly. Furthermore, the present invention provides a method for producing the same,
The above alloy was made into a powder of 1 to 10%, and B203, Ge
m, fine powder of at least one kind of SnO2<
After adding 1.001 to 7111 t% and mixing, compression molding
It is sintered at a temperature of 60 to 1,100°C, and as a result, B203. A resistive layer of at least one of Gem and 5 nOz is formed, and the closed porosity can be made 0.5% or less. If the temperature is lower than 360°C, it will not be sintered, and if the temperature exceeds 1,100°C, it will react with the outside. Next, 300~1,000℃, 500~2,
000/(!? / By performing hot isostatic compression with crA, the resistance layer existing at the grain boundaries) is made extremely thin, and the closed porosity becomes close to 0%, preventing a decrease in the saturation magnetic flux density. 300℃ and 5008FI/c
If it is less than #1, it will not be densified, and if it is less than 1,000℃ and 2
,00ON9/crA, it will react with the outside. An example of the manufacturing method of the present invention will be shown below.

【実施例】【Example】

AI 5.4wt%、 Si 9.6wt%、 Fe8
5wt%に秤量し、高周波溶解炉を用いて真空中あるい
は不活性雰囲気中で均一に溶解した後、脱酸、脱硫して
不純物を除去し、均一な組成の溶融合金を作成する。次
にこの合金を超音波法あるいは噴射法等により直接微粉
化、またはインゴットにした後に機械的粉砕を施すこと
により微粉体を得る。 この微粉体にB203 、 GeQ、 SnO2のうち
少なくとも1種以上の微粉体を0.001〜7wt%添
加して混合後、圧縮成形し、360〜1,100℃の温
度で焼結Jる。この時、閉空孔率を0.5%以下にづる
ことにより、次の熱間静水圧圧縮の効果を充分に発揮す
ることができる。そして300〜1,000℃、500
〜2,00ONg/c111で熱間静水圧圧縮を施す。 以上により得られたFe−Al−Si系合金は磁気ヘッ
ドとして使用した場合、次に示す物理的性質を右する高
性能磁性材料となる。 (i) Fe−A I −3i系合金であるため飽和磁
束密度が高い(8,000〜10,000 Gauss
)。 (i)結晶粒界層が熱間静水圧圧縮により、非常に 5
 − 薄くかつ高密度になっているため、透磁率が高い。 (ロ)結晶粒界層が電気的絶縁体になっているため、電
気比抵抗が大ぎい。 (へ)「(!−^1−8i系合金どB203 、GeQ
、SnO2等の酸化物を結晶粒界に使用しているため、
耐摩耗4!1が大きい1゜ したがって本発明は磁気ヘッドだけではなく、ディジタ
ル磁気記録、オーディオ、VTR等の変換器用鉄芯材利
どして、広い応用分野が存在する。 特許出願人 並木精密宝石株式会社  6−
AI 5.4wt%, Si 9.6wt%, Fe8
After weighing to 5 wt % and uniformly melting it in a vacuum or inert atmosphere using a high frequency melting furnace, it is deoxidized and desulfurized to remove impurities to create a molten alloy with a uniform composition. Next, this alloy is directly pulverized by an ultrasonic method or an injection method, or it is made into an ingot and then mechanically pulverized to obtain a fine powder. To this fine powder, 0.001 to 7 wt % of at least one type of fine powder among B203, GeQ, and SnO2 is added, mixed, compression molded, and sintered at a temperature of 360 to 1,100°C. At this time, by setting the closed porosity to 0.5% or less, the effect of the next hot isostatic compression can be fully exhibited. and 300-1,000℃, 500℃
Hot isostatic pressing at ~2,00 ONg/c111. When the Fe-Al-Si alloy obtained as described above is used as a magnetic head, it becomes a high-performance magnetic material exhibiting the following physical properties. (i) Since it is a Fe-A I-3i alloy, it has a high saturation magnetic flux density (8,000 to 10,000 Gauss
). (i) Due to hot isostatic compression, the grain boundary layer becomes extremely 5
− It has high magnetic permeability because it is thin and dense. (b) Since the grain boundary layer is an electrical insulator, the electrical resistivity is large. (to) “(!-^1-8i alloy B203, GeQ
, because oxides such as SnO2 are used at grain boundaries,
The abrasion resistance 4:1 is high at 1°. Therefore, the present invention has a wide range of applications, including not only magnetic heads but also iron core materials for converters such as digital magnetic recording, audio, and VTR. Patent applicant Namiki Precision Jewel Co., Ltd. 6-

Claims (1)

【特許請求の範囲】 fllAl : 3〜13wt%、 Si : 3〜1
3wt%、残部:Feにりなる基合金において、820
3 、 GeQ。 SnO2のうち少なくとも1種以」−をo、 ooi〜
7wt%添加することを特徴どした高性能磁性材料。 (2)八I:3〜13wt%、 St : 3〜13w
t%、残部:[eJ:りなる基合金において、該合金を
1〜10膚の粉体どし、B2O3,ΩeQ、5nQ2の
うち少なくとも1種以上の微粉体をo、 ooi〜7w
t%添加混合後、圧縮成形し、360〜1,100℃で
焼結覆ることを特徴とした高性能磁性材料の製造方法。 (3)焼結した後、さらに300〜i 、 ooo℃、
500〜2 、0OOK!? / ctAで熱間静水圧
圧縮を行なう特許請求の範囲第(2)項記載の高性能磁
性材料の製j告方法。
[Claims] fllAl: 3 to 13 wt%, Si: 3 to 1
In the base alloy consisting of 3 wt%, balance: Fe, 820
3. GeQ. At least one type of SnO2 - is o, ooi~
A high-performance magnetic material characterized by the addition of 7wt%. (2) Eight I: 3-13wt%, St: 3-13w
t%, remainder: [eJ: In the base alloy, the alloy is powdered in 1 to 10 parts, and at least one fine powder of B2O3, ΩeQ, and 5nQ2 is added to o, ooi to 7w.
A method for producing a high-performance magnetic material, which comprises adding and mixing t%, compression molding, and sintering and covering at 360 to 1,100°C. (3) After sintering, further 300~i, ooo℃,
500~2,0OOK! ? A method for producing a high-performance magnetic material according to claim (2), wherein hot isostatic compression is carried out at /ctA.
JP59007763A 1984-01-19 1984-01-19 Magnetic material having high performance and its manufacture Pending JPS60152656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59007763A JPS60152656A (en) 1984-01-19 1984-01-19 Magnetic material having high performance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59007763A JPS60152656A (en) 1984-01-19 1984-01-19 Magnetic material having high performance and its manufacture

Publications (1)

Publication Number Publication Date
JPS60152656A true JPS60152656A (en) 1985-08-10

Family

ID=11674724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59007763A Pending JPS60152656A (en) 1984-01-19 1984-01-19 Magnetic material having high performance and its manufacture

Country Status (1)

Country Link
JP (1) JPS60152656A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243113A (en) * 1985-08-21 1987-02-25 Toshiba Corp Sintered magnetic core
JPS62252910A (en) * 1986-04-25 1987-11-04 Namiki Precision Jewel Co Ltd Manufacture of magnetically soft sintered material
US5238507A (en) * 1989-06-09 1993-08-24 Matsushita Electric Industrial Co., Ltd. Magnetic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243113A (en) * 1985-08-21 1987-02-25 Toshiba Corp Sintered magnetic core
JPS62252910A (en) * 1986-04-25 1987-11-04 Namiki Precision Jewel Co Ltd Manufacture of magnetically soft sintered material
US5238507A (en) * 1989-06-09 1993-08-24 Matsushita Electric Industrial Co., Ltd. Magnetic material
US5350628A (en) * 1989-06-09 1994-09-27 Matsushita Electric Industrial Company, Inc. Magnetic sintered composite material

Similar Documents

Publication Publication Date Title
JPS6259075B2 (en)
US2992474A (en) Magnetic tape recorder heads
JPS60152656A (en) Magnetic material having high performance and its manufacture
JPH02118056A (en) Magnetic material and magnetic head by using it
JP4218111B2 (en) Fe-Ni alloy powder and method for producing the same
JPS58100412A (en) Manufacture of soft magnetic material
JP2985011B2 (en) Sputtering target for nitrogen-containing sendust
JPS5983977A (en) High density manganese zinc ferrite
US3433630A (en) Magnetic permeability material
US3268987A (en) Method of making transducer head cores
JPS6238411B2 (en)
JPH0461102A (en) Mn-zn ferrite single crystal and magnetic head
KR970003334B1 (en) Soft magnetic alloy material
JPS62252910A (en) Manufacture of magnetically soft sintered material
JPS5813617B2 (en) Wear resistant high permeability alloy
JPS6259069B2 (en)
JPS59169108A (en) Permanent magnet
KR890004864B1 (en) Magnetic alloy for magnetic head
JPH0122228B2 (en)
KR890004866B1 (en) Amorphous alloy for audio head
JPS58177434A (en) Wear resistant magnetic alloy of high magnetic permeability
JPS5845166A (en) Ceramic composition for magnetic head
JPS58117857A (en) Magnetic material
JPS61113736A (en) Manufacture of sintered magnet of rare earth-transition metal compound
JPH064817A (en) Magnetic head