JPS60152618A - Device for performing heat treatment of material by electron beam - Google Patents

Device for performing heat treatment of material by electron beam

Info

Publication number
JPS60152618A
JPS60152618A JP747384A JP747384A JPS60152618A JP S60152618 A JPS60152618 A JP S60152618A JP 747384 A JP747384 A JP 747384A JP 747384 A JP747384 A JP 747384A JP S60152618 A JPS60152618 A JP S60152618A
Authority
JP
Japan
Prior art keywords
electron beam
current
deflection
scanning speed
deflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP747384A
Other languages
Japanese (ja)
Inventor
Hideki Kobayashi
英樹 小林
Seiichi Tsukamoto
塚本 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP747384A priority Critical patent/JPS60152618A/en
Publication of JPS60152618A publication Critical patent/JPS60152618A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To provide a titled device which can heat-treat efficiently and uniformly a material having a relatively large surface area by providing a mechanism which increases the deflecting angle of an electron beam and decreases the scanning speed of the beam. CONSTITUTION:A beam deflecting system deflects the electron beam 2 which has a linear section and passes the orbit 4 while said beam is not deflected, by using a deflecting coil 3 in the stage of scanning the surface of a semiconductor wafer 1 with said beam 2 and annealing the surface. The deflecting coil for deflection in a direction Y is separately provided (not shown in figure). The trace 5 of the electron beam irradiation after the beam 2 is deflected and scanned in the direction X is annealed into a belt shape. If reference saw-tooth wave current 21 is passed to the coil 3, the scanning speed of the beam on the wafer 1 is approximately constant or slightly increases in the peripheral part where the angle of deflection is large. If the deflecting coil current of a synthesized wave 32 superposed with sinusoidal current waveform 31 for correction is thereupon used, the change rate of the current hence the scanning speed are maximized at the deflection center 33 in the direction X and the current change rate (approximately proportional to the scanning speed) is smaller the nearer the peripheral parts 34, 35.

Description

【発明の詳細な説明】 この発明は電子ビーム、特に断面が線状の電子ビームを
走査して誘電体、半導体、金楓体などの材料の表面層全
熱処理(硬化、結晶化、アニール等)する電子ビーム装
置に関するものである。
[Detailed Description of the Invention] This invention scans an electron beam, especially an electron beam with a linear cross section, to perform total heat treatment (hardening, crystallization, annealing, etc.) of the surface layer of materials such as dielectrics, semiconductors, and gold maple bodies. The present invention relates to an electron beam device.

線状断面の電子ビームを用いて半導体を7ニールする電
子ビーム装置の例について述べれは、長さ数關の均一分
布の線状ビームを材料上で走査することにより幅数間の
帯状部分を一回走食で処理でき、処理の速度や均一性の
点で点状断面の電子ビームを用いるよりも有利である。
An example of an electron beam device that uses an electron beam with a linear cross section to anneal a semiconductor is described. In this example, a linear beam with a uniform distribution of several lengths is scanned over the material to uniformly anneal a strip of several widths. Processing can be performed by circular eclipse, which is more advantageous than using an electron beam with a point-shaped cross section in terms of processing speed and uniformity.

しかしながら線状断面の電子ビームを用いる場合は比較
的大き□なビーム電流が必要となることなどにより電子
ビーム通路中での電子ビームの断面寸法は一般に大きく
(太く)なり、これを走査するビーム偏向系の電界ま−
fcは磁界による偏向収−が大きくなる傾向となる。そ
して材料上の無偏向位置(中央)での電子ビームに対し
偏向位置(周辺寄り)での電子ビームは少しぼけ気味と
なりビーム電流密度が下が9処理が不充分となることが
ある。こうなると材料の中央部と周辺部とでアニールの
程屁が不均一になる。
However, when using an electron beam with a linear cross section, a relatively large □ beam current is required, so the cross-sectional dimension of the electron beam in the electron beam path generally becomes large (thick), and the beam deflection that scans this The electric field of the system
As for fc, the deflection convergence due to the magnetic field tends to increase. The electron beam at the deflected position (near the periphery) is a little blurred compared to the electron beam at the non-deflected position (center) on the material, and if the beam current density is low, the processing may be insufficient. In this case, the degree of annealing becomes uneven between the center and the periphery of the material.

このような場合に均一なアニールを行わせる一つの方法
として偏向角(材料上の電子ビーム照射位置)によりビ
ーム集束系の電子レンズ作用を変化させることが考えら
れるが、レンズ作用のv4整だけでは偏向収差を相殺で
きないとか磁気レンズのとき電子ビーム断面の趣方向の
回転が生するなどで光分な均一性が実現し難いこともお
る。
One way to achieve uniform annealing in such cases is to change the electron lens action of the beam focusing system by changing the deflection angle (electron beam irradiation position on the material). In some cases, it is difficult to achieve optical uniformity because deflection aberration cannot be canceled out, or when a magnetic lens is used, rotation of the cross section of the electron beam occurs in the direction of the beam.

本発明はこれらの欠点を除去するため、電子ビーム偏向
角が増重とビーム走食速IF、を遅くする機*1設けた
もので、以下図面について詳細に説明する。
In order to eliminate these drawbacks, the present invention provides a device*1 for slowing down the electron beam deflection angle and beam speed IF, and will be described in detail below with reference to the drawings.

第1図は半導体ウェーハlの表面を線状断面の電子ビー
ム2で走査してアニールする例を示す。
FIG. 1 shows an example in which the surface of a semiconductor wafer 1 is annealed by scanning it with an electron beam 2 having a linear cross section.

ビーム偏向系は偏向コイル3t−用い無偏向時に図の4
の軌道全通る電子ビームを図のX方向に偏向する。図の
Y方向に偏向する偏向コイルは別に設ける(図示せず)
。電子ビーム2t−X方向に偏向走査した電子ビーム照
射跡5が帯状にアニールされる。
The beam deflection system uses 3t deflection coils and is 4 in the figure when no deflection is used.
The electron beam that passes through the entire orbit is deflected in the X direction in the figure. A deflection coil that deflects in the Y direction in the figure is provided separately (not shown).
. The electron beam irradiation trace 5 deflected and scanned in the electron beam 2t-X direction is annealed in a band shape.

第2図の波形図で示す基準鋸薗状欧電流21を第1図の
偏向コイル3に流すとウェーハl上での電子ビーム2の
走査速度ははlよ一定ないし偏向角の大きな周辺部でや
や増大する。そこで第3図(atの袖正用正弦改状′#
Lt/rt、匝形Wlj重畳し、同図(blの合成波3
2の偏向コイル電流を用いるとX方向の偏向中心33で
この電流の変化率、従って走査速度が最大となり、周辺
部34.35に近づくほど電流変化率(はぼ走査速度に
比例)が小さくなる。本発明の一実施例ではこの波形3
2の電流を第1図の偏向コイルに流し、X方向の偏向角
の増大と共に走査速度全車さくしている。
When the reference sawtooth current 21 shown in the waveform diagram of FIG. 2 is applied to the deflection coil 3 shown in FIG. Increases slightly. Therefore, Fig. 3 (modified sine for the sleeve of at)
Lt/rt, box-shaped Wlj are superimposed, and the same figure (bl composite wave 3
When a deflection coil current of 2 is used, the rate of change of this current, and therefore the scanning speed, is maximum at the deflection center 33 in the X direction, and the closer to the periphery 34, 35 the smaller the rate of current change (proportional to the scanning speed) becomes. . In one embodiment of the present invention, this waveform 3
A current of 2 is applied to the deflection coil shown in FIG. 1, and as the deflection angle in the X direction increases, the scanning speed is decreased overall.

第1図のウェーハl上でY方向偏向コイルへ一定電流會
流して帯状域6をアニールするときはY方向への偏向角
に応じて走査速度を下げるため、第2図の波形22のよ
うに勾配をゆるやかにした基準鋸歯状波倉出い、以下同
様にして補正用波形との合成波を作ってX方向偏向コイ
ル3の電流波形とする。
When a constant current is applied to the Y-direction deflection coil on the wafer l in FIG. 1 to anneal the band region 6, the scanning speed is reduced according to the Y-direction deflection angle, so the waveform 22 in FIG. A reference sawtooth waveform with a gentle slope is generated, and a composite wave with a correction waveform is generated in the same manner and used as the current waveform of the X-direction deflection coil 3.

なお、偏向コイル3に合成波電流を流すのは一般の電気
回路技術で容易に実施できるのは熱論であるが、補正用
波形の電流あるいは電圧全偏向コイル3とは別の補正用
偏量コイルまたは静電偏向電極に供給するように構成し
てもよい。第1図の実施例では電子ビーム2を図の左方
から右方へ走査するときにウェーハlのアニールを行い
、帰りは充分短い時間(帰線期間)に電子ビーム2を元
の位置に戻すようにして帰線期間の7ニール効果は無視
できるようにしている。第2図、第3図の波形図で23
.24.36がその帰線期間を示す。
It should be noted that although it is a matter of theory that flowing a composite wave current through the deflection coil 3 can be easily implemented using general electric circuit technology, it is possible to use a correction deflection coil separate from the correction waveform current or voltage total deflection coil 3. Alternatively, it may be configured to be supplied to an electrostatic deflection electrode. In the embodiment shown in FIG. 1, the wafer l is annealed when the electron beam 2 is scanned from left to right in the figure, and the electron beam 2 is returned to its original position in a sufficiently short time (retrace period) on the way back. In this way, the 7 Neil effect during the retrace period can be ignored. 23 in the waveform diagrams in Figures 2 and 3.
.. 24.36 indicates the retrace period.

次はY方向へ少しずらして同様な処理を行v>、 J胞
次りエーハlの所要域全面を処理して行く。
Next, the same process is performed with a slight shift in the Y direction, and the entire required area of the next area is processed.

偏向コイル電流波形や偏向用電磁界を鋸歯状波と補正用
波形との合成により形成するのでなく、コンピュータで
指令波形を作りそれにより所要の電流波形を偏向コイル
に与えるなどの機構を用いてもよい。これらの偏向補正
に電子レンズ補正等を併用してもよいことは勿論である
Instead of forming the deflection coil current waveform and the deflection electromagnetic field by combining the sawtooth wave and the correction waveform, it is also possible to use a mechanism such as creating a command waveform on a computer and then applying the desired current waveform to the deflection coil. good. Of course, electronic lens correction or the like may be used together with these deflection corrections.

以上の実施例で説明したように、偏向角の増加と共に電
子ビームの走査速度を減少させるようにした本発明の装
置では線状断面の電子ビームを用い−fc場合の偏向収
差(ぼけ)の発生にもかかわらず偏向角の大きな周辺部
での熱処理程度の低下現象をなくすことができ、比較的
大きな表面積の材料を能率よくかつ均一に熱処理でき、
多大な実用的効果が得られる。
As explained in the above embodiments, the apparatus of the present invention, in which the scanning speed of the electron beam is decreased as the deflection angle increases, uses an electron beam with a linear cross section, and the occurrence of deflection aberration (blur) in the case of -fc. Despite this, it is possible to eliminate the phenomenon of deterioration in the degree of heat treatment at the periphery where the deflection angle is large, and it is possible to efficiently and uniformly heat treat materials with a relatively large surface area.
Great practical effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

5− 第1図は本発明装置の一実施例における被処理材料(半
導体ウェーハ)付近の斜視図、第2図と第3図(al 
、 (blは偏向コイル電流の波形例でめる。 l・・・・・・半導体ウェーハ、2・・・・・・電子ビ
ーム、3・・・・・・偏向コイル、5・・団・電子ビー
ム照射跡、21゜22・・・・・・基準鋸歯状波電流波
形、31・・す・・補正用正弦波状電流波形、32・・
・・・・偏向コイル電流波形(合成波)。 6−
5- Fig. 1 is a perspective view of the vicinity of the material to be processed (semiconductor wafer) in an embodiment of the apparatus of the present invention, and Figs. 2 and 3 (al.
, (bl is an example of the waveform of the deflection coil current. l... Semiconductor wafer, 2... Electron beam, 3... Deflection coil, 5... Group electron Beam irradiation trace, 21°22...Reference sawtooth wave current waveform, 31...Sine wave current waveform for correction, 32...
...Deflection coil current waveform (composite wave). 6-

Claims (1)

【特許請求の範囲】[Claims] 電子ビームを傾向する角度の増大と共に電子ビームO定
食速度を遅くする機wt−備えていることを特徴とする
電子ビームにより材料の熱処理を行う装置。
1. An apparatus for heat-treating materials by means of an electron beam, characterized in that it is equipped with a mechanism for slowing down the rate of the electron beam O while increasing the angle at which the electron beam is inclined.
JP747384A 1984-01-19 1984-01-19 Device for performing heat treatment of material by electron beam Pending JPS60152618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP747384A JPS60152618A (en) 1984-01-19 1984-01-19 Device for performing heat treatment of material by electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP747384A JPS60152618A (en) 1984-01-19 1984-01-19 Device for performing heat treatment of material by electron beam

Publications (1)

Publication Number Publication Date
JPS60152618A true JPS60152618A (en) 1985-08-10

Family

ID=11666752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP747384A Pending JPS60152618A (en) 1984-01-19 1984-01-19 Device for performing heat treatment of material by electron beam

Country Status (1)

Country Link
JP (1) JPS60152618A (en)

Similar Documents

Publication Publication Date Title
US20040232350A1 (en) Ion implanting method and apparatus
JP7474255B2 (en) Ion implantation systems and methods
JPH06196118A (en) Apparatus and method for injection of ion beam
JPS60152618A (en) Device for performing heat treatment of material by electron beam
JP2006156209A (en) Ion beam/charged particle beam irradiator
JPS60152619A (en) Device for performing heat treatment of material by electron beam
JP3106214B2 (en) Method and apparatus for implanting an ion beam
JP2850411B2 (en) Shielding mask for linear electron beam
JPH05264797A (en) Method and device for beam irradiation
JPS62245619A (en) Electron beam annealing apparatus
JP2870858B2 (en) Linear electron beam irradiation method and apparatus
JPS6324536A (en) Apparatus and method for ion implantation
TW514969B (en) Electron beam exposure apparatus and electron beam exposure method
JP2712487B2 (en) Electron beam exposure apparatus and electron beam exposure method
JPH08315765A (en) Electrostatic scan type ion implantation method
JPS60249318A (en) Ion micro beam implantation
JPS5984424A (en) Energy radiation equipment
JPH0389440A (en) Electron beam device having linear source
JPH0727864B2 (en) Electron beam heating device
JP3373185B2 (en) Charged beam writing apparatus and charged beam writing method
JP2003332216A (en) Electron beam exposure device
JP3458628B2 (en) Electron beam lithography system
JPS605513A (en) Electron beam annealing device
JPS63200455A (en) Linear electron beam device
JP3421100B2 (en) Ion beam irradiation equipment