JPS5984424A - Energy radiation equipment - Google Patents

Energy radiation equipment

Info

Publication number
JPS5984424A
JPS5984424A JP19411682A JP19411682A JPS5984424A JP S5984424 A JPS5984424 A JP S5984424A JP 19411682 A JP19411682 A JP 19411682A JP 19411682 A JP19411682 A JP 19411682A JP S5984424 A JPS5984424 A JP S5984424A
Authority
JP
Japan
Prior art keywords
charged particle
lens
potential point
point
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19411682A
Other languages
Japanese (ja)
Inventor
Koichi Kugimiya
公一 釘宮
Shigenobu Akiyama
秋山 重信
Shigeji Yoshii
吉井 成次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19411682A priority Critical patent/JPS5984424A/en
Publication of JPS5984424A publication Critical patent/JPS5984424A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain an energy radiation equipment with side beam by a method wherein an obstacle potential point is provided at one point on a center axis of an electro-optical system and charged particle flux passing near the center is refracted outward and the charged particle beam is made to irradiate the target through a Quonset hut shape electron lens. CONSTITUTION:Charged particles radiated by a charged particle source 21 are squeezed by an electronic lens 22 and pass through a pinhole 23 and are radiated upon a specimen 25 such as a semiconductor substrate by an electronic lens 24. With this configuration, an obstacle potential point 26 is added between the lens 22 and the pinhole 23 and the charged particle passing near the needle tip 27 is bent outward and projects the shadow of the needle tip 27 enlarged downward. Moreover, a Quonset hut shape static lens is provided below the lens 24 and the charged particles are strongly squeezed to one direction to make ring shape beam form into linear distribution and into a trapezoidal distribution. With this configuration, the output power is not reduced and no thermal damage affects the substrate and the processing time is shortened by making the beam width wider.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はエネルギ照射装置とくに高エネルギビーム照射
による表面層の改質等に用いる装置に関し、半導体基板
表面の多結晶、非晶質層の電子ビームアニール等に効用
が犬である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to energy irradiation equipment, particularly equipment used for modifying surface layers by high-energy beam irradiation, and for electron beam annealing of polycrystalline and amorphous layers on the surface of semiconductor substrates. etc. is a dog.

従来例の構成とその問題点 電子ビーム照射装置は、従来、表面焼入れや溶接に用い
られており、半導体装置などへの応用においては、サブ
ミクロンの加工といった超精度の点で種々の問題がある
Conventional configuration and its problems Electron beam irradiation equipment has traditionally been used for surface hardening and welding, and when applied to semiconductor devices, there are various problems in terms of ultra-precision such as submicron processing. .

このような電子照射装置よりの出力エネルギ分布1は第
1図(2L)に示すようにガウス分布をしており、第1
図(b)の平面分布図にも示すように中心部2のピーク
が非常に高いことが知られている。たとえば第2図に示
すようなa属あるいは半導体基板11上の厚さ0.5μ
m程度の薄い絶縁膜12に形成した厚さ0.t5μm程
度の多結晶/リコン層13の再結晶化には非常に大きな
欠点がある。即ち、第1図のごとき電子ビームではピー
ク値が高く、そのエネルギが深く基板11に達し、熱歪
セ欠陥を作成する。照射電子ビームのピーク値を低くす
ると多結晶シリコン層13が融解しないか、又、融解中
が非常に狭いことになり具合が悪い。又、全面を表面処
理をした場合には、第3図に示すように、多結晶シリコ
ン層13は一様に処理されているようでも、深さ方向に
みると、走行した各電子ビーム14のピークに対応して
熱処理部分16が波状に深く入っており、非常に不均等
であることが分る。
The output energy distribution 1 from such an electron irradiation device has a Gaussian distribution as shown in Fig. 1 (2L), and the first
It is known that the peak at the center 2 is very high, as shown in the planar distribution diagram in Figure (b). For example, as shown in FIG.
A thin insulating film 12 with a thickness of about 0.0 m is formed. Recrystallization of the polycrystalline/recon layer 13 with a thickness of about 5 μm has a very large drawback. That is, the electron beam as shown in FIG. 1 has a high peak value and its energy reaches deeply into the substrate 11, creating thermal strain defects. If the peak value of the irradiated electron beam is lowered, the polycrystalline silicon layer 13 will not melt or the melting period will be very narrow, which is undesirable. Furthermore, when the entire surface is surface-treated, as shown in FIG. 3, even though the polycrystalline silicon layer 13 appears to be uniformly treated, when viewed in the depth direction, each electron beam 14 that has traveled It can be seen that the heat-treated portion 16 has a deep wavy shape corresponding to the peak, and is very uneven.

発明の目的 本発明は、荷電粒子束の出力を低下せしめずに、効率よ
く巾広い、エネルギ分布の均等々荷電粒子束を実現し、
基板深くに熱歪を加えず、巾広い照射を行いうる荷電粒
子によるエネルギ照射装置を提供するものである。
Purpose of the Invention The present invention efficiently realizes a wide and evenly distributed charged particle flux without reducing the output of the charged particle flux,
An object of the present invention is to provide an energy irradiation device using charged particles that can perform irradiation over a wide range without applying thermal strain deep into a substrate.

発明の構成 本発明は、電子光学系の途中に、障害電位点さらに望ま
しくはカマボコ型電子レンズを設けることによって荷電
粒子束中央部分のエネルギ 密度を低下させてエネルギ
 分布を広範囲に均一化して目的物に照射するものであ
る。
Structure of the Invention The present invention provides a faulty potential point, preferably a semicylindrical electron lens, in the middle of an electron optical system to lower the energy density in the central part of the charged particle flux and uniformize the energy distribution over a wide range. It irradiates the area.

実施例の説明 第4図に示すように、荷電粒子源21より出た荷電粒子
は、電子レンズ22によって集束され、ピンホール23
を通過し、次の電子レンズ24によって半導体基板等の
試料26の上に照射される〇電子レンズ24を偏向させ
ることによって、試料26上に荷電粒子束を移動せしめ
る。この時、゛試料25上のエネルギ分布は一般によく
知られているように、第1図に示すガウス分布をしてい
る。
DESCRIPTION OF EMBODIMENTS As shown in FIG. 4, charged particles emitted from a charged particle source 21 are focused by an electron lens 22,
The charged particle flux is then irradiated onto a sample 26 such as a semiconductor substrate by the next electron lens 24. By deflecting the electron lens 24, the charged particle flux is moved onto the sample 26. At this time, the energy distribution on the sample 25 has a Gaussian distribution as shown in FIG. 1, as is generally well known.

この時、途中に、障害電位点26を設ける。この電位点
26は例えば、ビーム中央部分に小さな障害物を設け、
これを細い絶縁体で支持してチャージアップさせるか、
又は全体を導体で作り荷電粒子源21と同方向の電荷を
帯びさせることによって形成し、その針先27近辺を通
過する荷電粒子を強く反発して外側へ曲げる。なお、障
害電位点26の遠くを通る荷電粒子は影響を受けない。
At this time, a fault potential point 26 is provided in the middle. This potential point 26 can be achieved by, for example, providing a small obstacle in the center of the beam.
Either support this with a thin insulator and charge it up.
Alternatively, it may be formed entirely of a conductor and charged in the same direction as the charged particle source 21, and the charged particles passing near the needle tip 27 are strongly repelled and bent outward. Note that charged particles passing far from the fault potential point 26 are not affected.

従って、針先27の影が拡大して下に投影されることに
なり、又、針先27に荷電粒子が吸収されることがない
だめ、出力の低下とはならない。この時、得られる試料
面26上の出力エネルギ分布31は第6図(a)に示さ
れる形状であり、最強部32が輪状をしている。すなわ
ち、このビームは第1図と比べ中心部分のエネルギ が
低下し広範囲に均一なエネルギ分布を有していることが
わかる。次にさらに、電子レンズ24の後段に第4図に
、示すとどく例えば平行板より成る静電レンズ(カマボ
コ型電子レンズ)28を挿入すれば、その方向が強く集
束され、第6図に示す輪状のビτム形状が第5図(b)
に示すように長円状についには線状の分布31′となる
。その出力エネルギ分布は、台形に近くなっており、所
期の目的を達しており、くり返してピンチをずらして照
射する場合に特に有効である。
Therefore, the shadow of the needle tip 27 is enlarged and projected downward, and since charged particles are not absorbed by the needle tip 27, the output does not decrease. At this time, the resulting output energy distribution 31 on the sample surface 26 has the shape shown in FIG. 6(a), with the strongest portion 32 having a ring shape. That is, it can be seen that this beam has lower energy in the center compared to FIG. 1 and has a uniform energy distribution over a wide range. Next, if an electrostatic lens (cylindrical electron lens) 28 made of, for example, a parallel plate is inserted after the electron lens 24 as shown in FIG. The beam shape of τ is shown in Fig. 5(b).
As shown in FIG. 3, the distribution becomes elliptical and finally becomes linear 31'. Its output energy distribution is nearly trapezoidal, which serves the intended purpose, and is particularly effective in repeated pinch-shifted irradiation.

本発明の効果を、条件の非常に厳しい半導体素子に適用
した結果でもって説明する。
The effects of the present invention will be explained with reference to the results of application to a semiconductor element under very severe conditions.

試料としては、第2図に示すようにシリコン基板11上
にQ、5μmの酸化膜12を形成し、さらに0.5μm
厚の多結晶シリコン膜13を形成したものを用いた。
As a sample, as shown in FIG.
A film in which a thick polycrystalline silicon film 13 was formed was used.

従来装置としては、低圧走査電子顕微鏡を改装し、5K
V、2mAを取り出せるようにし、走査速度を250 
mm、/sec に固定した。この時に得られる出力エ
ネルギ分布は、第1図に示すガウス分布を有している。
The conventional equipment is a refurbished low-pressure scanning electron microscope, and a 5K
V, 2mA can be taken out, and the scanning speed is set to 250.
It was fixed at mm,/sec. The output energy distribution obtained at this time has a Gaussian distribution as shown in FIG.

試料を焦点位置より、約300μm上側に固定し、表面
層(シリコン膜13)を熔融した所、その巾は約7μm
であった。次に横方向へビーム3μmずつ送りながら、
試料面全面を順次熔融した後、試料を割った所、通常の
ように骨間せず貝から状に割れた。これは大きな熱歪を
受けていることを示す。さらに、破面を斜めに研磨し、
いわゆるティンを行った所、第3図に示すような不均一
性な部分16が観測された0その部分16の一番深い所
で約1μmあった。
When the sample is fixed approximately 300 μm above the focal point position and the surface layer (silicon film 13) is melted, its width is approximately 7 μm.
Met. Next, while sending the beam horizontally by 3 μm,
After sequentially melting the entire surface of the sample, when the sample was broken, it did not break between the bones as usual, but in the shape of a shell. This indicates that it is undergoing large thermal strain. Furthermore, the fracture surface is polished diagonally,
When so-called tinting was performed, a non-uniform portion 16 as shown in FIG. 3 was observed.The deepest part of the portion 16 was about 1 μm.

次に、第4図に示す障害電位点26としてセラミックフ
ァイバーで支えられた鉄心を挿入した所、出力エネルギ
分布は、第5図のように変化した。
Next, when an iron core supported by ceramic fibers was inserted as the fault potential point 26 shown in FIG. 4, the output energy distribution changed as shown in FIG. 5.

さらに平板の静電場500Vを加えた所、第6図に示す
ように線状のビームとなり、台形状のエネルギ分布が、
試料面上で観察された。
When a flat plate electrostatic field of 500V is applied, the beam becomes a linear beam as shown in Figure 6, and the trapezoidal energy distribution becomes
observed on the sample surface.

これらのビームを前述の条件で試料面上を走査させた所
、熔融中は約25μmと3倍以上になっていた。又、骨
間も生じ、熱歪が基板に達していないことが判明した。
When these beams were scanned over the sample surface under the above-mentioned conditions, the diameter during melting was approximately 25 μm, which was more than three times as large. In addition, it was found that interosseous spaces were also formed, indicating that thermal strain did not reach the substrate.

熔融中が広くなっているだめに、横方向の送りは約20
μmと大きくとっても、試料表面上の多結晶シリコンは
全面融解しており、しかも均一性が良くなった。
Because the melting area is wide, the horizontal feed is about 20
Even though it was as large as μm, the polycrystalline silicon on the sample surface was completely melted, and the uniformity was improved.

発明の効果 以上の説明で明らかなように、本発明によれば、出力エ
ネルギの低下を招くことがなぐ、又、基板に熱損傷を与
えることのないビーム巾の広いエネルギ照射装置を得た
。そして、ビーム巾が広いことにより、走査の横方向へ
の送り巾が広くとれ、従って処理時間が短縮され、又、
面精度が向上するといった長所もある。なお、本発明は
シリコンに限らず、全ての表面処理に適用ができること
、又、電子ビームに限らず、荷電粒子も適用できること
は明らかである。
Effects of the Invention As is clear from the above description, the present invention provides an energy irradiation device with a wide beam width that does not cause a decrease in output energy and does not cause thermal damage to the substrate. Since the beam width is wide, the scanning width in the horizontal direction can be widened, and therefore the processing time is shortened.
It also has the advantage of improving surface accuracy. It is clear that the present invention is applicable not only to silicon but also to all surface treatments, and is also applicable not only to electron beams but also to charged particles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1&)、+1))は、従来の出力エネルギ分布の
正面分布図、平面分布図、第2図は試料の断面構造図、
第3図は従来のエネルギ照射の結果得られた試料断面の
熱処理不均等状況を示す断面図、第4図は本発明の一実
施例のエネルギ照射装置の概略構成図、第6図(a)、
 (b)は本発明で得た出力エネルギ分布の正面分布図
、平面分布図、第6図(IL)、 (b)は本発明の他
のエネルギ分布の正面分布図、平面分布図である。 21・・・・・・荷電粒子源、22.24・・・・・・
電子レンズ、25・・・・・・試料、26・・・・・・
障害電位点、28・・・・・・カマボコ型電子レンズ、
31.31’・旧・・エネルギ分布。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名花 
1 図 ((L)           ’シ2第2図 第3図 第4図 第5図    第6図
Figure 1 1&), +1)) is a frontal distribution diagram and a plane distribution diagram of the conventional output energy distribution, Figure 2 is a cross-sectional structural diagram of the sample,
FIG. 3 is a cross-sectional view showing uneven heat treatment of a sample cross section obtained as a result of conventional energy irradiation, FIG. 4 is a schematic configuration diagram of an energy irradiation device according to an embodiment of the present invention, and FIG. 6(a) ,
(b) is a front distribution diagram and a plane distribution diagram of the output energy distribution obtained by the present invention, and FIG. 6 (IL) is a front distribution diagram and a plane distribution diagram of another energy distribution of the present invention. 21...Charged particle source, 22.24...
Electron lens, 25... Sample, 26...
Fault potential point, 28...Horse-shaped electron lens,
31.31'・Old・・Energy distribution. Name of agent: Patent attorney Toshio Nakao and one other person
1 Figure ((L)' 2 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)電子光学系路中心軸の一点に障害電位点を設け、
前記中心軸附近を通過する荷電粒子束を外側へ屈曲させ
て荷電粒子ビームを目的物に照射することを特徴とする
エネルギ照射装置。
(1) A fault potential point is provided at one point on the central axis of the electron optical system path,
An energy irradiation device characterized by irradiating a target object with a charged particle beam by bending a charged particle bundle passing near the central axis outward.
(2)電子光学系路中心軸の一点に障害電位点を設け、
前記中心軸附近を通過する荷電粒子束を外側へ屈曲させ
、さらに、カマボコ型電子レンズを通すことによって、
一方向に圧縮し長円状にした形状のエネルギ分布を有し
た荷電粒子ビームを目的物に照射することを特徴とする
エネルギ照射装置。
(2) A fault potential point is provided at one point on the central axis of the electron optical system path,
By bending the charged particle flux passing near the central axis outward and passing it through a semicylindrical electron lens,
An energy irradiation device characterized by irradiating a target object with a charged particle beam having an energy distribution compressed in one direction into an oval shape.
JP19411682A 1982-11-04 1982-11-04 Energy radiation equipment Pending JPS5984424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19411682A JPS5984424A (en) 1982-11-04 1982-11-04 Energy radiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19411682A JPS5984424A (en) 1982-11-04 1982-11-04 Energy radiation equipment

Publications (1)

Publication Number Publication Date
JPS5984424A true JPS5984424A (en) 1984-05-16

Family

ID=16319181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19411682A Pending JPS5984424A (en) 1982-11-04 1982-11-04 Energy radiation equipment

Country Status (1)

Country Link
JP (1) JPS5984424A (en)

Similar Documents

Publication Publication Date Title
JPH0220024A (en) Manufacture of thyristor
JPS5984424A (en) Energy radiation equipment
JPS62133721A (en) Substrate holder
JPS6234131B2 (en)
JPH0528956A (en) Ion implanter
JPH0619111B2 (en) Laser scanning device
JPS62145718A (en) Manufacture of single crystal semiconductor layer
JP2850411B2 (en) Shielding mask for linear electron beam
JP3334665B2 (en) Sample preparation apparatus and sample preparation method for transmission electron microscope
JP2713498B2 (en) Energy beam processing method
JPH0727864B2 (en) Electron beam heating device
JPH0779081B2 (en) Method for manufacturing semiconductor single crystal layer
JPS6264036A (en) Electron beam apparatus
JPS60152618A (en) Device for performing heat treatment of material by electron beam
JP2995138B2 (en) X-ray irradiation crystallization method and crystallization apparatus
JPH09161717A (en) Ion implantation device
JPS62245619A (en) Electron beam annealing apparatus
JPS63200455A (en) Linear electron beam device
JPH0542099B2 (en)
JPH06302535A (en) Annealing method with electron beam
JPH0747051B2 (en) Beam expanding device for charged heavy particle beam by deflecting static magnetic field
JPS58131731A (en) Irradiation of energy rays
JPH0666256B2 (en) Linear electron beam annealing device
JPS63200454A (en) Linear electron beam device
JPH06252086A (en) Semiconductor manufacturing device