JPS6015254B2 - light switch - Google Patents

light switch

Info

Publication number
JPS6015254B2
JPS6015254B2 JP12019380A JP12019380A JPS6015254B2 JP S6015254 B2 JPS6015254 B2 JP S6015254B2 JP 12019380 A JP12019380 A JP 12019380A JP 12019380 A JP12019380 A JP 12019380A JP S6015254 B2 JPS6015254 B2 JP S6015254B2
Authority
JP
Japan
Prior art keywords
thin plate
polarized light
layer
light component
phase matching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12019380A
Other languages
Japanese (ja)
Other versions
JPS5745518A (en
Inventor
正孝 白崎
武 小保方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12019380A priority Critical patent/JPS6015254B2/en
Priority to CA000373260A priority patent/CA1158082A/en
Priority to DE8181301333T priority patent/DE3175396D1/en
Priority to DE198181301333T priority patent/DE37263T1/en
Priority to EP81301333A priority patent/EP0037263B1/en
Priority to US06/249,014 priority patent/US4387953A/en
Publication of JPS5745518A publication Critical patent/JPS5745518A/en
Publication of JPS6015254B2 publication Critical patent/JPS6015254B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements

Description

【発明の詳細な説明】 本発明は、透明な電気光学結晶薄板中を光ビームが反射
を繰返しながら導波され、かつ該反射によって生じるP
偏光成分とS偏光成分との位相ずれを実質上等しくする
ようにした光スイッチ特にその電極構成に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method in which a light beam is guided through a transparent electro-optic crystal thin plate while being repeatedly reflected, and the P generated by the reflection is
The present invention relates to an optical switch in which the phase shift between a polarized light component and an S-polarized light component is made substantially equal, and particularly to its electrode structure.

従来から電気光学結晶の光導波体を用いて例えば光スイ
ッチを含む光変調器を構成することが行なわれる。
2. Description of the Related Art Conventionally, electro-optic crystal optical waveguides have been used to construct optical modulators including, for example, optical switches.

第1図はその概略構成を示し、1は電気光学結晶薄板、
2,2′は該薄板の例えば上下表面に設けた電極、3は
電源、4は偏光子、5は検光子である。このような光変
調器は、電極2,2′間に電圧Vを印加することによっ
て簿板1の屈折率を変え、偏光を制御する。
Figure 1 shows its schematic configuration, where 1 is an electro-optic crystal thin plate;
Reference numerals 2 and 2' denote electrodes provided on, for example, the upper and lower surfaces of the thin plate, 3 a power source, 4 a polarizer, and 5 an analyzer. Such an optical modulator changes the refractive index of the plate 1 by applying a voltage V between the electrodes 2 and 2' to control polarization.

例えば光スイッチの場合は偏光子4で入射光を所定方行
の偏光とし、薄板1でその偏光方向を変え、ある方向の
偏光とそれとは9ぴをなす他の方向の偏光を分離する検
光子5により薄板1を通って来た偏光をスイッチングす
る。この場合薄板1で所望の偏光を得るためには、薄板
1の厚さdを小にして電界を大にするか、長手方向(光
導波方向)の距離1を大にするか、或いは電源3の電圧
Vを大に選ぶ必要がある。一般にはこの種の素子は数千
Vで動作させるが、装置の小型化、低廉化などのために
は電源電圧Vは可及的に低いことが望まれる。電源電圧
を小にして上記所望の偏光を得ようとすると、例えば厚
さdを60〃机、距離1を2伽程度に選ぶことが必要と
なり、値1/dが非常に大となる。この様な条件下で光
ビームLを薄板1の端面laに対して直角に入射すると
、光ビームの入射蓬に反比例して導波過程のビーム径が
拡大する煩向をもつので、必然的に薄板1の上、下両表
面に衝突し、そこで反射し、これを繰り返すことになる
。そして、この反射時に光ビーム中に含まれるP偏光成
分とS偏光成分の位相ずれに差が生じる。なおこの理由
で本素子では厚みdを4・にすることは止むを得ないと
しても、幅Wは充分大にしておく。第2図は入射角を横
軸にとって示したP偏光成分とS偏光成分の各入射光と
反射光との位相ずれを表わしている。上記簿板1内にお
いて生じる反射は入射角が90o近傍になるものである
が、第2図から判る如く、入射角が87程度であるとし
ても、1回の反射によってP偏光成分とS偏光成分との
各位相差には差△が生じ、そして反射回数が増加するに
つれて上記影響が大となる。このため第1図の構造では
上記値1/dを大に選ぶことに限界があり、位相制御量
を増加するためには上記電源電圧を大にする必要が生じ
る。
For example, in the case of an optical switch, the polarizer 4 polarizes the incident light in a predetermined direction, the thin plate 1 changes the polarization direction, and the analyzer separates the polarized light in a certain direction from the polarized light in another direction that is 9 points away from it. 5 switches the polarized light passing through the thin plate 1. In this case, in order to obtain the desired polarization with the thin plate 1, the thickness d of the thin plate 1 must be reduced to increase the electric field, the distance 1 in the longitudinal direction (light waveguide direction) must be increased, or the power source 3 It is necessary to choose a large voltage V. Generally, this type of element is operated at several thousand volts, but in order to make the device smaller and cheaper, it is desirable that the power supply voltage V be as low as possible. If an attempt is made to obtain the desired polarized light by reducing the power supply voltage, it is necessary to select the thickness d to be, for example, 60° and the distance 1 to be approximately 2°, resulting in a very large value 1/d. Under such conditions, if the light beam L is incident at right angles to the end surface la of the thin plate 1, the beam diameter in the waveguide process tends to expand in inverse proportion to the incident angle of the light beam, so it is inevitable that The light collides with both the upper and lower surfaces of the thin plate 1, is reflected there, and this process is repeated. Then, upon this reflection, a difference occurs in the phase shift between the P-polarized light component and the S-polarized light component contained in the light beam. For this reason, although it is unavoidable to set the thickness d to 4 mm in this device, the width W is made sufficiently large. FIG. 2 shows the phase shift between the incident light and reflected light of the P-polarized light component and the S-polarized light component, with the horizontal axis representing the incident angle. The reflection that occurs inside the book plate 1 has an incident angle of around 90 degrees, but as can be seen from Figure 2, even if the incident angle is about 87 degrees, a single reflection produces a P polarized light component and an S polarized light component. A difference Δ is generated in each phase difference between the two, and the above influence becomes larger as the number of reflections increases. For this reason, in the structure of FIG. 1, there is a limit to choosing the value 1/d to a large value, and in order to increase the amount of phase control, it is necessary to increase the power supply voltage.

しかし、低電圧化は勿論重要なことである。この低電圧
化についてはシングルモードの光に対しては光集積回路
が開発されており、これには数Vの電圧で駆動できるも
のがある。しかし、これを本発明が意図するマルチモー
ルドの光に適用することは困難なので、他の方法により
低電圧化を図る必要が生じる。本発明者等は先にマルチ
モードに適用できる低電圧駆動型の光導波装置を提案し
た。
However, lowering the voltage is of course important. In order to reduce the voltage, optical integrated circuits have been developed for single-mode light, and some of these circuits can be driven with a voltage of several volts. However, since it is difficult to apply this to the multi-molded light intended by the present invention, it is necessary to reduce the voltage by other methods. The present inventors previously proposed a low voltage drive type optical waveguide device that can be applied to multiple modes.

これは電気光学結晶薄板の上下両表面に多層構造の位相
整合膜を付着してP波、S波の各位相ずれに差がないよ
うにしたものである。この原理は特脇昭55−4077
6号の明細書に記載してあるが、概述すると次のように
なる。第3図に示す如く屈折率n,の物質と屈折率n2
(n,>払)の物質との境界6に対して入射角のをもっ
て入射されたP偏光成分とS偏光成分との夫夫の全反射
による位相ずれ△pと△sとは次の如く表わされる。
This is achieved by attaching a multilayered phase matching film to both the upper and lower surfaces of an electro-optic crystal thin plate so that there is no difference in the phase shifts of P waves and S waves. This principle is based on Tokuwaki Sho 55-4077.
Although it is stated in the specification of No. 6, it can be summarized as follows. As shown in Figure 3, a substance with a refractive index n and a refractive index n2
The phase shifts △p and △s due to total internal reflection between the P-polarized light component and the S-polarized light component that are incident on the boundary 6 with the substance (n, >) at an incident angle are expressed as follows. It will be done.

(但しsinの。(However, sin.

in2/n.)一方第4図図示の如く、屈折率〜の透
明体1に対して屈折率n,(n,>〜)の薄膜7を厚さ
tだけ設けかつその上に屈折率w(山<比<n,)の薄
膜8を被着させたときに生じる1往復反射時の光行格長
付加による位相ずれ△′は、ビームの進行方向を垂直に
同位相面があるとして、△′:物{器〆今−他nのSi
n◇/令} .・・.・物となり、
nosjnJ=n.sinのなる関係式を代入して整理
すれば、△′=今穿2侭の ……【31 となる。
in2/n. ) As shown in FIG. The phase shift △′ due to the addition of the optical case length during one round trip reflection when the thin film 8 of n, ) is deposited is calculated as follows: △′: object vessel〆now - other n's Si
n◇/Rei} .・・・.・Becomes a thing,
nosjnJ=n. Substituting the relational expression of sin and sorting it out, we get △'=Imaku2侭...[31].

この場鍔‐o《1として1次式で近似すると、tanの
、cosの、sinJは定数と見なせる。上記01式で
与えられる位相ずれと剛式等で与えられる位相ずれの合
成を、P偏光成分について6p、S偏光成分について6
sとする。これらはぐごw/2のとき、比、n,、n2
、tで定まる。更にP偏光成分とS偏光成分との振幅反
射係数rp・rSはで与えられ、 ◇=芸−8(8《1) とすると、8の1次まで考えて第{41式はとなる。
In this case, when approximated by a linear expression with tsuba-o<<1, tan, cos, and sinJ can be regarded as constants. The combination of the phase shift given by the above equation 01 and the phase shift given by the rigid equation etc. is 6p for the P polarization component and 6p for the S polarization component.
Let it be s. When these are w/2, the ratio, n,, n2
, t. Further, the amplitude reflection coefficient rp·rS of the P polarized light component and the S polarized light component is given by: ◇=Gi-8 (8<<1) When considering up to the first order of 8, the {41st equation becomes.

なお上記kpおよびksはno/n,で定まる定数であ
る。上記は第4図図示の反射に関して1往復の反射につ
いて基本的な係数を説明するものであるが、実際には図
示の如く薄膜7内で複数回の反射が繰返される。
Note that the above kp and ks are constants determined by no/n. The above describes the basic coefficients for one round-trip reflection with respect to the reflection shown in FIG. 4, but in reality, reflection is repeated multiple times within the thin film 7 as shown.

したがって、これら複数回の反射にもとづいて得られる
全反射光について考えるべきであり、入射光の振幅を「
1」とすると全反射光の振幅LはP偏光、S偏光それぞ
れに対しL=r十三三ご 肌‘6’ で与えられるこの全反射光の振幅値(複素数)Lの位相
角の正接tanを(実数部を虚数部の比)をみると、L
=公十(1十r2にos6十i(1一ぶちin61十r
2十公cos6であるから、 kasin6 ……【7}ねnさ=び
a−・)(1−cos6)となり、8《1とすると競7
1式は 松nf=C毒 襲撃士‐8 ‐‐‐‐‐‐‘8}とな
る。
Therefore, we should consider the total internal reflection light obtained based on these multiple reflections, and the amplitude of the incident light should be
1'', the amplitude L of the totally reflected light is the tangent of the phase angle of the amplitude value (complex number) L of the totally reflected light given by L=r133goskin'6' for P polarized light and S polarized light respectively. (ratio of real part to imaginary part), L
= Koju (10 r2 to os60i (11 butchi in610 r
Since 20 cos 6, kasin 6 ...[7} ne n sa = bi a-・) (1 - cos 6), and if 8《1, then ka 7
Type 1 is Matsu nf=C poison raider-8 ------'8}.

P偏光成分に対応したkpやS偏光成分に対応したks
を導入して両偏光成分に対応する上記正藤tanfが等
しいつまり位相ずれが等しくなる条件を求ると、生−s
in6卒1‐cos8p) ……【91k
S一sin6p(1−cos6S)となる。
kp corresponding to P polarization component and ks corresponding to S polarization component
If we introduce the above-mentioned Shoto tanf corresponding to both polarization components and find the condition that the phase shifts are equal, then
in6 graduate 1-cos8p) ...[91k
S-sin6p (1-cos6S).

ここで左辺はno/n,で定まり、右辺は比/n,、リ
ノn,、n、tで定まるので、Q、tを選択して上記【
9}式を満足させることができる。一例としては次のも
のが考えられる。比三2,2・nlニ2,6 n2ニ2
,1i ^ニ1,3〆の、d=3615A。
Here, the left side is determined by no/n, and the right side is determined by the ratio/n,, reno n,, n, t, so select Q and t and
9} can be satisfied. The following may be considered as an example. Hizo 2,2・nl ni 2,6 n2 ni 2
, 1i ^ ni 1, 3〆, d = 3615A.

の如くなる。It will be like this.

第5図は上述した原理に基づく光導波装置である。FIG. 5 shows an optical waveguide device based on the above-mentioned principle.

最外層には電極2,2′を設けられ、これらの電極に印
加する電圧Vを変えて光スイッチとして動作する。この
光スイッチは前述した値1/dを大にしてもP偏光とS
偏光との間に位相ずれが生じないので(位相ずれが生じ
ると特性上種々不具合を生じる)、電源電圧Vを低くす
ることができる。例えばd=50仏凧、1=1仇、V=
20〜30Vが可能である。第6図は、第5図に示す2
層構造の位相整合膜7,8(伍<〜<n,)による間・
題点(波長依存性)を解決した光スイッチであり、山>
〜>n,、n3なる関係の3層構造の位相整合膜7〜9
を有する。ところで第5図、第6図の光スイッチはいず
れも金属電極2,2′を最外層に付着した構造であるた
め、位相整合膜7〜9のいずれか又は全部の絶縁抵抗が
高いと薄板1に充分な電界が加わらない欠点がある。
Electrodes 2 and 2' are provided on the outermost layer, and the device operates as an optical switch by changing the voltage V applied to these electrodes. Even if the above-mentioned value 1/d is increased, this optical switch can still
Since no phase shift occurs between the polarized light and the polarized light (if a phase shift occurs, various problems will occur in terms of characteristics), the power supply voltage V can be lowered. For example, d=50 Buddhist kites, 1=1 enemy, V=
20-30V is possible. Figure 6 shows the 2 shown in Figure 5.
The gap between the phase matching films 7 and 8 (5<~<n,) having a layered structure is
It is an optical switch that solves the problem (wavelength dependence), and
Phase matching films 7 to 9 having a three-layer structure with a relationship of ~>n,,n3
has. By the way, since the optical switches shown in FIGS. 5 and 6 both have a structure in which the metal electrodes 2 and 2' are attached to the outermost layer, if the insulation resistance of any or all of the phase matching films 7 to 9 is high, the thin plate 1 The disadvantage is that a sufficient electric field is not applied to the

例えば第6図の構造では第1層7と第3層9がシリコン
酸化膜(Si02)であってその絶縁抵抗が薄板1より
数桁高いので、容量効果によって電圧Vの印加初期には
薄板1内に電界が生じるものの、時間が経過する(充電
が進行する)と該電界は弱いものになってしまう(ドリ
フトを生じる)。本発明はこの点を電極構成面から解決
しようとするものであり、その特徴とするところは厚さ
に対し光導波方向の長さを大に選んだ電気光学結晶薄板
を用い、該薄板の端面から光ビームを導入し、該薄板の
対向する両表面に対して電極を配置し、かつ該両表面に
は透明材質からなる多層構造の位相整合膜を被着して、
該薄板の両表面および該整合膜で反射を繰り返しながら
進行する前記光ビームのP偏光成分とS偏光成分の各位
相ずれを実質的に等しくした光スイッチにおいて、該多
層構造の位相整合膜の少なくとも一層を透明導電性材料
で作って前記電極に兼用し、かつその電極となる位相整
合膜と該薄板との間には絶縁材料層が介在しないように
してなる点にある。
For example, in the structure shown in FIG. 6, the first layer 7 and the third layer 9 are silicon oxide films (Si02), and their insulation resistance is several orders of magnitude higher than that of the thin plate 1. Therefore, due to the capacitive effect, the thin plate 1 Although an electric field is generated within the battery, as time passes (charging progresses), the electric field becomes weaker (drift occurs). The present invention attempts to solve this problem from the aspect of electrode construction, and its feature is that it uses an electro-optic crystal thin plate whose length in the optical waveguide direction is larger than its thickness, and the end face of the thin plate A light beam is introduced from the thin plate, electrodes are arranged on both opposing surfaces of the thin plate, and a multilayer phase matching film made of a transparent material is coated on both surfaces.
In an optical switch in which the phase shifts of the P-polarized light component and the S-polarized light component of the light beam traveling while being repeatedly reflected on both surfaces of the thin plate and the matching film are substantially equal, at least one of the phase matching films of the multilayer structure One layer is made of a transparent conductive material and serves also as the electrode, and no insulating material layer is interposed between the phase matching film serving as the electrode and the thin plate.

以下図面を参照しながらこれを詳細に説明する。第7図
は本発明の一実施例を示す断面構造図で、3層構造の位
相整合膜を有した光スイッチを例としたものである。
This will be explained in detail below with reference to the drawings. FIG. 7 is a cross-sectional structural diagram showing one embodiment of the present invention, taking as an example an optical switch having a three-layer phase matching film.

3層の位相整合膜7〜9の各屈折率n,〜比と電気光学
結晶薄板1の屈折率noとの間には第6図と同様に−>
〜〉n,、叱の関係があるが、第1層の位相整合膜7に
良導電性で透明な素材、例えばln203(或いはSn
02)を用いた点が異なる。
Similar to FIG. 6, there are differences between the refractive index n, ~ ratio of the three-layer phase matching films 7 to 9 and the refractive index no of the electro-optic crystal thin plate 1.
~>n, Although there is a negative relationship, the first layer phase matching film 7 is made of a transparent material with good conductivity, such as ln203 (or Sn203).
The difference is that 02) is used.

ln203はn,=2.0であるから、薄板1がBi,
ぶi02oの場合瓜=2.4(ZnTeではn=3.0
)、第2層8がSiHの場合n2=3.ふ第3層9がS
i02の場合n3=1.45であり、上記関係n2>n
o>n,、n3が満たされる。しかもSn02の良導電
極により第1層7,7を電極として兼用できるので、薄
板1には電圧Vが直接印加されることになり、従って薄
板1内に発生する電界は一定の高電界に保ち、安定した
スイッチング特性が得られる。尚、第7図の構造は、光
導波装置としては第1層の位相整合膜7をn,=1.4
5のSi02(第6図)からn.=2.0のln203
に変えたものであるから、P偏光成分とS偏光成分の位
相ずれを等しくするためには補正する必要があるが、こ
れは層7の膜厚d,および層8の膜厚もの調整により行
なうことができる。一例として波長1.3仏机の場合の
第7図の素子はd,=2600A、ら=1100Aに設
定する。なお、第2層8のSiHは日の添加量によって
比の値を調整することができる。尚、薄板1は1三2弧
、dニ60仏のである。上記実施例では第1層7を電極
兼用の位相整合膜としたが、これは第2層以下にしても
よく、これにより設計の自由度が増す。
Since ln203 is n, = 2.0, the thin plate 1 is Bi,
For ZnTe, n = 2.4 (n = 3.0 for ZnTe)
), when the second layer 8 is SiH, n2=3. The third layer 9 is S
In the case of i02, n3=1.45, and the above relationship n2>n
o>n, , n3 is satisfied. Moreover, since the first layers 7, 7 can be used as electrodes due to the Sn02 good conductivity electrode, the voltage V is directly applied to the thin plate 1, and therefore the electric field generated within the thin plate 1 is maintained at a constant high electric field. , stable switching characteristics can be obtained. In addition, in the structure of FIG. 7, as an optical waveguide device, the phase matching film 7 of the first layer is n,=1.4.
5 Si02 (Fig. 6) to n. =2.0 ln203
Therefore, it is necessary to correct the phase shift of the P-polarized light component and the S-polarized light component to make them equal, but this is done by adjusting the film thickness d of layer 7 and the film thickness of layer 8. be able to. As an example, in the case of a wavelength 1.3 wavelength device, the element shown in FIG. 7 is set to d=2600A and ra=1100A. Note that the ratio of SiH in the second layer 8 can be adjusted depending on the amount added. The thin plate 1 has 132 arcs and d and 60 arcs. In the above embodiment, the first layer 7 is a phase matching film that also serves as an electrode, but it may be a layer below the second layer, thereby increasing the degree of freedom in design.

但し、この場合には電極兼用の位相整合膜と薄板1の間
にSiQの如き層が介在してはならない。従って、例え
ば第2層8を電極兼用の層とした場合には上記関係式を
満たす範囲内で第1層7を電気抵抗の低い素材で形成し
なければならない。いずれの場合でも電極兼用の位相整
合膜の外層にSi02を用いることは勿論、支障にはな
らない(例えば第7図の第3層9)。以上述べたように
本発明によれば、光スイッチを低電圧で駆動でき、しか
もドリフトによる経時的な電界低下のない安定した動作
が期待される利点がある。
However, in this case, a layer such as SiQ must not be interposed between the phase matching film which also serves as an electrode and the thin plate 1. Therefore, for example, when the second layer 8 is used as a layer that also serves as an electrode, the first layer 7 must be formed of a material with low electrical resistance within a range that satisfies the above relational expression. In either case, it is of course possible to use Si02 for the outer layer of the phase matching film that also serves as an electrode (for example, the third layer 9 in FIG. 7). As described above, the present invention has the advantage that an optical switch can be driven at a low voltage and stable operation is expected without a drop in electric field over time due to drift.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光変調器の一例を示す概略構成図、第2図は反
射時に生じるP偏光成分とS偏光成分との位相ずれの説
明図、第3図は屈折率を異にする境界での全反射によっ
てP偏光成分とS偏光成分に生じる位相ずれの説明図、
第4図は位相ずれを防止する反射部構成の説明図、第5
図および第6図は多層構造の位相整合膜を有する光スイ
ッチの断面構造図、第7図は本発明の一実施例を示す断
面構造図である。 図中、1は電気光学結晶薄板、7〜9は第1〜第3層の
位相整合膜である。 第1図 第2図 第3図 第4図 第5図 第6図 第7図
Fig. 1 is a schematic configuration diagram showing an example of an optical modulator, Fig. 2 is an explanatory diagram of the phase shift between the P-polarized light component and the S-polarized light component that occurs during reflection, and Fig. 3 is an illustration of the phase shift between the P-polarized light component and the S-polarized light component that occurs at the time of reflection. An explanatory diagram of the phase shift that occurs between the P-polarized light component and the S-polarized light component due to total reflection,
Figure 4 is an explanatory diagram of the configuration of the reflecting section to prevent phase shift, Figure 5
6 and 6 are cross-sectional structural diagrams of an optical switch having a multilayered phase matching film, and FIG. 7 is a cross-sectional structural diagram showing one embodiment of the present invention. In the figure, 1 is an electro-optic crystal thin plate, and 7 to 9 are first to third layer phase matching films. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 厚さに対し光導波方向の長さを大に選んだ電気光学
結晶薄板を用い、該薄板の端面から光ビームを導入し、
該薄板の対向する両表面に対して電極を配置し、かつ該
両表面には透明材質からなる多層構造の位相整合膜を被
着して、該薄板の両表面および該整合膜で反射を繰り返
しながら進行する前記光ビームのP偏光成分とS偏光成
分の各位相ずれを実質的に等しくした光スイツチにおい
て、 該多層構造の位相整合膜の少なくとも一層を透明
導電性材料で作つて前記電極に兼用し、かつその電極と
なる位相整合膜と該薄板との間には絶縁材料層が介在し
ないようにしてなることを特徴とする、電気光学結晶を
用いた光スイツチ。
1. Using an electro-optic crystal thin plate whose length in the optical waveguide direction is larger than its thickness, a light beam is introduced from the end face of the thin plate,
Electrodes are arranged on both opposing surfaces of the thin plate, and a multilayer phase matching film made of a transparent material is coated on both surfaces, and reflection is repeated on both surfaces of the thin plate and the matching film. In the optical switch in which the phase shifts of the P-polarized light component and the S-polarized light component of the light beam traveling while being made substantially equal, at least one layer of the phase matching film of the multilayer structure is made of a transparent conductive material and is also used as the electrode. An optical switch using an electro-optic crystal, characterized in that no insulating material layer is interposed between the phase matching film serving as the electrode and the thin plate.
JP12019380A 1980-03-28 1980-08-30 light switch Expired JPS6015254B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12019380A JPS6015254B2 (en) 1980-08-30 1980-08-30 light switch
CA000373260A CA1158082A (en) 1980-03-28 1981-03-18 Optical waveguide device
DE8181301333T DE3175396D1 (en) 1980-03-28 1981-03-27 Optical waveguide device
DE198181301333T DE37263T1 (en) 1980-03-28 1981-03-27 OPTICAL WAVE GUIDE DEVICE.
EP81301333A EP0037263B1 (en) 1980-03-28 1981-03-27 Optical waveguide device
US06/249,014 US4387953A (en) 1980-03-28 1981-03-30 Optical waveguide device with phase matching layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12019380A JPS6015254B2 (en) 1980-08-30 1980-08-30 light switch

Publications (2)

Publication Number Publication Date
JPS5745518A JPS5745518A (en) 1982-03-15
JPS6015254B2 true JPS6015254B2 (en) 1985-04-18

Family

ID=14780206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12019380A Expired JPS6015254B2 (en) 1980-03-28 1980-08-30 light switch

Country Status (1)

Country Link
JP (1) JPS6015254B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248196U (en) * 1985-09-12 1987-03-25

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526292B2 (en) * 1989-08-29 1996-08-21 日本碍子株式会社 Optical component and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6248196U (en) * 1985-09-12 1987-03-25

Also Published As

Publication number Publication date
JPS5745518A (en) 1982-03-15

Similar Documents

Publication Publication Date Title
CN102483529B (en) Electro-optical element
US6211993B1 (en) Thin film ferroelectric light modulators
US7215457B1 (en) Apparatus and methods for modulating refractive index
EP0021336A1 (en) Optical display devices
US5825525A (en) Electro-optic modulator with voltage tunable quantum well waveguide cladding layer
EP0037263B1 (en) Optical waveguide device
KR20170084949A (en) Electro-optic tunable filters
US7664344B2 (en) Electro-optic modulator
US4035058A (en) Electro-optical switch and a method of manufacturing same
US8400703B2 (en) Optical switch
JPH08166565A (en) Optical control device
JPH1039266A (en) Optical control device
JP2873203B2 (en) Waveguide type optical device
JPS6218506A (en) Light wave propagation mode separate structural body
US6654512B2 (en) Buffer layer structures for stabilization of a lithium niobate device
JPS6015254B2 (en) light switch
JP2000171765A (en) Semiconductor phase modulator
US7085037B2 (en) Multi-stage optical switching device
US6480633B1 (en) Electro-optic device including a buffer layer of transparent conductive material
JPH02226232A (en) Directional coupler type optical switch
US7002646B2 (en) Tunable thin film optical devices and fabrication methods for tunable thin film optical devices
JPS5911086B2 (en) light modulator
JP7226993B2 (en) Optical modulator and manufacturing method thereof
JP2613942B2 (en) Waveguide type optical device
JP3139712B2 (en) Light control device