JPS60151536A - Testing method of smoke diffusion model - Google Patents

Testing method of smoke diffusion model

Info

Publication number
JPS60151536A
JPS60151536A JP782984A JP782984A JPS60151536A JP S60151536 A JPS60151536 A JP S60151536A JP 782984 A JP782984 A JP 782984A JP 782984 A JP782984 A JP 782984A JP S60151536 A JPS60151536 A JP S60151536A
Authority
JP
Japan
Prior art keywords
gas
wind
model
tape
air current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP782984A
Other languages
Japanese (ja)
Inventor
Hideki Maeda
前田 英毅
Kimio Ogushi
大串 公男
Shigeru Nakamura
茂 中村
Hiroki Okamoto
岡本 汎貴
Yasuo Ide
井手 靖雄
Shigeyuki Nishijima
茂行 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP782984A priority Critical patent/JPS60151536A/en
Publication of JPS60151536A publication Critical patent/JPS60151536A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • G01M9/065Measuring arrangements specially adapted for aerodynamic testing dealing with flow
    • G01M9/067Measuring arrangements specially adapted for aerodynamic testing dealing with flow visualisation

Abstract

PURPOSE:To measure the concentration distribution of gas in a diffusion area quantitatively by placing tapes on the surface of a relief model supported rotatably in a measurement wind tunnel wherein a wind diffused by a rotatable plate type air current controller flows at a desired speed, and allowing a discoloration reagent with which the tapes are impregnated to react with tracer gas. CONSTITUTION:A fan 5 is rotated and the air current controller 6 is put in operation. The air current controller 6 is a rotatable plate type arranged perpendicularly, and this is operated to regenerate the wind which flows at the desired speed on specific air current condition (degree of disorder), thereby diffusing mixed gas discharged from a chimney model 2. Relief models 3 and 4 are supported rotatably at the downstream side and adjusted to set a specific wind direction. The diffused gas discharged from the chimney model 2 contacts the tape 12 on the surface of the relief model 4 of discolor the discoloration reagent with which the tape 12 is impregnated, so the diffusion range of the gas is known from the discoloration state.

Description

【発明の詳細な説明】 この発明は、煙突や建造物から排出されるガスが拡散す
る状況を横型によって定性的、かつ、定量的に試験する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for qualitatively and quantitatively testing the state of diffusion of gas emitted from chimneys and buildings using a horizontal method.

発電所や化学工場等から排出される排ガスによる大気汚
染を防止するためには、これら汚染排ガスによる大気お
よび地表面の拡散状況を定性的。
In order to prevent air pollution caused by exhaust gases emitted from power plants, chemical factories, etc., it is necessary to qualitatively assess the diffusion status of these polluting exhaust gases in the atmosphere and on the ground surface.

かつ、定量的に把握し、立地条件、規模等に応じてもっ
とも有効で経済的な煙突の設置地点、高さ及び排ガスの
排出速度等を決定するデータを得る必要がある。
In addition, it is necessary to obtain data that can be quantitatively understood and used to determine the most effective and economical chimney installation location, height, exhaust gas emission rate, etc., depending on location conditions, scale, etc.

このようなデータをめる手段として、計算による方法、
現地試験よる方法あるいは模型試験による方法がある。
As a means of gathering such data, calculation methods,
There are two methods: on-site testing and model testing.

計算による方法としては、サノトン(Sutton)の
理論式、板上の式、英国気象局の経験式等が発表されて
いるが、いずれも地形の影響は考慮されていない。又、
最近これらの式に地形影響をコンピューターを用いた数
値解析でめている例もあるが、何れも実験による検証が
必要である。
As calculation methods, Sutton's theoretical formula, the board formula, and the British Met Office's empirical formula have been published, but none of them take into account the influence of topography. or,
Recently, there have been cases in which the effects of topography on these equations have been confirmed through numerical analysis using computers, but all require verification through experiments.

実地試験による方法は、実物煙突が建設された後でなけ
れば試験できないし、地形の複雑な広い地域において試
験を行うことは、費用、労力ともに莫大なものとなる。
The field test method cannot be tested until after the actual chimney has been constructed, and conducting tests in a wide area with complex topography would be extremely costly and labor intensive.

しかも、煙突高さ、風向等を自由に選ぶことは回能であ
り、また、−地点における資料しか得られない。
Furthermore, it is a matter of time to freely select the chimney height, wind direction, etc., and data can only be obtained at the - point.

模型を用いる試験としては、煙突横型からガス ′を吐
出させ、そのガスの拡散状況を肉眼観察することが従来
行われているが、煙の拡散中における横型表面での拡散
域の把握、および、その濃度分布の把握は、地形が複雑
な場合、特に不可能に近い。
Conventionally, tests using a model involve discharging gas from a horizontal chimney and observing the diffusion of the gas with the naked eye. Understanding the concentration distribution is nearly impossible, especially when the topography is complex.

この発明は、前記のような従来の模型試験方法の欠点を
取除き、排ガス拡散状況を肉眼または記録手段によって
定性的、かつ、定量的に把握すために提供されたもので
あって1回動自在の板状の気流制御装置により乱された
所望の速さの風が流れる風洞の測定胴内で回転可能に支
持された地形模型を回転させてその風向を定めるととも
にその表面にテープを乗せ、上記測定胴内の所定位置か
らトレーサガスを吐出し、上記テープに塗布された変色
試薬にトレーサガスを反応させて拡散域を測定し1次い
で、得られた拡散域内の上記トレーサガスの濃度分布を
定量計測する煙拡散試験方法である。
This invention is provided to eliminate the drawbacks of the conventional model testing method as described above and to qualitatively and quantitatively grasp the exhaust gas diffusion situation with the naked eye or by recording means. The wind direction is determined by rotating a topographical model rotatably supported within the measurement barrel of a wind tunnel in which wind at a desired speed is disturbed by a flexible plate-shaped airflow control device, and a tape is placed on the surface of the model. A tracer gas is discharged from a predetermined position within the measurement barrel, and the diffusion region is measured by reacting the tracer gas with the color-changing reagent applied to the tape.Next, the concentration distribution of the tracer gas within the obtained diffusion region is determined. This is a smoke diffusion test method that measures quantitatively.

従って1本発明の方法によれば、煙の拡散する区域を予
めめ、その区域内で濃度を測定するので、濃度測定の効
率、即ち、拡散の無い範囲で計測してしまうということ
がな(なり、複雑な拡散現象が生じる地形でも効率のよ
い試験が行えることになる。
Therefore, according to the method of the present invention, the concentration is measured in advance in the area where smoke diffuses, so that the efficiency of concentration measurement, that is, the measurement is not carried out within the range where there is no diffusion ( This means that efficient testing can be performed even in terrain where complex diffusion phenomena occur.

以下、この発明の方法を図面によって説明する。The method of the present invention will be explained below with reference to the drawings.

第1図はこの発明の定性試験を示す概念図であって、第
1図中1は透視可能な壁および天井で囲まれた測定胴、
2は煙突、3及び4は構造物および地形の模型などのい
わゆる地形模型、50は風洞床面51に配設された回転
板であり、煙突模型2゜構造物横型3及び地形模型4を
設置しである。なお、この回転板50は後記する気流制
御装置6の風下に位置する。52は回転板作用ベアリン
グ、53はベアリング52の支持台、54は回転板50
下部に取り付けられた回転軸、 55.56はプーリ、
57は回転軸54を回転させる駆動源(モータ)、58
は駆動源57の制御器、59は駆動源57から回転軸5
4への動力伝動ベルトである。
FIG. 1 is a conceptual diagram showing the qualitative test of the present invention, in which 1 is a measurement cylinder surrounded by transparent walls and a ceiling;
2 is a chimney, 3 and 4 are so-called topographic models such as structure and topographic models, and 50 is a rotary plate arranged on the wind tunnel floor 51, on which a chimney model 2, a horizontal structure 3, and a topographic model 4 are installed. It is. Note that this rotary plate 50 is located on the leeward side of an airflow control device 6, which will be described later. 52 is a rotating plate action bearing, 53 is a support for the bearing 52, and 54 is a rotating plate 50.
Rotating shaft attached to the bottom, 55.56 is a pulley,
57 is a drive source (motor) that rotates the rotating shaft 54; 58
59 is a controller for the drive source 57, and 59 is a controller for the drive source 57 to the rotating shaft 5.
This is a power transmission belt to 4.

5は測定胴1内に風を送るファン、6及び7は実地気流
条件を再現するための気流制御装置である。気流制御装
置6は、測定室内1の流路全体に鉛直方向に配設された
回動自在の孔板状のもので。
5 is a fan that sends air into the measurement body 1, and 6 and 7 are airflow control devices for reproducing actual airflow conditions. The airflow control device 6 is a rotatable hole plate-like device vertically disposed throughout the flow path in the measurement chamber 1.

翼形状をした振動板6−1には複数個のスリットが孔け
られている。6−2は振動板を取り付ける補強用円板で
振動板6−1の上部・下部に設けられている。6−3は
振動板6−1の回転軸36−4は振動板回転軸6−3を
支持する軸受である。6−5は補強用円板6−2の案内
板、6−6はウオームホイル、6−7はパルスモータ、
6−8は制御器、6−9は信号ケーブルである。6−1
0は振動板6−1の振れ方向を示す。
A plurality of slits are formed in the wing-shaped diaphragm 6-1. Reference numeral 6-2 denotes reinforcing disks to which the diaphragm is attached, which are provided above and below the diaphragm 6-1. The rotating shaft 36-4 of the diaphragm 6-1 is a bearing 6-3 that supports the diaphragm rotating shaft 6-3. 6-5 is a guide plate for the reinforcing disk 6-2, 6-6 is a worm foil, 6-7 is a pulse motor,
6-8 is a controller, and 6-9 is a signal cable. 6-1
0 indicates the deflection direction of the diaphragm 6-1.

なお、この気流制御装置6は、流路全体に水平方向に設
けても良い。
Note that this airflow control device 6 may be provided horizontally throughout the flow path.

気流制御装置7は測定室床面に配置された板状のものを
風と直交させ床面に水平に取付けたものである。
The airflow control device 7 is a plate-shaped device placed on the floor of the measurement chamber and is attached horizontally to the floor so as to be perpendicular to the wind.

8はあらかじめ所定のガス濃度に調整混合されたガスを
圧縮貯蔵するボンベ、9および10は混合ガス流量計お
よび混合ガス通路、11はボンベ8からの混合ガス量を
調整する流量調整弁である。
Reference numeral 8 designates a cylinder that compresses and stores gas that has been mixed and adjusted to a predetermined gas concentration; 9 and 10 designate a mixed gas flow meter and a mixed gas passage; and 11 designates a flow rate adjustment valve that adjusts the amount of the mixed gas from the cylinder 8.

12は変色試薬を含浸させた紐状のテープ、13はテー
プ12を地形模型4の表面に固定するための画鋲である
12 is a string-like tape impregnated with a color-changing reagent, and 13 is a thumbtack for fixing the tape 12 to the surface of the topographical model 4.

15は、指示体12の変色状況の記録袋N(ステイルカ
メラ又ν、T、R等)である。
15 is a record bag N (still camera, ν, T, R, etc.) for recording the discoloration status of the indicator 12.

第4図ないし第6図はこの発明の定量試験を示す概念図
であって、同図中の16はガラスやステンレス等の細管
により作られたガスサンプリング管である。
4 to 6 are conceptual diagrams showing the quantitative test of the present invention, and numeral 16 in the figures is a gas sampling tube made of a thin tube of glass, stainless steel, or the like.

17は試験管、18 ・19はそれぞれ試験管17にさ
し込まれた細管で細管18は供試液21に浸され、細管
19は浸されていない。22はガスサンプリング管16
と細管18を連通させる管、23は細管19とガス吸引
装置とを連通させる管、24〜30はガス吸引装置の各
部材で25 、26.27は比較的大きく異なった径の
マノメータで、予め定められた容積を持ち上下方向に配
し、それぞれ細管24−1.24−2.24−3.24
−4と連通されている。 28は細管24−4と連通さ
れたヘッダー 29は水タンクで、30はヘッダー28
と水タンク29とを結ぶ可撓性管である。
17 is a test tube, 18 and 19 are thin tubes inserted into the test tube 17, and the thin tube 18 is immersed in the test liquid 21, while the thin tube 19 is not immersed. 22 is the gas sampling pipe 16
23 is a tube that communicates the thin tube 19 with the gas suction device, 24 to 30 are each member of the gas suction device 25, and 26 and 27 are manometers with relatively widely different diameters. Thin tubes 24-1.24-2.24-3.24 each have a defined volume and are arranged in the vertical direction.
-4 is connected. 28 is a header connected to the thin tube 24-4, 29 is a water tank, and 30 is a header 28
This is a flexible pipe that connects the water tank 29 and the water tank 29.

まず第1図において、まず、制御器58がら駆動源57
へ電気信号を与え駆動源57を作動させる。駆動源57
からの動力はプーリー56.伝動ベルト59によりプー
リー55及び回転軸54へ伝わり回転軸54を回転させ
る。
First, in FIG. 1, first, the controller 58 and the drive source 57
The drive source 57 is actuated by applying an electric signal to the drive source 57 . Drive source 57
The power from pulley 56. The power is transmitted to the pulley 55 and the rotating shaft 54 by the transmission belt 59, and the rotating shaft 54 is rotated.

これにより1回転板55が回転し9回転板55の上に設
置した横型4は所定の風向に設定される。
As a result, the one-turn plate 55 rotates, and the horizontal mold 4 placed on the nine-turn plate 55 is set in a predetermined wind direction.

なお、ベアリング52が設けであるため回転板55は水
平に維持され、スムーズに回転でき地形模型を任意の風
向きに設定することができる。
Since the bearing 52 is provided, the rotary plate 55 is maintained horizontally and can rotate smoothly, allowing the terrain model to be set in any wind direction.

地形模型4の表面に設置したテープ12に、たと、t 
ハフ’ oム・チモール・ブルーのような指示薬とアル
コール溶液と澱粉糊とからなる変色試薬を含浸させる。
On the tape 12 installed on the surface of the topographical model 4,
It is impregnated with an indicator such as Huff'om Thymol Blue and a color changing reagent consisting of an alcohol solution and starch paste.

一方この変色試薬を変色させる性質を有するトレーサガ
ス、たとえば空気とアンモニアガスとの混合ガスの所定
量を混合ガス流量計9を監視しながら流量a整弁11を
調整しながら通路10を経て煙突模型2から測定胴1内
に吐出する。
Meanwhile, a predetermined amount of a tracer gas having the property of changing the color of this color-changing reagent, such as a mixed gas of air and ammonia gas, is passed through the chimney model through the passage 10 while monitoring the mixed gas flow meter 9 and adjusting the flow rate a regulating valve 11. 2 into the measuring cylinder 1.

ファン5を回転させるとともに気流制御装置6を作動さ
せる。気流制御装置6の作用は、制御6−8にてパルス
モータ6−7を駆動させ、パルスモータ6−7の回転動
力をウオームホイル6−6を介して振動板回転軸6−3
に伝える。これにより、振動板6−1は矢印6−10の
ように振れ、乱れ度の大きい気流を作成することができ
る。振動板6−1は軸受6−5により鉛直に支持されて
いる。なお、気流条件(乱れ度)の開塾は振動板6−1
の振れ中角周期等によって行うため、あらかじめ所定の
気流条件を再現できる振動板6−1の振れ巾、角周期等
のデータを制御器6−8に入力して置く。また、振動板
6−1の振動周期については規則および不規則の双方に
ついて実施できるようにする。
The fan 5 is rotated and the airflow control device 6 is activated. The action of the airflow control device 6 is to drive the pulse motor 6-7 by the control 6-8, and transfer the rotational power of the pulse motor 6-7 to the diaphragm rotation shaft 6-3 via the worm wheel 6-6.
tell. As a result, the diaphragm 6-1 swings as shown by the arrow 6-10, creating a highly turbulent airflow. The diaphragm 6-1 is vertically supported by a bearing 6-5. In addition, the opening of the airflow condition (turbulence degree) is with diaphragm 6-1.
Since this is performed based on the swing width and angular period of the diaphragm 6-1, data such as the swing width and angular period of the diaphragm 6-1 that can reproduce predetermined airflow conditions are input into the controller 6-8 in advance. Furthermore, the vibration period of the diaphragm 6-1 can be set both regularly and irregularly.

測定胴内1に、所定の気流条件(風速分布、乱れ分布等
)となるよう風を流すと煙突模型2から吐出された混合
ガスは拡散され、地形模型4表面に取付けた変色試薬を
含浸させたテープ12と接触し変色試薬は橙黄色から黄
緑色を経て藍色に変色する。これにより煙突模型2から
吐出された混合ガスの拡散範囲を知ることができる。
When wind is passed through the measurement cylinder 1 to achieve predetermined airflow conditions (wind speed distribution, turbulence distribution, etc.), the mixed gas discharged from the chimney model 2 is diffused and impregnated with the discoloration reagent attached to the surface of the terrain model 4. Upon contact with the tape 12, the color changing reagent changes color from orange-yellow to yellow-green and then to indigo. This makes it possible to know the diffusion range of the mixed gas discharged from the chimney model 2.

さらに9時間の経過(通常1〜2分程度)によって変色
領域が拡大する状況を肉眼または写真機等の記録装置1
5によって観察すれば、定性的には混合ガスの濃度分布
をも推定することことができる。
Furthermore, as the discolored area expands over the course of 9 hours (usually about 1 to 2 minutes), the situation can be observed with the naked eye or with a recording device such as a camera.
5, it is also possible to qualitatively estimate the concentration distribution of the mixed gas.

煙突模型から吐出さセるガスとしては、上記実施例で述
べられたアンモニアのようなアルカリ性ガスの他、亜硫
酸ガス、塩化水素等の酸性ガスを使用することもできる
As the gas discharged from the chimney model, in addition to the alkaline gas such as ammonia mentioned in the above embodiments, acidic gases such as sulfur dioxide gas and hydrogen chloride can also be used.

次に、前記テープ12の取付面における濃度分布を定量
的にめる場合を記述する。
Next, a case will be described in which the concentration distribution on the mounting surface of the tape 12 is quantitatively determined.

まずファン5および気流制御装置6により測定室1内で
所定の気流条件を第1図の場合と同じにし、かつ、煙突
模型2から同様にガスを吐出する。
First, the fan 5 and the airflow control device 6 are used to maintain the same predetermined airflow conditions in the measurement chamber 1 as in the case of FIG. 1, and gas is discharged from the chimney model 2 in the same manner.

これにより、前記混合ガスは測定胴1内で同様に拡散し
ていき、前記定性試験でめた拡散範囲の地形模型表面に
開口したガスサンプリング管16に至る。
As a result, the mixed gas similarly diffuses within the measurement barrel 1 and reaches the gas sampling tube 16 that opens on the surface of the topographical model within the diffusion range determined in the qualitative test.

しかるのち、ガスサンプリング管16から一定量ずつガ
スを吸引するが、この場合ガス吸引装置内の水位は最上
部の細管24−1にある。
Thereafter, a fixed amount of gas is sucked from the gas sampling tube 16, but in this case the water level in the gas suction device is at the uppermost thin tube 24-1.

このような状態で水タンク29を徐々に下方へ移動させ
ると、前記吸引管24〜28内の水が可撓性管30を経
て徐々に排出される。
When the water tank 29 is gradually moved downward in this state, the water in the suction pipes 24 to 28 is gradually discharged through the flexible pipe 30.

この結果細管24−1にあった水位も徐々に下方へ移動
し1部材25.細管24−2と下方へ移動する。そうす
ると部材内の圧力が低下し、管23経由試験管17内の
圧力が下がり、管22経由ガスサンプリング管16から
前記混合ガスの拡散された状態が吸引される。
As a result, the water level in the thin tube 24-1 also gradually moves downward, causing the first member 25. It moves downward with the thin tube 24-2. Then, the pressure within the member decreases, the pressure within the test tube 17 via the tube 23 decreases, and the diffused state of the mixed gas is suctioned from the gas sampling tube 16 via the tube 22.

この場合1部材25の容積をA、26をB、27をCと
すれば吸引後の水位が細管24−2になるまで下がれば
前記ガスサンプリング孔16からはAだけ吸引されるし
細管24−3まで下がれば前記吸引量はA十B、細管2
4−4までの場合A十B+Cの吸引量となり、混合ガス
の拡散濃度に応じて吸引量を選ぶことができる。
In this case, if the volume of one member 25 is A, 26 is B, and 27 is C, if the water level after suction falls to the thin tube 24-2, only A will be sucked from the gas sampling hole 16 and the thin tube 24- If it drops to 3, the suction amount is A + B, and the capillary is 2.
In the case of up to 4-4, the suction amount is A+B+C, and the suction amount can be selected depending on the diffusion concentration of the mixed gas.

この方法によれば、実地の乱れの大きな気流特性を再現
した条件下において、煙突等から吐出したガスの拡散す
る領域を、安価にかつスピーディに横型試験によって定
性的にめ、定性的にめた排出ガスの拡散範囲及び変色状
態の時間変化がら最も必要な範囲について効率的な分布
計測実験ができる。
According to this method, the area in which gas emitted from a chimney, etc. diffuses can be qualitatively determined cheaply and quickly by a horizontal test under conditions that reproduce the airflow characteristics with large turbulence in the field. Efficient distribution measurement experiments can be carried out in the most necessary range based on the diffusion range of exhaust gas and time changes in the state of discoloration.

従って、煙突排ガス等による大気汚染防止上必要となる
基礎データを極めて効果的に提供できる。
Therefore, basic data necessary for preventing air pollution caused by chimney exhaust gas etc. can be provided extremely effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の方法の定性試験方法を説
明する図、第4図ないし第6図は定量試験方法の説明図
である。 1・・測定胴、2;3;4・・地形模型。 6・・気流制御装置、12・・テープ、16・・ガスサ
ンプリング管、50・・回転板 5i 菓2図 第1頁の続き ■発明者 井手 端雄 頬重砲の窮 内
FIGS. 1 to 3 are diagrams for explaining the qualitative test method of the method of the present invention, and FIGS. 4 to 6 are diagrams for explaining the quantitative test method. 1. Measurement cylinder, 2; 3; 4. Terrain model. 6...Airflow control device, 12...Tape, 16...Gas sampling tube, 50...Rotating plate 5i Continuation of figure 2, page 1 ■Inventor: Hatao Ide

Claims (1)

【特許請求の範囲】[Claims] 回動自在の板状の気流制御装置により乱された所望の速
さの風が流れる風洞の測定胴内で回転可能に支持された
地形模型を回転させてその風向を定めるとともにその表
面にテープを乗せ、上記測定胴内の所定位置からトレー
サガスを吐出し、上記テープに塗布された変色試薬にト
レーサガスを反応させて拡散域を測定し1次いで、得ら
れた拡散域内の上記トレーサガスの濃度分布を定量計測
することを特徴とする煙拡散試験方法。
The wind direction is determined by rotating a terrain model rotatably supported in the measurement barrel of the wind tunnel, through which wind at a desired speed is disturbed by a rotatable plate-shaped airflow control device, and a tape is placed on its surface. The tracer gas is discharged from a predetermined position in the measurement cylinder, and the diffusion region is measured by reacting the tracer gas with the discoloration reagent applied to the tape. Next, the concentration of the tracer gas in the obtained diffusion region is determined. A smoke diffusion test method characterized by quantitatively measuring distribution.
JP782984A 1984-01-19 1984-01-19 Testing method of smoke diffusion model Pending JPS60151536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP782984A JPS60151536A (en) 1984-01-19 1984-01-19 Testing method of smoke diffusion model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP782984A JPS60151536A (en) 1984-01-19 1984-01-19 Testing method of smoke diffusion model

Publications (1)

Publication Number Publication Date
JPS60151536A true JPS60151536A (en) 1985-08-09

Family

ID=11676483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP782984A Pending JPS60151536A (en) 1984-01-19 1984-01-19 Testing method of smoke diffusion model

Country Status (1)

Country Link
JP (1) JPS60151536A (en)

Similar Documents

Publication Publication Date Title
MARPLE et al. An aerosol chamber for instrument evaluation and calibration
JPS60151536A (en) Testing method of smoke diffusion model
EP0184545B1 (en) Method for testing gas diffusion and apparatus for same
CN109916800A (en) A kind of method and system measuring room particulate matter infiltration coefficient
JPS60151539A (en) Testing method of smoke diffusion model
CN110044788B (en) Method for determining house porosity equivalent area At and calculating gas exchange rate
JPS60151538A (en) Testing method of smoke diffusion model
JPS60169734A (en) Testing method of smoke diffusion model
JPS60107539A (en) Testing device for smoke diffusion model
JPS60151537A (en) Testing method of smoke diffusion model
JPH0564288B2 (en)
JPS60151533A (en) Testing method of smoke diffusion model
JPS60119437A (en) Smoke diffusion model testing device
JPS60119435A (en) Smoke diffusion model testing device
JPS60119434A (en) Smoke diffusion model testing device
JPS60119433A (en) Smoke diffusion model testing device
JPS60151534A (en) Testing method of smoke diffusion model
JPS60151532A (en) Testing method of smoke diffusion model
JPS60151535A (en) Testing method of smoke diffusion model
JPS60111133A (en) Smoke diffusion model testing device
JPS60227146A (en) Testing device for smoke diffusion model
JPS60107538A (en) Testing device for smoke diffusion model
JPH0454896B2 (en)
JPS60111135A (en) Smoke diffusion model testing device
JPS60119436A (en) Smoke diffusion model testing device