JPS60119433A - Smoke diffusion model testing device - Google Patents

Smoke diffusion model testing device

Info

Publication number
JPS60119433A
JPS60119433A JP22756983A JP22756983A JPS60119433A JP S60119433 A JPS60119433 A JP S60119433A JP 22756983 A JP22756983 A JP 22756983A JP 22756983 A JP22756983 A JP 22756983A JP S60119433 A JPS60119433 A JP S60119433A
Authority
JP
Japan
Prior art keywords
model
tape
gas
mixed gas
discoloring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22756983A
Other languages
Japanese (ja)
Inventor
Hideki Maeda
前田 英毅
Kimio Ogushi
大串 公男
Shigeru Nakamura
茂 中村
Hirotaka Okamoto
岡本 汎貴
Yasuo Ide
井手 靖雄
Shigeyuki Nishijima
茂行 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22756983A priority Critical patent/JPS60119433A/en
Publication of JPS60119433A publication Critical patent/JPS60119433A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • G01M9/065Measuring arrangements specially adapted for aerodynamic testing dealing with flow
    • G01M9/067Measuring arrangements specially adapted for aerodynamic testing dealing with flow visualisation

Abstract

PURPOSE:To grasp qualitatively an exhaust gas diffusion state in a space by exhausting a reaction gas from a topographical model, and observing a color change state of a discoloring reagent-applied tape placed on the upper face of the topographical model. CONSTITUTION:A topographical model 4 is set to a prescribed wind direction by rotating a rotary plate 5. A discoloring reagent is impregnated into a tape 21 stuck to the upper face of the topographical model 4, and a mixed gas having a quality for discoloring this discoloring reagent is exhausted into a measuring drum 1 from a chimney model 2 through a path 19. This mixed gas is diffused by a wind made by controlling a revolving speed of a fan 14 and a turning state of an air current control device 15 so as to obtain a prescribed air current condition. When the diffused gas contacts the tape 21, the tape 21 becomes discolored, therefore, a diffusion state on the ground of the mixed gas exhausted from the chimney model 2 can be known with the naked eye or by a recording means.

Description

【発明の詳細な説明】 この発明は、煙突や建造物から排出されるガスか空間に
おいて拡散する状況を模型によって定性的に試験する装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for qualitatively testing, using a model, the situation in which gases emitted from chimneys and buildings are diffused in space.

近年、産業の発展に伴って1発電所や化学工場等から排
出される排ガスによる大気汚染を防止することが1焦眉
の問題となってきた。このような人気汚染対策を確立す
るためには、これら汚染排ガスによる人気および地表面
の拡散状況を定性的に把握し、立地条件、規模等に応じ
てもっとも有効で経済的な煙突の設置地点、高さ及び排
ガスの吐出速度等を決定するデータを7!Iる必要があ
る。
In recent years, with the development of industry, preventing air pollution from exhaust gases emitted from power plants, chemical factories, etc. has become a pressing issue. In order to establish such popular pollution countermeasures, it is necessary to qualitatively understand the popularity and ground surface diffusion status of these polluted exhaust gases, and choose the most effective and economical chimney installation location according to location conditions, scale, etc. 7 data that determines the height, exhaust gas discharge speed, etc. I need to do it.

このようなデータをめる手段として、計算による方法、
現地試験よる方法あるいは模型試験による方法がある。
As a means of gathering such data, calculation methods,
There are two methods: on-site testing and model testing.

計算による方法としては、サソトン(S u 1. t
on)の理論式、板上の式、英国気象局の経験式等が発
表されているが、いずれも地形の影響は考慮されていな
い。又、最近これらの式に地形影響をコンピューターを
用いた数値M析でめている例もあるか、何れも実験によ
る検証が必要である。
As a calculation method, Sasoton (S u 1. t
On) theoretical formulas, board formulas, and the British Met Office's empirical formulas have been published, but none of them take into account the influence of topography. In addition, there have recently been cases in which the effects of topography on these equations have been determined by numerical M analysis using a computer, but both require experimental verification.

実地試験にJ′る方法は、実物煙突が建設された後でな
ければ試験できないし、地形の複雑な広い地域において
試験を行うことは、費用、労力ともに莫大なものとなる
。しかも、煙突高さ、風向等を自由に選ぶことは困難で
あり、また、−地点における資料しか得られない。
The method used for field testing can only be tested after the actual chimney has been constructed, and conducting tests in a wide area with complex topography would be extremely costly and labor intensive. Moreover, it is difficult to freely select the chimney height, wind direction, etc., and data can only be obtained at the - point.

模型を用いる試験としては、煙突模型からガスを吐出さ
せ、そのガスの拡散状況を肉眼観察することが従来行わ
ねでいるが、煙の拡散中における空間領域でのlli面
形状の把握(」、地形が複雑な場合、特に不可能に近い
As for tests using models, it has not been possible to discharge gas from a chimney model and observe the diffusion of the gas with the naked eye. This is especially near impossible when the terrain is complex.

また、従来の気流制御装置では地形模型範囲内において
比較的乱れ度か大きい気流特性を11現することは不可
能であった。
Furthermore, with conventional airflow control devices, it has been impossible to exhibit airflow characteristics with a relatively large degree of turbulence within the terrain model range.

さらに、地上領域での拡散状況の把握を多種の風向きに
ついてめようとすれば各々の風向きの地形模型が必要で
あり、*用・労力ともに莫大なものになる。
Furthermore, if we were to try to understand the state of dispersion on the ground in various wind directions, we would need topographical models for each wind direction, which would require an enormous amount of work and effort.

この発明は、 jiil記のような従来の模型試験装置
の欠点を取除き、空間における排ガス拡散状況を肉眼ま
たは記録=r段によって定性的に把握ずために提供され
たものであって、風洞と1同風洞の測定胴内に配置され
た地形模型と、同地形模型を支承する回転板と、上記地
形模型の上流側に配置された回転自在の板状の気流制御
装置と、上記地形模型から反応ガスを吐出する吐出機構
と、−に記地形模型の平面に配置され−に記吐出機構が
ら吐出されたガスと反応する変色8工(薬が塗布された
テープとを6”Mえた煙拡散模型試験装風洞である。
This invention was provided in order to eliminate the shortcomings of conventional model testing equipment such as those described above, and to qualitatively grasp the exhaust gas diffusion situation in a space with the naked eye or with records. 1. A topographical model placed in the measurement barrel of the wind tunnel, a rotary plate supporting the topographical model, a rotatable plate-shaped airflow control device placed upstream of the topographical model, and a A smoke dispersion mechanism that includes a discharge mechanism for discharging a reactive gas, and a tape coated with a chemical that changes color and reacts with the gas discharged from the discharge mechanism, which is placed on the plane of the topographic model. This is a model test wind tunnel.

以下、この発明を図面に示す実施例にょっ゛ζ説明する
The present invention will be explained below with reference to embodiments shown in the drawings.

第1図、第2図、第3図は櫃念図であって1図中1は透
視可能な壁及び天井で囲まれた測定胴。
Figures 1, 2, and 3 are diagrams of the shrine, and 1 in each figure shows the measurement cylinder surrounded by transparent walls and ceiling.

2.3およ04はそれぞれ耐水性、耐薬品性塗料で下地
処理された煙突、構造物及び地形などの所謂地形模型、
5は風洞床面7に配設された回転板で、煙突模型2.家
屋模型3及び地形模型4を支承している。なお、この回
転板5は!&記する気流制御装置15の風下に位置する
。6は回転板作動用ヘアリング、8は回転+125の下
面に取り付けられた回転軸、9. 10はプーリー、]
1は回転軸8を回転さける駆動源(モータ)、12は駆
動源11の制御器、13は駆動源】1から回転軸8への
伝動へ万引・である。
2.3 and 04 are so-called topographical models such as chimneys, structures, and topography, which are coated with water-resistant and chemical-resistant paint, respectively.
5 is a rotating plate arranged on the wind tunnel floor 7, and a chimney model 2. It supports a house model 3 and a terrain model 4. In addition, this rotary plate 5! It is located downwind of the airflow control device 15 marked &. 6 is a hair ring for operating the rotating plate; 8 is a rotating shaft attached to the bottom surface of the rotating +125; 9. 10 is a pulley,]
1 is a drive source (motor) that prevents rotation of the rotating shaft 8, 12 is a controller for the driving source 11, and 13 is a driving source for transmitting power from the rotating shaft 8 to the rotating shaft 8.

14は測定胴1内に風を送るファン、15及び16は乱
れ度の大きい実地気流条件を再現するための気流制御材
で、流路全体に水平方向に配設さね−Cもよい。15は
測定胴1内の流路全体に鉛直方向に配置された回動自在
の孔板状の気流制御装置で、翼形状をした振動板15−
1は、複数個のスリットが孔けられている。15−2は
振動板15−1を取付ける補強用円板で振動板151の
上部・下部に取付けられている。15−3は振動板15
−1の回転軸、 15−4は振動板同転軸15−3を支
持する軸受である。】5−5は補強用円板15−2の案
内板、+5−6はウオームボイル、15−7はパルスモ
ータ、15−8は制御器、]5−9は信号ケーブルであ
る。+5−]0は振動板15−1の振れ中を示す。
14 is a fan that blows air into the measurement cylinder 1, and 15 and 16 are airflow control members for reproducing actual airflow conditions with a high degree of turbulence, and these may be arranged horizontally throughout the flow path. Reference numeral 15 denotes a rotatable airflow control device in the form of a rotatable hole plate arranged vertically throughout the flow path in the measurement barrel 1, and includes a wing-shaped diaphragm 15-.
1 has a plurality of slits. 15-2 is a reinforcing disk to which the diaphragm 15-1 is attached, and is attached to the upper and lower parts of the diaphragm 151. 15-3 is the diaphragm 15
-1 is a rotating shaft, and 15-4 is a bearing that supports the diaphragm co-rotating shaft 15-3. ] 5-5 is a guide plate for the reinforcing disk 15-2, +5-6 is a worm boiler, 15-7 is a pulse motor, 15-8 is a controller, ] 5-9 is a signal cable. +5-]0 indicates that the diaphragm 15-1 is swinging.

なお、気流制御材16は測定胴床面7に配置された板を
風と直交させ、床面に水平に取つけたものである。
The airflow control material 16 is a plate placed on the floor surface 7 of the measurement cylinder, and is attached horizontally to the floor surface so as to be perpendicular to the wind.

17はあらかじめ所定のガス濃度に調整混合されたガス
を貯蔵するホンへ、18及び19は混合ガス流量G1及
び混合ガス通路、20はホンへ17からの混合ガス量を
調整する流量調整弁で、吐出機構が形成される。
Reference numeral 17 denotes a horn for storing gas that has been adjusted and mixed to a predetermined gas concentration; 18 and 19 are mixed gas flow rates G1 and mixed gas passages; 20 is a flow rate adjustment valve that adjusts the amount of mixed gas from the horn 17; A discharge mechanism is formed.

2Iはたとえばブロム・チモール・ブルーのような指示
薬のアルコール溶液と澱粉糊とからなる変色試薬を含浸
させた指示体となるテープ、22はテープ21を模型4
」二面に取付ける画鋲、22はテープ21の変色状況の
記録装置(VTR,ステイルカメラ等)である。
2I is a tape impregnated with a color-changing reagent consisting of an alcoholic solution of an indicator such as bromo thymol blue and starch paste;
The thumbtack 22 attached to the second side is a recording device (VTR, still camera, etc.) for recording the state of discoloration of the tape 21.

このような装置において、まず、制御器12がら駆動源
11へ電気信号を与え、駆動源IIを作動さ−する。駆
動源11からの動力はブー’J−10,伝動ヘルド13
によりプーリー9及び回転軸8へ伝わり回転軸8を回転
さMる。
In such a device, first, the controller 12 applies an electric signal to the drive source 11 to operate the drive source II. The power from the drive source 11 is Boo'J-10, transmission heald 13
This is transmitted to the pulley 9 and rotating shaft 8, and rotates the rotating shaft 8.

これにより1回転板5が回転し2回転板5の上に設置し
た地形模型4は所定の風向に設定される。
As a result, the one-turn plate 5 rotates, and the terrain model 4 placed on the two-turn plate 5 is set to a predetermined wind direction.

また、ベアリング6が設けであるため回転板5は水平に
維持されスムーズに回転できる。
Further, since the bearing 6 is provided, the rotating plate 5 is maintained horizontally and can rotate smoothly.

なお、制御器12にはあらかじめ所定の風向の設定角度
に対応する信号が入力されている。
Note that a signal corresponding to a predetermined set angle of the wind direction is input to the controller 12 in advance.

次に、地形模型4の上面に張りつけたテープ21に、た
とえばブロム・チモール・ブルーのような指示薬のアル
コール溶液と澱粉糊とからなる変色試薬を含浸さ(、こ
の変色試薬を変色さセる性質を有する混合ガス、たとえ
ば空気とアンモニアとの混合カスが所定量吐出されるよ
う混合ガス流量5118を監視1〜なから流量調整弁2
0を調整する。こ41により前記混合ガス431通l1
819を経て煙突模型2から測定胴内1に吐出される。
Next, the tape 21 pasted on the top surface of the topographical model 4 is impregnated with a color-changing reagent consisting of an alcohol solution of an indicator such as brome thymol blue and starch paste (this color-changing reagent has the property of changing color). The mixed gas flow rate 5118 is monitored so that a predetermined amount of a mixed gas, such as a mixed gas of air and ammonia, is discharged.
Adjust 0. By this 41, 431 passages of the mixed gas l1
It is discharged from the chimney model 2 into the measurement cylinder 1 via 819.

測定胴内1で、所定の気流条件(風速、風jま分布、乱
れ等)となるようファン14の回転数1回動自在な孔板
状の気流制御装置によって作られた風により煙突2から
吐出される混合ガス+J拡散される。
In the measurement cylinder 1, air is generated from the chimney 2 by the air generated by a hole plate-shaped airflow control device that allows the fan 14 to rotate once to achieve predetermined airflow conditions (wind speed, wind distribution, turbulence, etc.). The discharged mixed gas +J is diffused.

気流制御装置15の作用は、制御器15−8にてパルス
モー タ15−7ヲ駆動さ−u1パルスモータ15−7
の回転動力をつA−ムポイル15−6を介して振動板回
転軸15−3に伝える。
The action of the airflow control device 15 is such that the controller 15-8 drives the pulse motor 15-7.
The rotational power is transmitted to the diaphragm rotating shaft 15-3 via the A-mpool 15-6.

これにより、振動tFj] 51が矢印+5−10のよ
うに振れ、乱れ度の大きい気流を作成することができる
。振動板15−1は軸受15−4により鉛直に支持さて
いる。なお1気流条(11(乱れ度)の調整は振動板1
51の振れ11J、角周期等によって行うため、あらか
じめ所定の気流条イ!1を再現できる振動板■5−1の
Ib5れ[IJ、角周期等のデータを制御器15−8に
入力しておく。
As a result, the vibration tFj] 51 swings like the arrow +5-10, creating an airflow with a high degree of turbulence. The diaphragm 15-1 is vertically supported by a bearing 15-4. Note that the adjustment of 1 air flow condition (11 (turbulence degree)
51 deflection 11J, angular period, etc., so the predetermined airflow line is set in advance! Ib5 of the diaphragm 5-1 that can reproduce the diaphragm 5-1 [IJ, angular period, etc. data are input into the controller 15-8.

また、I辰動板15−1の振動周期について番よ、規則
・不規則双方について実施できるようにしである。
Furthermore, the vibration period of the I-percussion plate 15-1 is designed so that it can be carried out both regularly and irregularly.

次いで、拡散さねたガスは、地形模型41−面に取付け
た変色試薬を含浸させたテープ21に接触ずねば変色紙
葉は橙黄色から黄緑色を経て藍色に変色するから、煙突
模型2から吐出された混合ガスの助士における拡散状況
を知ることができる。
Next, the diffused gas comes into contact with the tape 21 impregnated with a color-changing reagent attached to the surface of the topographical model 41, and the discolored paper changes color from orange-yellow to yellow-green to indigo. It is possible to know the diffusion status of the mixed gas discharged from the assistant.

なお、に記変色試薬のテープ21への含浸方法はテープ
表面にスプレーにて噴霧するか、または変色試薬液内に
テープ全体を浸セばよい。
The method for impregnating the tape 21 with the color-changing reagent described above may be by spraying the surface of the tape, or by immersing the entire tape in the color-changing reagent solution.

また、含浸量は変色状況を指示する時間に応して決めれ
ばよい。たとえば、維持時間を葺くする場合は量を多く
シ、短くする場合にしF量を少なくすればよい。
Further, the amount of impregnation may be determined depending on the time period indicating the state of discoloration. For example, if the maintenance time is to be increased, the amount of F should be increased, and if the maintenance time is to be shortened, the amount of F can be decreased.

さらに2時間の経過(通常1〜2分程度)に」゛って変
色領域か拡大する状況を肉眼または写真機等の記録装置
23によって観察ずれば、定性的には模型トの地」二に
おける混合ガスの濃度濃度分布をも推定することことが
できる。
Furthermore, if you observe with the naked eye or with a recording device 23 such as a camera how the discolored area expands over the course of 2 hours (usually about 1 to 2 minutes), it will be qualitatively clear that It is also possible to estimate the concentration distribution of the mixed gas.

煙突模型4がら空気と混合して吐出させる物質としてi
;1: 、手記実施例で述べられたアンモニアのよ・う
なアルカリ性ガスの他、亜硫酸カス、塩化水素等の酸・
1q゛ガスを使用することもできる。
As a substance mixed with air and discharged from the chimney model 4, i
;1: In addition to alkaline gases such as ammonia mentioned in the handbook examples, acids and gases such as sulfite scum and hydrogen chloride
1q゛gas can also be used.

この実施例によれば、比較的乱れが大きい気流特性を再
現した条件下において、煙突から吐出したガスの地−J
−における拡散する領域を任意の風向に対して模型試験
による定性的手段により安価。
According to this example, under conditions that reproduce airflow characteristics with relatively large turbulence, the gas discharged from the chimney - J
- A qualitative method using model tests to determine the diffusion area for any wind direction at low cost.

スピーディ及び精度よくめることができる。It can be set quickly and accurately.

従って、煙突排ガス等による人気Iη染防止上必要とな
る基礎データを極めて効果的に提供できる。
Therefore, the basic data necessary for preventing the popular Iη staining caused by chimney exhaust gas etc. can be extremely effectively provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す煙拡散模型試験装置
の図、第2図はその要部説明図、第3図は気流制御装置
の拡大斜視図である。 1・・測定胴、2;3;4・・地形模型。 5・・回転板、15i16・・気流制御材。 2】・・テープ 第1頁の続き 0発 明 者 井 手 端 雄 長崎市飽の浦町内 0発 明 者 西 島 茂 行 長崎市飽の浦町内
FIG. 1 is a diagram of a smoke diffusion model testing device showing an embodiment of the present invention, FIG. 2 is an explanatory diagram of its main parts, and FIG. 3 is an enlarged perspective view of an airflow control device. 1. Measurement cylinder, 2; 3; 4. Terrain model. 5... Rotating plate, 15i16... Airflow control material. 2] Continued from page 1 of the tape 0 Inventor: Hata Ide, Akunoura-cho, Nagasaki City 0 Inventor: Shigeru Nishijima, Akunoura-cho, Nagasaki City

Claims (1)

【特許請求の範囲】[Claims] 風洞と、同風洞の側定胴内に配置された地形模型と、同
地形模型を支承する回転板と、上記地形模型の上流側に
配置された回転自在の板状の気流制御装置と、上記地形
模型からガスを吐出する吐出機構と、J二足地形模型の
」二面に配置され上記吐出機構から吐出されたガスと反
応する変色試薬が塗布さねたテープとを備えたことを特
徴とする煙拡散模型試験装置。
a wind tunnel, a topographic model disposed in a side body of the wind tunnel, a rotary plate supporting the topographic model, a rotatable plate-shaped airflow control device disposed upstream of the topographic model, and the above-mentioned The present invention is characterized by comprising a discharge mechanism for discharging gas from the terrain model, and a tape coated with a color-changing reagent that is placed on two sides of the J-biped terrain model and reacts with the gas discharged from the discharge mechanism. A smoke diffusion model test device.
JP22756983A 1983-12-01 1983-12-01 Smoke diffusion model testing device Pending JPS60119433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22756983A JPS60119433A (en) 1983-12-01 1983-12-01 Smoke diffusion model testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22756983A JPS60119433A (en) 1983-12-01 1983-12-01 Smoke diffusion model testing device

Publications (1)

Publication Number Publication Date
JPS60119433A true JPS60119433A (en) 1985-06-26

Family

ID=16862967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22756983A Pending JPS60119433A (en) 1983-12-01 1983-12-01 Smoke diffusion model testing device

Country Status (1)

Country Link
JP (1) JPS60119433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949817A (en) * 2014-03-26 2015-09-30 中国科学院寒区旱区环境与工程研究所 Test device for simulating wind in different directions in field for wind and sand environment wind tunnel test model

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104949817A (en) * 2014-03-26 2015-09-30 中国科学院寒区旱区环境与工程研究所 Test device for simulating wind in different directions in field for wind and sand environment wind tunnel test model

Similar Documents

Publication Publication Date Title
MARPLE et al. An aerosol chamber for instrument evaluation and calibration
JPS60119433A (en) Smoke diffusion model testing device
EP0184545B1 (en) Method for testing gas diffusion and apparatus for same
JPS61110024A (en) Air direction control for diffusion air tunnel experiment
JPS60107539A (en) Testing device for smoke diffusion model
JPS60151539A (en) Testing method of smoke diffusion model
JPS60119434A (en) Smoke diffusion model testing device
JPS60169734A (en) Testing method of smoke diffusion model
JPS60119435A (en) Smoke diffusion model testing device
JPS60151538A (en) Testing method of smoke diffusion model
JPS60151536A (en) Testing method of smoke diffusion model
JPS60111133A (en) Smoke diffusion model testing device
JPS60205230A (en) Smoke diffusion testing method
JPS60151533A (en) Testing method of smoke diffusion model
JPS60107538A (en) Testing device for smoke diffusion model
JPS60174925A (en) Apparatus for testing smoke diffusion model
JPS60151534A (en) Testing method of smoke diffusion model
JP3129372B2 (en) Airway wall shielding device
JPS60151537A (en) Testing method of smoke diffusion model
JPS60151532A (en) Testing method of smoke diffusion model
JPH0564728B2 (en)
JPS60111134A (en) Smoke diffusion model testing device
JPS60227146A (en) Testing device for smoke diffusion model
JPS61120036A (en) Wind channel
JP3182655B2 (en) Three-dimensional observation device for liquid flow and temperature distribution in a rotating cylindrical tank