JPS6015144Y2 - Electronically cooled radiation detection device - Google Patents

Electronically cooled radiation detection device

Info

Publication number
JPS6015144Y2
JPS6015144Y2 JP16423576U JP16423576U JPS6015144Y2 JP S6015144 Y2 JPS6015144 Y2 JP S6015144Y2 JP 16423576 U JP16423576 U JP 16423576U JP 16423576 U JP16423576 U JP 16423576U JP S6015144 Y2 JPS6015144 Y2 JP S6015144Y2
Authority
JP
Japan
Prior art keywords
detection device
radiation detection
radiation
cold aperture
electronically cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16423576U
Other languages
Japanese (ja)
Other versions
JPS5381090U (en
Inventor
高明 尾上
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP16423576U priority Critical patent/JPS6015144Y2/en
Publication of JPS5381090U publication Critical patent/JPS5381090U/ja
Application granted granted Critical
Publication of JPS6015144Y2 publication Critical patent/JPS6015144Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【考案の詳細な説明】 本考案は外界よりもはるかに低い温度で動作する電子冷
却型輻射線検知装置の改良された構造に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to an improved construction of an electronically cooled radiation detection device that operates at temperatures much lower than the outside world.

光量子型の赤外線検知素子を用いて長波長の輻射を検知
するには、該素子を常温よりもはるかに低い温度に冷却
して熱雑音の影響を充分低減することによってS/Nを
良好にすることはすでに周知である。
To detect long-wavelength radiation using a photon-type infrared sensing element, the S/N ratio is improved by cooling the element to a temperature much lower than room temperature to sufficiently reduce the effects of thermal noise. This is already well known.

第1図に冷却手段として液体窒素等の液状冷媒を使用す
る輻射線検知器の構造を示した。
FIG. 1 shows the structure of a radiation detector that uses a liquid refrigerant such as liquid nitrogen as a cooling means.

第1図において長波長の輻射線すなわち赤外線を透過す
る透過窓5を有する開放魔法瓶型の冷媒容器6の底部の
内壁面上に半導体から成る輻射線検知素子1と、コール
ドアパーチャ2が設置されている。
In FIG. 1, a radiation detection element 1 made of a semiconductor and a cold aperture 2 are installed on the inner wall surface of the bottom of an open thermos flask-shaped refrigerant container 6 having a transmission window 5 that transmits long wavelength radiation, that is, infrared rays. There is.

冷媒容器6の2重壁の間は外部からの熱伝導を防ぐため
に真空とされていることはいわゆる魔法瓶と同様である
Similar to a so-called thermos flask, the space between the double walls of the refrigerant container 6 is vacuumed to prevent heat conduction from the outside.

コールドアパーチャ2の役割は周知の如く冷媒容器6の
内壁面中とくに透過窓5およびその付近からの熱輻射か
ら輻射線検知素子1を遮蔽することにある。
As is well known, the role of the cold aperture 2 is to shield the radiation detection element 1 from heat radiation from the inner wall surface of the refrigerant container 6, particularly from the transmission window 5 and its vicinity.

そして該コールドアパーチャ2は輻射線をよく吸収する
ように黒色塗装が施されている。
The cold aperture 2 is painted black so as to absorb radiation well.

一方、最近では液体窒素等の液状冷媒の代わりに電子冷
却素子により冷却を行なう輻射線検知装置が提案されて
いる。
On the other hand, recently, a radiation detection device has been proposed that performs cooling using an electronic cooling element instead of a liquid refrigerant such as liquid nitrogen.

第2図はこのような電子冷却型輻射線検知装置の構造を
示したもので、図の装置は輻射線検知素子21、電子冷
却素子22、外筒24、輻射線透過窓25、ステムベー
ス26、検知素子用リード線27、電子冷却素子用リー
ド線28から構成されている。
FIG. 2 shows the structure of such a thermoelectrically cooled radiation detection device. , a lead wire 27 for the sensing element, and a lead wire 28 for the electronic cooling element.

しかし従来の電子冷却型輻射線検知装置には第1図に示
したコールドアパーチャ2に相当するものは設けられて
いなかった。
However, the conventional electronically cooled radiation detection device was not provided with anything equivalent to the cold aperture 2 shown in FIG.

この理由は電子冷却素子の吸熱能力が弱かったことと、
この種の輻射線検知装置の使用波長が比較的短波長の領
域にあったためコールドアパーチャの必要性が少なかっ
たためである。
The reason for this is that the heat absorption ability of the electronic cooling element was weak, and
This is because the wavelength used by this type of radiation detection device was in a relatively short wavelength region, so there was little need for a cold aperture.

しかるに最近輻射線検知装置の使用可能な波長が遠赤外
領域にまで延びる傾向があり、液状冷媒使用の煩わしさ
を避けるために電子冷却型検知装置を遠赤外領域でも使
用する必要が生じて来た。
However, recently there has been a tendency for the usable wavelengths of radiation detection devices to extend into the far-infrared region, and it has become necessary to use electronically cooled detection devices in the far-infrared region in order to avoid the hassle of using liquid refrigerants. It's here.

この要求に応じるためには、電子冷却型輻射線検知装置
においても良好なS/Nを得るために容器壁からの輻射
に対して検知素子を遮蔽しなければならない。
In order to meet this requirement, even in an electronically cooled radiation detection device, the detection element must be shielded from radiation from the container wall in order to obtain a good signal-to-noise ratio.

本考案は前述の点に鑑み、電子冷却素子の負荷を過電に
せずに検知素子を容器壁の熱輻射から遮蔽した新規なる
電子冷却型輻射線検知装置の構造を提供せんとするもの
である。
In view of the above-mentioned points, the present invention aims to provide a structure of a new electronically cooled radiation detection device that shields the sensing element from the thermal radiation of the container wall without overcharging the load on the electronic cooling element. .

以下本考案の一実施例について詳細に説明する。An embodiment of the present invention will be described in detail below.

第3図は本考案に係る輻射線検知装置の一実施例の構造
を断面図として示したもので、第2図と同等の部分には
同一符号を付した。
FIG. 3 is a sectional view showing the structure of an embodiment of the radiation detection device according to the present invention, and the same parts as in FIG. 2 are given the same reference numerals.

第3図は輻射線検知素子21に小さいコールドアパーチ
ャ29を取り付けたもので、該コールドアパーチャ構造
に特徴を施したものである。
In FIG. 3, a small cold aperture 29 is attached to the radiation detection element 21, and the cold aperture structure has features.

該コールドアパーチャが電子冷却素子に過電負荷となら
ない理由を以下に説明する。
The reason why the cold aperture does not cause an overload to the electronic cooling element will be explained below.

ここでコールドアパーチャと容器外筒との熱交換は次の
ごとく表現できる。
Here, the heat exchange between the cold aperture and the container outer cylinder can be expressed as follows.

Qr= 5−67X 10−’2A1 、+AI(1、)、 (T’j TD 2 T1およびT2はそれぞれ低温側、高温側の絶対温度を
示す。
Qr=5-67X10-'2A1, +AI(1,), (T'j TD2 T1 and T2 indicate the absolute temperatures on the low-temperature side and high-temperature side, respectively.

Qrは輻射による熱負荷量(W) A、:コールドアパーチャの側面積(cm)A2=容型
容器側面積(己) El:コールドアバ−チャ輻射率 E2:容器外筒輻射率 ここで例けば次の様な仮定をしてみる。
Qr is the amount of heat load due to radiation (W) A,: Side area of cold aperture (cm) A2 = Side area of container (self) El: Cold aperture emissivity E2: Container outer cylinder emissivity Here is an example. Let's make the following assumptions.

A、=0,4cyfl A2=5c4 T1=223’K T2=323’K t2=0.9 t 、=0.95 (従来のもの) 0.1(本考案のもの) 仮定の結果としては 従来のものではQr = 17mWとなるが本考案のも
のでは構成するとQr=21TIWとなる。
A, = 0,4 cyfl A2 = 5c4 T1 = 223'K T2 = 323'K t2 = 0.9 t, = 0.95 (conventional) 0.1 (this invention) As a result of the assumption, the conventional In this case, Qr = 17 mW, but in the configuration of the present invention, Qr = 21 TIW.

このようにコールドアパーチャを輻射率の非常に小さい
もので構成すれば、非常に小さに熱負荷量の増加で、コ
ールドアパーチャの取付けが可能になる。
If the cold aperture is made of a material with a very low emissivity in this way, it becomes possible to install the cold aperture with a very small increase in heat load.

該コールドアパーチャの具体的な構成例は第4図at
by cに示すごとくである。
A specific example of the configuration of the cold aperture is shown in FIG.
As shown in by c.

第4図aは銅とかコバール等のコールドアパーチャ34
の外側面のAl、Auなどの金属コーティング31を施
し、外側面の輻射能を小さくしたものである。
Figure 4a shows a cold aperture 34 made of copper, kovar, etc.
A metal coating 31 of Al, Au, or the like is applied to the outer surface to reduce the radiation of the outer surface.

又、AI、 Auなどをコーティングするかわりにb図
はコールドアパーチャにインパールまたはチタン等の材
料32を使用し、さらに外面全体を鏡面研磨して反射率
を大きくし、従って輻射率を小さくした構成にしたもの
である。
Also, instead of coating with AI, Au, etc., the cold aperture shown in Figure b uses a material 32 such as Imphal or titanium, and the entire outer surface is mirror-polished to increase the reflectance and therefore reduce the emissivity. This is what I did.

又、0図はa図のコールドアパーチャの孔付近又は金属
被覆31を施した上部面33(側面を除く)全面に熱輻
射線の乱反射防止のための輻射率の高い材料を用い、か
つその表面を黒色化した構成にしたものである。
In addition, Figure 0 shows that a material with high emissivity is used near the hole of the cold aperture in Figure A or on the entire upper surface 33 (excluding the side surfaces) coated with metal coating 31 to prevent diffuse reflection of thermal radiation, and that surface This is a configuration in which the image is colored black.

又、内面側34は輻射率の高い材料により乱反射を防止
した構成にする等の種々の構成により、熱輻射による電
子冷却器の熱負荷を小さくした構造を構成することがで
きる。
In addition, the inner surface 34 can be constructed in various ways, such as by using a material with a high emissivity to prevent diffused reflection, so that a structure can be constructed in which the thermal load on the electronic cooler due to thermal radiation is reduced.

本考案による電子冷却型輻射線検知装置は電子冷却器の
一部に熱負荷の小さなコールドアパーチャを取付けるこ
とにより、電子冷却素子の冷却特性を損うことなく遮蔽
を遠戚することができるので冷却効果が良好となる。
The thermoelectrically cooled radiation detection device according to the present invention can be cooled by attaching a cold aperture with a small heat load to a part of the thermoelectric cooler, which allows shielding to be far removed without impairing the cooling characteristics of the thermoelectric cooler. The effect is good.

電子冷却型輻射線検知装置は工業用など高温環境下での
使用時においては電子冷却素子の発熱側は環境温度以上
の高温度になるため多少外筒からの伝導が懸念されるが
、コールドアパーチャを取り付けることにより、外筒容
器よりの伝導による背景雑音の低減に効果がある。
When a thermoelectrically cooled radiation detector is used in a high-temperature environment such as industrial use, the heat generating side of the thermoelectrically cooled element reaches a temperature higher than the ambient temperature, so there is some concern about conduction from the outer cylinder. Attaching this is effective in reducing background noise caused by conduction from the outer casing.

又、高温環境下で背景雑音が多くしかも変動する場合、
検知素子の抵抗値が背景雑音に伴って変化するので信号
レベルを素子抵抗値に伴って変動する。
Also, if the background noise is large and fluctuates in a high temperature environment,
Since the resistance value of the sensing element changes with background noise, the signal level changes with the element resistance value.

本考案を適用したものでは上記欠点が防止され、信号レ
ベルの変動が顕著に軽減される。
In the device to which the present invention is applied, the above-mentioned drawbacks are prevented, and fluctuations in signal level are significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の液体冷却型赤外線検知装置の一例構造を
示す断面図、第2図は従来の電子冷却型赤外線検知装置
の一例構造を示す断面図、第3図は本考案の電子冷却輻
射線検知装置の一例構造を示す断面図、第4図a、 b
、 cはコールドアパーチャの構造を示す断面図である
。 1および21:赤外線検知素子、2および29:コール
ドアバ−チャ、6および24:容器外筒、5および25
:赤外線透過窓、22:電子冷却素子。
Fig. 1 is a sectional view showing the structure of an example of a conventional liquid-cooled infrared detection device, Fig. 2 is a sectional view showing an example structure of a conventional electro-cooled infrared detection device, and Fig. 3 is a sectional view showing the structure of an example of a conventional electro-cooled infrared detection device. Cross-sectional view showing an example structure of a line detection device, Figures 4a and b
, c are cross-sectional views showing the structure of a cold aperture. 1 and 21: infrared sensing element, 2 and 29: cold aperture, 6 and 24: container outer cylinder, 5 and 25
: Infrared transmitting window, 22: Electronic cooling element.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一部に輻射線透過窓を有する気密容器の内部に電子冷却
器を設置し、該電子冷却器の冷却面に輻射線検知装置を
固定し、該検知素子近傍の冷却部分に該検知素子を囲む
ごとく外表面に低輻射率処理を施したコールドアパーチ
ャを設けてなることを特徴とする電子冷却型輻射線検知
装置。
An electronic cooler is installed inside an airtight container that partially has a radiation-transmitting window, a radiation detection device is fixed to the cooling surface of the electronic cooler, and the sensing element is surrounded by the cooling part near the sensing element. An electronically cooled radiation detection device characterized by having a cold aperture whose outer surface is treated with low emissivity.
JP16423576U 1976-12-07 1976-12-07 Electronically cooled radiation detection device Expired JPS6015144Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16423576U JPS6015144Y2 (en) 1976-12-07 1976-12-07 Electronically cooled radiation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16423576U JPS6015144Y2 (en) 1976-12-07 1976-12-07 Electronically cooled radiation detection device

Publications (2)

Publication Number Publication Date
JPS5381090U JPS5381090U (en) 1978-07-05
JPS6015144Y2 true JPS6015144Y2 (en) 1985-05-14

Family

ID=28771959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16423576U Expired JPS6015144Y2 (en) 1976-12-07 1976-12-07 Electronically cooled radiation detection device

Country Status (1)

Country Link
JP (1) JPS6015144Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189936U (en) * 1982-06-11 1983-12-16 富士通株式会社 infrared detector

Also Published As

Publication number Publication date
JPS5381090U (en) 1978-07-05

Similar Documents

Publication Publication Date Title
US4937450A (en) Infrared detector comprising an evacuated and cooled Dewar having an elliptical spheroid end window
JPH01295449A (en) Cooling type solid-state image sensing device
JPS6015144Y2 (en) Electronically cooled radiation detection device
JPH06137943A (en) Thermal infrared sensor
Chouvaev et al. Normal-metal hot-electron microbolometer with on-chip protection by tunnel junctions
JPH0262794B2 (en)
JPS6136906Y2 (en)
JPS6257112B2 (en)
SU1725256A1 (en) Integrated circuit
JP2625821B2 (en) Satellite thermal control device
JPS6244544Y2 (en)
JPH0558491B2 (en)
JPH11326064A (en) Infrared image pickup element
JPS63243820A (en) Infrared detector
KR100359836B1 (en) thermopile sensor
JPH07162021A (en) Photodetector
JPS6020020Y2 (en) infrared detection device
JPS645213Y2 (en)
JPH0485131U (en)
JPH0629698Y2 (en) Infrared detector
JPS6140125B2 (en)
JPS643047Y2 (en)
JPH0618257Y2 (en) Infrared detector
CN111403507A (en) Uncooled ultra-wide spectrum photoelectric converter and array detector
JP2629942B2 (en) Infrared image sensor device