JPS6015123B2 - temperature sensor - Google Patents

temperature sensor

Info

Publication number
JPS6015123B2
JPS6015123B2 JP13902978A JP13902978A JPS6015123B2 JP S6015123 B2 JPS6015123 B2 JP S6015123B2 JP 13902978 A JP13902978 A JP 13902978A JP 13902978 A JP13902978 A JP 13902978A JP S6015123 B2 JPS6015123 B2 JP S6015123B2
Authority
JP
Japan
Prior art keywords
film
temperature sensor
silicon carbide
heat
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13902978A
Other languages
Japanese (ja)
Other versions
JPS5565401A (en
Inventor
常男 三露
征夫 笠原
清孝 和佐
謙三 黄地
律夫 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13902978A priority Critical patent/JPS6015123B2/en
Publication of JPS5565401A publication Critical patent/JPS5565401A/en
Publication of JPS6015123B2 publication Critical patent/JPS6015123B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は、温度による半導体の電気抵抗変化を利用した
温度センサ、すなわちいわゆるサーミスタに関するもの
で、応答速度が遠く、かつ各種の腐蝕性雰囲気や摩擦等
の使用条件に対し、充分な耐久性を有する温度センサを
提供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature sensor that utilizes the change in electrical resistance of a semiconductor due to temperature, that is, a so-called thermistor. The purpose of the present invention is to provide a temperature sensor with sufficient durability.

従来用いられて来たサーミスタは金属酸化物半導体等の
感熱体をビード状あるいは円盤状等に成形・凝結し、そ
れを樹脂等の被覆を施したり、あるいはガラスや金属の
容器に収容したものであった。
Conventionally used thermistors are made by forming and condensing a heat-sensitive material such as a metal oxide semiconductor into a bead shape or disc shape, which is then coated with resin or the like, or housed in a glass or metal container. there were.

これらのサーミスタは感熱体自身の体積すなわち熱容量
が大きいことや、被覆や容器の熱伝導性が悪い、熱容量
が大きい等のため、応答速度が遅いという欠点を有して
いた。本発明の温度センサは、感熱体と被覆を共に膜状
の構造として耐久性を損うことなく熱容量を小さくした
ことに特徴を有する。以下に本発明の一実施例による温
度センサを説明する。
These thermistors have the drawback of slow response speed due to the large volume of the heat sensitive body itself, that is, the large heat capacity, and the poor thermal conductivity and large heat capacity of the coating and container. The temperature sensor of the present invention is characterized in that both the heat sensitive body and the coating have a film-like structure, thereby reducing the heat capacity without impairing durability. A temperature sensor according to an embodiment of the present invention will be described below.

第1図は、本発明による温度センサの一実施例を示す断
面図で、絶縁体からなる基板1の表面上に、金属酸化物
半導体からなる感熱膜2、電極3、耐蝕性・耐摩耗性被
膜からなるコーティング被膜4を順次積層し、リード線
5を付したものである。基板1は膜を保持するものであ
るが、特に遠い応答速度例えば0.1秒以下を要求する
場合はこれを第2図に示すように省略することもできる
。この場合、素子の作成は、適当な基板たとえば樹脂の
表面上に全体を構成したのち、基板を剥離または溶剤に
より除去することにより容易に行なえる。感熱膜2の材
料としては金属酸化物半導体が抵抗−温度特性や耐熱性
において優れている。具体的な組成としては、これまで
種々のものが開発されており、何れも実用し得るが、特
にMn,CoおよびNiの酸化物を混合したもの、ある
し、はこれらのうち2成分を混合したものが、優れてた
特性を示す。これらの材料は組成比により抵抗−温度特
性と比抵抗が変化するので、目的の特性に合う組成比を
選べばよい。なお、これらの材料を膜状に形成する方法
としては、印刷法のほか種々の蒸着法、例えば真空蒸着
法、スバッタ蒸着法、イオンメッキ法等がある。この感
熱膜の厚みは、例えば印刷法の場合数loAm、蒸着法
の場合数仏mが適当である。しかしながら、これらの膜
は耐蝕性に欠けるとともに、湿度による特性変化が大き
い欠点がある。この欠点を除去するのに、この感熱膜上
にある種の被膜でコーティングすると有効である事を本
発明者等は発見した。このコーティング被膜としては、
電気抵抗が感熱膜より高く、かつ耐蝕性・耐摩耗性に優
れた材料、例えば各種のガラス、ァルミナ等の酸化物の
他、炭化珪素、炭化棚素等の炭化物、窒化アルミニウム
等の窒化物等が適当であることが分った。これらのうち
特に炭化珪素被膜は熱的・化学的にきわめて安定で、例
えば強酸、強アルカ川こも強く各種の雰囲気、例えば酸
化性ガス雰囲気に対して優れた耐蝕性を有する他湿度の
影響をも受け難く、かつ耐摩耗性にも優れており、また
熱伝導性がよいため、応答速度も損われない等、多くの
特徴があり、コーティング被膜の材料として適している
ことが分った。なお、これらの被膜の形成法としては、
先に述べた各種の蒸着法や気相成長法等が用いられる。
炭化珪素の場合はスバッタ蒸着法、イオンメッキ法、気
相成長法を用いると容易に良好な被膜を得ることができ
る。耐蝕性・耐摩耗性被膜の厚みは例えば数仏m〜数1
0仏m程度が適当である。この場合、炭化珪素被膜の厚
さが厚くなると、炭化珪素被膜内に発生する歪により、
いよいよ炭化珪素被膜が感熱膜から剥離する。
FIG. 1 is a cross-sectional view showing an embodiment of a temperature sensor according to the present invention. On the surface of a substrate 1 made of an insulator, a heat-sensitive film 2 made of a metal oxide semiconductor, an electrode 3, a corrosion-resistant and abrasion-resistant Coating films 4 made of films are sequentially laminated and lead wires 5 are attached. Although the substrate 1 is used to hold the film, it can be omitted as shown in FIG. 2 if a particularly long response speed of 0.1 seconds or less is required. In this case, the device can be easily fabricated by constructing the entire device on the surface of a suitable substrate, such as resin, and then peeling off the substrate or removing it with a solvent. As a material for the heat-sensitive film 2, a metal oxide semiconductor is excellent in resistance-temperature characteristics and heat resistance. Various specific compositions have been developed so far, all of which can be put to practical use, but in particular, mixtures of Mn, Co and Ni oxides, or mixtures of two of these components are preferred. The ones that do so show superior properties. Since the resistance-temperature characteristics and specific resistance of these materials change depending on the composition ratio, it is sufficient to select a composition ratio that matches the desired characteristics. Note that methods for forming these materials into a film include a printing method and various other vapor deposition methods, such as a vacuum vapor deposition method, a sputter vapor deposition method, an ion plating method, and the like. The appropriate thickness of this heat-sensitive film is, for example, several loAm in the case of a printing method, and several tenm in the case of a vapor deposition method. However, these films lack corrosion resistance and have the disadvantage that their characteristics change significantly depending on humidity. The present inventors have discovered that it is effective to coat this heat-sensitive film with a certain type of film in order to eliminate this drawback. As this coating film,
Materials with higher electrical resistance than thermosensitive films and excellent corrosion and abrasion resistance, such as various glasses, oxides such as alumina, carbides such as silicon carbide and shelving carbide, nitrides such as aluminum nitride, etc. was found to be appropriate. Among these, silicon carbide coatings are particularly thermally and chemically stable, and have excellent corrosion resistance against various atmospheres such as strong acids and strong alkaline gases, such as oxidizing gas atmospheres, and are resistant to the effects of humidity. It has been found to be suitable as a material for coatings because it has many characteristics, such as being resistant to damage, has excellent abrasion resistance, and has good thermal conductivity, so response speed is not impaired. The methods for forming these films are as follows:
The various vapor deposition methods, vapor phase growth methods, etc. mentioned above are used.
In the case of silicon carbide, a good film can be easily obtained by using a sputter deposition method, an ion plating method, or a vapor phase growth method. The thickness of the corrosion-resistant and wear-resistant coating is, for example, several meters to several meters.
Approximately 0 French m is appropriate. In this case, as the thickness of the silicon carbide film increases, the strain generated within the silicon carbide film causes
The silicon carbide film is finally peeled off from the heat-sensitive film.

この剥離を少なくするために、感熱膜と炭化珪素被膜の
間に、接着層を挿入するとよく、特に接着層として、炭
化珪素と酸化珪素の複合体被膜が有効である事を発見し
た。この複合体被膜は、例えば、炭化珪素被膜をSIC
ターゲットを用いて、高周波スパッタリング黍着によ形
成する場合、蒸着開始直後に酸化性雰囲気でスパッタリ
ング蒸着する事により容易に得られる事が分った。この
接着層が有効に作用するには接着層の厚さがある一定値
以上心要であり「 その厚さは炭化珪素被膜の厚さが厚
い時はより厚くする必要がある。その最小膜厚は詳細に
調べると炭化珪素被膜の10%程度である事を本発明者
等は発見した。以上に述べたように、本発明による温度
センサは、応答速度が速く、かつ耐蝕性・耐摩耗性に優
れているという、これまでにない特徴を有し、各種の使
用条件下での温度検出に、広く実用し得るものである。
In order to reduce this peeling, it is recommended to insert an adhesive layer between the heat-sensitive film and the silicon carbide film, and it has been discovered that a composite film of silicon carbide and silicon oxide is particularly effective as the adhesive layer. This composite coating can be made by combining, for example, a silicon carbide coating with SIC.
It has been found that when forming by high frequency sputtering deposition using a target, it can be easily obtained by performing sputtering deposition in an oxidizing atmosphere immediately after the start of deposition. In order for this adhesive layer to work effectively, the thickness of the adhesive layer must be at least a certain value, and the thickness needs to be increased when the silicon carbide coating is thick. Upon closer examination, the present inventors discovered that it is approximately 10% of the silicon carbide coating.As described above, the temperature sensor according to the present invention has a fast response speed, and has excellent corrosion and wear resistance. It has an unprecedented feature of being excellent in terms of temperature, and can be widely used for temperature detection under various usage conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明による温度センサの実施例
を示す断面図である。 1・・・基板、2・・・感熱膜、3・・・電極、4・・
・耐摩耗性、5・・・リード線。 第1図 第2図
1 and 2 are cross-sectional views showing an embodiment of a temperature sensor according to the present invention. 1...Substrate, 2...Thermosensitive film, 3...Electrode, 4...
・Abrasion resistance, 5...Lead wire. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 金属酸化物半導体よりなる感熱膜の表面を炭化珪素
被膜でコーテイングしたことを特徴とする温度センサ。 2 特許請求の範囲第1項において、金属酸化物半導体
を、Mn−Ni,Mn−Co,Co−Ni,Mn−Co
−Niの酸化物の中から選ばれた少くとも1つで構成し
たことを特徴とする温度センサ。3 特許請求の範囲第
1項もしくは第2項において炭化珪素被膜と感熱膜の間
に、炭化珪素と酸化珪素の複合体からなる接着層を挿入
したことを特徴とする温度センサ。
[Scope of Claims] 1. A temperature sensor characterized in that the surface of a heat-sensitive film made of a metal oxide semiconductor is coated with a silicon carbide film. 2 In claim 1, the metal oxide semiconductor is Mn-Ni, Mn-Co, Co-Ni, Mn-Co.
- A temperature sensor comprising at least one selected from oxides of Ni. 3. A temperature sensor according to claim 1 or 2, characterized in that an adhesive layer made of a composite of silicon carbide and silicon oxide is inserted between the silicon carbide film and the thermosensitive film.
JP13902978A 1978-11-10 1978-11-10 temperature sensor Expired JPS6015123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13902978A JPS6015123B2 (en) 1978-11-10 1978-11-10 temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13902978A JPS6015123B2 (en) 1978-11-10 1978-11-10 temperature sensor

Publications (2)

Publication Number Publication Date
JPS5565401A JPS5565401A (en) 1980-05-16
JPS6015123B2 true JPS6015123B2 (en) 1985-04-17

Family

ID=15235794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13902978A Expired JPS6015123B2 (en) 1978-11-10 1978-11-10 temperature sensor

Country Status (1)

Country Link
JP (1) JPS6015123B2 (en)

Also Published As

Publication number Publication date
JPS5565401A (en) 1980-05-16

Similar Documents

Publication Publication Date Title
US4124736A (en) Surface protected magnetic recording members
JPH06507521A (en) Device for high speed platinum group metal temperature sensor for high temperature sensor technology
GB9104505D0 (en) Thermal barrier coating system with intermetallic overlay bond coat
KR830005067A (en) Manufacturing method of metal products with permanent ceramic thermal barrier
US4690872A (en) Ceramic heater
JPS6015123B2 (en) temperature sensor
JPS54130437A (en) Silver-palladium type alloy sputtered contact point
JPS5825972A (en) Manufacture of thermal head
JPH06306591A (en) Production of water-repellent hard-coated coating film
JPH0545530B2 (en)
JPH0369161B2 (en)
JPS62201265A (en) Membrane type thermal head
JPS60178068A (en) Thermal head
FRITSCHER et al. The application of effective protective coatings against oxidation by means of sputtering on heat-resistant directionally solidified Co-Cr 7 C 3 eutectics
JPS55117934A (en) Thermosensitive element
JPS62201263A (en) Membrane type thermal head
JP3047553B2 (en) Magnetoresistive element
Chen et al. Study on the surface modification of bond coat and performance of TBCs.
JPH07240570A (en) Thin-film structure
JPS6222401A (en) Thermosensitive element
Wang et al. CYCLIC OXIDATION BEHAVIOR OF MICROCRYSTALLIZED CoCrAl ALLOY COATING(Chinese)
Nakamura et al. Room temperature oxidation of sputter-deposited titanium films
Prater et al. Sputtered ceramic coatings and sealing layers
JPH0384729A (en) Magnetic recording medium and its production
JPH02238956A (en) Thermal head