JPS60150945A - Numerically controlled machine tool - Google Patents

Numerically controlled machine tool

Info

Publication number
JPS60150945A
JPS60150945A JP59006104A JP610484A JPS60150945A JP S60150945 A JPS60150945 A JP S60150945A JP 59006104 A JP59006104 A JP 59006104A JP 610484 A JP610484 A JP 610484A JP S60150945 A JPS60150945 A JP S60150945A
Authority
JP
Japan
Prior art keywords
display
tablet
magnetostrictive
coil
figures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59006104A
Other languages
Japanese (ja)
Other versions
JPH0210971B2 (en
Inventor
Azuma Murakami
東 村上
Yoshinori Taguchi
田口 義徳
Tsugunari Yamanami
山並 嗣也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacom Co Ltd
Wakomu KK
Original Assignee
Wacom Co Ltd
Wakomu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacom Co Ltd, Wakomu KK filed Critical Wacom Co Ltd
Priority to JP59006104A priority Critical patent/JPS60150945A/en
Publication of JPS60150945A publication Critical patent/JPS60150945A/en
Publication of JPH0210971B2 publication Critical patent/JPH0210971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35461Digitizing, menu tablet, pencil
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36372Light, magnetic pen

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Position Input By Displaying (AREA)

Abstract

PURPOSE:To enable characters and figures drawn by hand to be machined on the surface of the material to be machined easily, by displaying the characters and figures which are input from a tablet for coordinate input on a plane type display which is overlapped and further by machining these characters and figures of the material to be machined. CONSTITUTION:When an operational switch 204 of a magnetic pen 200 is switched on, the position data which are coordinate values in X and Y direction and is stored in a processor 600 are delivered to and stored in a display memory 501 of a display control circuit 500. They are sequentially read out and delivered to the X- and Y-direction drivers 503, 504 and the positions indicated on the tablet 100 are displayed on a display 300. That is, the characters and figures drawn by a magnetic pen 200 on the display 300 is displayed by light on the display 300. Furthermore, each coordinate value of the position data stored in the processor 600 delivered to an NC drilling machine 800 and the position of the metal plate which corresponds to the first coordinate value is located right below the drill, and the metal plate is moved according to the information. Thus the surface of the metal plate is machined by the drill easily.

Description

【発明の詳細な説明】 (技術分野) 本発明は手書き文字や図形を被加工物の表面に容易に切
削できるNC工作装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an NC machining device that can easily cut handwritten characters and figures onto the surface of a workpiece.

(従来技術と問題点) 従来のNG(数値制御)工作装置のうち、被加工物の表
面に任意の文字や図形を切削する装置では、予めプログ
ラムされた複数の文字や図形のうちのいずれかを選択し
て実行する場合は比較的容易に操作できるが、それ以外
の文字や図形、例えば手書き文字や手書き図形を切削し
たい場合には、該手書き文字や手書き図形を直線や円弧
に分解しこれらの始点、終点の座標値、半径等をキーボ
ードよりプログラム入力しなければならなかつたため、
熟練者でなければ扱かうことができず、また熟練者であ
っても時間を要し、生産性が悪く、目つコストも高くな
る等の欠点があった。
(Prior art and problems) Among conventional NG (numerical control) machining devices, devices that cut arbitrary characters or figures on the surface of a workpiece have the ability to cut arbitrary characters or figures on the surface of a workpiece. It is relatively easy to select and execute the operation, but if you want to cut other characters or shapes, such as handwritten characters or handwritten figures, you can break down the handwritten characters or handwritten figures into straight lines or arcs, and then cut them. Because the coordinate values, radius, etc. of the start point and end point had to be entered into the program from the keyboard,
It can only be handled by an experienced person, and even for an expert, it is time consuming, has poor productivity, and has the disadvantages of high cost.

(発明の目的) 本発明は前記従来の欠点を除去するため、座標入力用の
タブレットと、該タブレット上に重ね合わされた平面形
のディスプレイとを備え、該タブレットより入力した文
字や図形をディスプレイに表示すると共に被加工物に切
削するようになしたもので、その目的とするところは手
書き文字や図形を被加工物の表面に容易に切削できるN
O工作装置を提供することにある。以下、図面について
詳細に説明する。
(Object of the Invention) In order to eliminate the above-mentioned drawbacks of the conventional art, the present invention includes a tablet for inputting coordinates and a flat display superimposed on the tablet, and characters and figures input from the tablet are displayed on the display. It is designed to both display and cut into the workpiece, and its purpose is to easily cut handwritten characters and figures onto the surface of the workpiece.
Our objective is to provide machine equipment. The drawings will be described in detail below.

(実施例) 第1図は本発明の一実施例の概要を示す斜視図である。(Example) FIG. 1 is a perspective view showing an outline of an embodiment of the present invention.

同図において、100は座標を入力する為のタブレット
、200は座標の指定を行なう位置指定用磁気発生器(
以下、中に磁気ペンと称す−0)、300はタブレット
100J二に重ね合わされた平面形のディスプレイ、4
00は磁気ベン200で指定したタブレット100上の
座標値を検出する位置検出回路、500はディスプレイ
200を駆動する表示制御回路、600は処理装!、7
00はR8232Cインクフエイスユニツト、800は
NC工作装置本体、例えばNC(数値制御′)ボール盤
、900は被加工物、例えば金属板である。
In the figure, 100 is a tablet for inputting coordinates, and 200 is a position designating magnetic generator (
300 is a flat display superimposed on the tablet 100J, 4 is hereinafter referred to as a magnetic pen.
00 is a position detection circuit that detects the coordinate value on the tablet 100 specified by the magnetic bevel 200, 500 is a display control circuit that drives the display 200, and 600 is a processing device! ,7
00 is an R8232C ink face unit, 800 is an NC machining device main body, such as an NC (numerically controlled') drilling machine, and 900 is a workpiece, such as a metal plate.

第2図はタブレット100の構造を示す平面図、第3図
は第2図A−A−線に沿う断面図である。同図において
、101はX方向の磁歪伝達媒体、102はY方向の磁
歪伝達媒体であり、それぞれ複数本互いにほぼ平行に配
置される。磁歪伝達媒体101.102は強磁性体であ
れば使用できるが、強い磁歪振動波を発生させる為に磁
歪効果の大きな材料たとえば鉄を多量に含むアモルファ
ス合金が特に望ましい。又、磁石を接近させても磁化さ
れ難い保持力の小さな材料が好ましい。
FIG. 2 is a plan view showing the structure of the tablet 100, and FIG. 3 is a sectional view taken along the line A--A in FIG. In the figure, reference numeral 101 indicates a magnetostrictive transmission medium in the X direction, and reference numeral 102 indicates a magnetostrictive transmission medium in the Y direction, and a plurality of them are arranged substantially parallel to each other. Any ferromagnetic material can be used as the magnetostrictive transmission media 101 and 102, but in order to generate strong magnetostrictive vibration waves, a material with a large magnetostrictive effect, such as an amorphous alloy containing a large amount of iron, is particularly desirable. Further, it is preferable to use a material with a small coercive force that is difficult to magnetize even when a magnet is brought close to the material.

アモルファス合金としては、例えばFe69CO4゜B
、4Si、(原子%) 、Fe8. B+3.5 8 
’3.5 C2(原子%)等が使用できる。磁歪伝達媒
体101゜102は細長い形状をしており、その断面は
長方形の薄帯状か円形の線状が望ましく、薄帯状の場合
幅(ま数mmF?度、厚さは数μm〜数10f1m程度
が製造し容易で目つ特性も良好である。アモルファス合
金は製造上、厚さが20〜50μmの薄いものが作れる
ので、これを薄板状或は線状に切断づれば良い。本実施
例では、FCll、B、35Si3゜C2(原子%)か
ら成る幅2mm、厚さ0.02mmの磁歪伝達媒体を使
用している。
Examples of amorphous alloys include Fe69CO4°B
, 4Si, (atomic %), Fe8. B+3.5 8
'3.5 C2 (atomic %) etc. can be used. The magnetostrictive transmission medium 101, 102 has an elongated shape, and its cross section is preferably a rectangular thin strip or a circular linear shape, and in the case of a thin strip, the width (several mmF-degrees) and thickness are approximately several micrometers to several tens of meters. It is easy to manufacture and has good properties.Amorphous alloys can be manufactured into thin pieces with a thickness of 20 to 50 μm, so they can be cut into thin plates or lines.In this example, A magnetostrictive transmission medium with a width of 2 mm and a thickness of 0.02 mm made of FCll, B, 35Si3°C2 (atomic %) is used.

’103,104は、合成樹脂等から成る細長円筒状の
補強材で、前記m歪伝達媒体101゜102をそれぞれ
その内部に収容している。
103 and 104 are elongated cylindrical reinforcing members made of synthetic resin or the like, and accommodate the m strain transmission media 101 and 102 therein, respectively.

105はli&歪伝達媒体101の一端の補強材103
十に配設されたX方向第1電磁変換器、例えばX方向第
1コイルである。このX方向第1コイル105(ま隣接
づる補強材103間でひねられ、隣接する磁歪伝達媒体
101fj′iに逆方向に巻回されており、コイル10
5に電流を流した時に各磁歪伝)!媒体101に対応し
た部分より生起される磁束、又は」イル105に一方向
の磁束が加わつた時に前記各部分に生起する電圧が逆方
向となる如くしである。このため、コイル105にパル
ス電流を流した時に発生ずるパルス雑音や外部からの誘
導がコイル105の隣接する各部分の間で互いに打ち消
し合って弱められる。なお、巻回数は図示例では1回で
あるが、2回以上にしても良い。
105 is a reinforcing material 103 at one end of the li & strain transmission medium 101
X-direction first electromagnetic transducers, for example, X-direction first coils, arranged in the X direction. This X-direction first coil 105 (which is twisted between the adjacent vertical reinforcing members 103 and wound in the opposite direction around the adjacent magnetostrictive transmission medium 101fj'i,
Each magnetostrictive conduction occurs when a current is applied to 5)! When a magnetic flux generated from a portion corresponding to the medium 101 or a magnetic flux in one direction is applied to the coil 105, the voltage generated in each portion is in the opposite direction. Therefore, pulse noise generated when a pulse current is passed through the coil 105 and induction from the outside cancel each other out between adjacent portions of the coil 105 and are weakened. Note that although the number of turns is one in the illustrated example, it may be wound two or more times.

このX方向第1コイル105は瞬時的磁場変動を発生し
て磁歪伝達媒体101の各々の巻回部位に磁歪撮動波を
生起させる為のものであり、コイル105の一端は、後
述する位置検出回路400内のパルス電流発生器に接続
され、その他端は接地される。
This X-direction first coil 105 is for generating instantaneous magnetic field fluctuations to generate magnetostrictive imaging waves at each winding portion of the magnetostrictive transmission medium 101, and one end of the coil 105 is used for position detection, which will be described later. It is connected to a pulse current generator in circuit 400, and the other end is grounded.

また、106は磁歪伝達媒体10.2の一端の補強材1
04上に配設されたY方向第1電磁変換器、例えばY方
向第1コイルであり、隣接する補強材104間でひねら
れ、隣接する磁歪伝達媒体102毎に逆方向に巻回され
ている。このY方向第1コイル106の一端は、コイル
105ど同様に、パルス電流発生器に接続され、他端は
接地される。なお、作用についてはコイル105と同様
である。
Further, 106 is a reinforcing member 1 at one end of the magnetostrictive transmission medium 10.2.
The Y-direction first electromagnetic transducer, for example, the Y-direction first coil, is arranged on the Y-direction first coil, which is twisted between adjacent reinforcing members 104 and wound in the opposite direction for each adjacent magnetostrictive transmission medium 102. . Like the coil 105, one end of this Y-direction first coil 106 is connected to a pulse current generator, and the other end is grounded. Note that the action is similar to that of the coil 105.

107,108は基準位置指定用磁気発生器、例えば角
磁石であり、磁歪伝達媒体101のX方向第1]イル1
05の巻回部分、及び磁歪伝達媒体102のY方向第1
コイル106の巻回部分に長手方向に平行なバイアス磁
界をそれぞれ加える為のものである。このようにバイア
ス磁界を印加するのは、少ない電流で大ぎな磁歪振動波
の発生を可能にすると共に、この磁歪振動波の発生位置
を指定する為である。即ち、磁歪伝達媒体101゜10
2の電気機械結合係数〈機械的エネルギーから電気的エ
ネルギー、又は電気的エネルギーから機械的エネルギー
への変換効率を示す係数)は例えば第4図に示寸ように
あるバイアス磁界のとき最大どなるから、このような磁
気バイアスを、X方向第1コイル105.Y方向第1コ
イル106の巻回部分に印加しておくことにj、り効率
良く磁歪振vノ波を発生することができる。
Reference numerals 107 and 108 are magnetic generators for specifying reference positions, such as square magnets, and
05 and the first Y direction of the magnetostrictive transmission medium 102.
This is for applying a bias magnetic field parallel to the longitudinal direction to each winding portion of the coil 106. The reason why a bias magnetic field is applied in this way is to enable generation of a large magnetostrictive vibration wave with a small current and to specify the generation position of this magnetostrictive vibration wave. That is, the magnetostrictive transmission medium 101°10
The electromechanical coupling coefficient of 2 (a coefficient indicating the conversion efficiency from mechanical energy to electrical energy, or from electrical energy to mechanical energy) reaches its maximum when a bias magnetic field is applied, for example, as shown in Fig. 4. Such a magnetic bias is applied to the first coil 105 in the X direction. By applying the force to the wound portion of the first coil 106 in the Y direction, the magnetostrictive vibration wave can be generated more efficiently.

109は磁歪伝達媒体101の広い範囲にわた・つて補
強材103上に配設され7CX lj向第2電磁変換器
、例えばコイルである。該コイル109は各磁歪伝達媒
体101上に全て同一方向くこの実施例では外巻き)に
巻回され、目つ隣接するコイル同士で接続の極性が逆に
なる如く直列に接続されている。従って、全てのコイル
109に一方向の磁束が加わった時に各コイル109に
生起する電圧、電流の方向、又はコイル109全体に電
流を流した時に各コイル109に生起される磁束の方向
が隣接するコイル同士で逆方向となり、外部からの誘導
やN音が隣接するコイル間で互いに打ち消し合って弱め
られる。
109 is a second electromagnetic transducer, for example a coil, which is disposed on the reinforcing member 103 over a wide range of the magnetostrictive transmission medium 101 and is oriented in the 7CX lj direction. The coils 109 are wound on each magnetostrictive transmission medium 101 in the same direction (outward winding in this embodiment), and are connected in series so that adjacent coils have opposite polarities. Therefore, the direction of the voltage and current generated in each coil 109 when magnetic flux in one direction is applied to all the coils 109, or the direction of the magnetic flux generated in each coil 109 when current is passed through the entire coil 109 are adjacent to each other. The coils are in opposite directions, and the external induction and N sound cancel each other out between adjacent coils and are weakened.

前記コイル109の巻きピッチはX方向第1コイル10
5に近接している側の一端より反対側の他端に向って徐
々に密に巻回されており、磁歪振動波の減衰により誘導
電圧が小さくなるのを補なっている。一般的に誘導起電
力を高める為には巻きピッチは大きい方が好ましい。こ
のX方向第2コイル109は磁歪伝達媒体101を伝搬
する磁歪振動波による誘導電圧を検出する為のものであ
り、一端は位置検出回路400のパルス検出器に接続さ
れ、又他端は接地され、巻回された領域が位置検出領域
どなる。
The winding pitch of the coil 109 is the same as that of the first coil 10 in the X direction.
It is wound gradually more densely from one end on the side close to 5 toward the other end on the opposite side to compensate for the decrease in induced voltage due to attenuation of magnetostrictive vibration waves. Generally, in order to increase the induced electromotive force, it is preferable that the winding pitch be large. This X-direction second coil 109 is for detecting the induced voltage due to magnetostrictive vibration waves propagating through the magnetostrictive transmission medium 101, and one end is connected to the pulse detector of the position detection circuit 400, and the other end is grounded. , the wound area becomes the position detection area.

また、110は磁歪伝達媒体102の広い姥囲にわたっ
て補強材104上に配設されたY方向第2@隅変換器、
例えば]イルであり、該コイル110は各磁歪伝達媒体
102上に全て同一方向(この実施例では外巻ぎ)に巻
回され、且つ隣接するコイル同士で接続の極性が逆にな
る如(直列に接続されている。また、このコイル110
の巻きピッチはY方向第1コイル104に近接している
側の一端より反対側の他端に向って徐々に密に巻回され
ており、その一端は位置検出回路400のパルス検出器
に接続され、他端は接地されている。なお、作用につい
てはコイル109と同様である。
Further, 110 is a Y-direction second @ corner transducer disposed on the reinforcing member 104 over a wide area of the magnetostrictive transmission medium 102;
For example, the coils 110 are wound on each magnetostrictive transmission medium 102 in the same direction (outward winding in this example), and the polarity of connection is opposite between adjacent coils (in series). Also, this coil 110
The winding pitch is such that the winding pitch is gradually denser from one end on the side close to the first coil 104 in the Y direction to the other end on the opposite side, and one end is connected to the pulse detector of the position detection circuit 400. and the other end is grounded. Note that the action is similar to that of the coil 109.

前述したX方向の磁歪伝達媒体101と補強材103と
X方向第1コイル105とX方向第2−コイル109と
から成るX方向の位置検出部は非磁性の金属ケース11
1の内部底面に設けた窪みに挿入され、又、磁歪伝達媒
体102と補強材104とY方向第1コイル106とY
方向第2コイル110とから成るY方向の位置検出部は
前記X方向の位置検出部の上に直交するよう重ね合わさ
れ、必要に応じて接着剤等で固定される。また、基準位
置指定出角磁石105.106は磁歪伝達媒体101.
102の端部に対向するように金属ケース111の内部
底面に固定されるが、磁歪伝達媒体101.102の−
L方、下方、側方に並列に配置しても良い。金属ケース
111の上部には非磁性の金属より成るM112が被せ
られる。
The X-direction position detection unit, which is composed of the X-direction magnetostrictive transmission medium 101, the reinforcing material 103, the X-direction first coil 105, and the X-direction second coil 109, is constructed of a non-magnetic metal case 11.
The magnetostrictive transmission medium 102, the reinforcing material 104, the first coil 106 in the Y direction, and the Y
The Y-direction position detection section consisting of the second coil 110 is superimposed orthogonally on the X-direction position detection section, and is fixed with an adhesive or the like as necessary. Further, the reference position specifying angle magnets 105 and 106 are connected to the magnetostrictive transmission medium 101.
It is fixed to the inner bottom surface of the metal case 111 so as to face the ends of the magnetostrictive transmission media 101 and 102.
They may be arranged in parallel in the L direction, below, and on the sides. The upper part of the metal case 111 is covered with M112 made of non-magnetic metal.

第5図は磁気ペン20.0の構造を示す断面図である。FIG. 5 is a sectional view showing the structure of magnetic pen 20.0.

同図において、201は円筒形の棒磁石であり、ペン状
の容器202の先端にN極を下にして取り付けられてい
る。また203は測定開始を示す所定の信号を発生する
信号発生器であり、操作スイッチ204をオンすること
により01作し、前記測定開始を示す信号を超音波の送
波器205より後述する位置検出回路400内の受波器
へ超音波信号に変えて送出する。
In the figure, 201 is a cylindrical bar magnet, which is attached to the tip of a pen-shaped container 202 with its north pole facing down. Further, 203 is a signal generator that generates a predetermined signal indicating the start of measurement, which is generated by turning on the operation switch 204, and the signal indicating the start of measurement is transmitted from an ultrasonic transmitter 205 to position detection, which will be described later. It is converted into an ultrasonic signal and sent to a receiver in the circuit 400.

ディスプレイ300としては例えば交差させた複数の水
平電極及び垂直電極間に液晶媒体を介在した周知の71
〜リクス型液晶表示パネルが用いられる。zl、た、デ
ィスプレイ300の表示面積はタブレット100の入力
可能範囲とほぼ等しく、その座標イス1首がタブレット
100の座標位置と一致するようL下に重ねられている
The display 300 may be, for example, a well-known 71 display in which a liquid crystal medium is interposed between a plurality of crossed horizontal and vertical electrodes.
~RiX-type liquid crystal display panels are used. The display area of the display 300 is approximately equal to the inputtable range of the tablet 100, and the coordinates of the chair 300 are stacked under L so that the head of the chair matches the coordinate position of the tablet 100.

NGボール盤800は、パルスモータ等により任意の位
置に移動可能なテーブル上に金属板900を固定lノ、
その表面に高速回転す゛るドリルを当て、前記テーブル
を移動することにより穴あり及び切削を行なうしので、
ここでは公知のTNV−50(セイロ、マシナリー、ジ
ャパン製)NOボール盤を用いている。
The NG drilling machine 800 has a metal plate 900 fixed on a table that can be moved to any position by a pulse motor or the like.
A drill that rotates at high speed is applied to the surface and the table is moved to make holes and cut.
Here, a known TNV-50 (manufactured by Seiro Machinery, Japan) NO drilling machine is used.

第6図は装置の要部を示す回路ブロック図である。以下
、前記の回路ブロックの説明とJ(に本発明の1J=6
”7のV)作について詳述する。
FIG. 6 is a circuit block diagram showing the main parts of the device. Below is a description of the circuit block and J (1J=6 of the present invention).
``7 V) I will explain the work in detail.

今、NOボール盤800のテーブル上に金属板900が
固定されており、また磁気ペン200がディスプレイ3
(’)Oを介してタブレット100のX方向第1コイル
105のコイル面中心からX軸方向の距離文、の磁歪伝
達媒体101−L 、更にY方向第1コイル106のコ
イル面中心からY軸方向の距離p2の磁歪伝達媒体10
2上にあり、電気機械結合係数が大きくなる程度の磁気
を磁歪伝達媒体101.102に加えているものどJ′
る。
Now, a metal plate 900 is fixed on the table of the NO drilling machine 800, and a magnetic pen 200 is attached to the display 3.
(') Distance in the X-axis direction from the coil surface center of the first coil 105 in the X direction of the tablet 100 through O, and further on the Y-axis from the coil surface center of the first coil 106 in the Y direction. Magnetostrictive transmission medium 10 with a distance p2 in the direction
2, and applies magnetism to the magnetostrictive transmission medium 101 and 102 to the extent that the electromechanical coupling coefficient increases.J'
Ru.

このような状態において、磁気ペン200の操作スイッ
チ204をオンすると、送波器205より測定開始を示
す超音波信号が発信される。該超音波信号は、受波器4
01で受信され電気信号に変換され、受信器402で増
幅、波形整形されて、入力バッファ403に送出される
。制御回路404は入力バッファ403より前記測定開
始信号を読み取り、測定開始を認識し、出力バッフ74
05を介してカウンタ406をリセットすると共にX方
向用パルス電流発生器407を41作さぼる。カウンタ
406はクロック発生器408のクロックパルス(パル
ス繰り返し周波数は、例えば100Ml−1z)のカウ
ントを開始する。
In this state, when the operation switch 204 of the magnetic pen 200 is turned on, the transmitter 205 transmits an ultrasonic signal indicating the start of measurement. The ultrasonic signal is transmitted to the receiver 4
The signal is received at 01, converted into an electrical signal, amplified and waveform-shaped by receiver 402, and sent to input buffer 403. The control circuit 404 reads the measurement start signal from the input buffer 403, recognizes the start of measurement, and outputs the measurement start signal to the output buffer 74.
05, the counter 406 is reset, and the X-direction pulse current generator 407 is turned off. The counter 406 starts counting the clock pulses of the clock generator 408 (pulse repetition frequency is, for example, 100 Ml-1z).

X方向用パルス電流発生器407が動作しパルス電流が
X方向第1コイル105に印加されるど、X方向第1コ
イル105で瞬時的磁場変動が発生し、これが原因で磁
歪伝達媒体101のX方向第1コイル105の巻回部分
で磁歪振動波が生起する。この磁歪振動波は磁歪伝達媒
体101固イjの伝搬速度(約5000m/秒)で磁歪
伝達媒体101を長手方向に沿って伝搬づる。そして、
この伝搬中において、磁歪1辰動波が存在する磁歪伝達
媒体101の部位でその部位の電気機械結合係数の大き
さに応じて機械的エネルギーから磁気的エネルギーへの
変換が行なわれ、その為X方向第2コイル109に誘導
起電力が発生する。
When the X-direction pulse current generator 407 operates and a pulse current is applied to the X-direction first coil 105, an instantaneous magnetic field fluctuation occurs in the X-direction first coil 105, which causes the A magnetostrictive vibration wave is generated in the winding portion of the first coil 105. This magnetostrictive vibration wave propagates along the longitudinal direction of the magnetostrictive transmission medium 101 at a propagation speed (approximately 5000 m/sec). and,
During this propagation, conversion from mechanical energy to magnetic energy is carried out at the part of the magnetostrictive transmission medium 101 where the magnetostrictive 1 linear wave exists, depending on the magnitude of the electromechanical coupling coefficient at that part, and therefore An induced electromotive force is generated in the direction second coil 109 .

第7図はX方向第2]イル109に発生Jる誘導起電力
の時間的変化の一例をX方向第1コイル105にパルス
電流を印加した時刻を1=0として図示したものである
。同図に示すように、誘導起電力の振幅は時刻t−Q直
後と時刻toから11〜12秒経過したあたりで大ぎく
なり、他の時刻では小さくなる。時刻 し−〇直後で誘
導起電力の振幅が大きくなるのは、X方向第1コイル1
05とX方向第2コイル109間の電磁誘導作用による
ものであり、時刻1−1.〜t2において1ナイクルの
誘導起電力(m歪振動波による誘導電圧)の振幅が大き
くなるのは、X方向第1コイル1050巻回部分で発生
した磁歪振動波が、磁歪伝達媒体101を伝搬して磁気
ペン200の直下付近に到達し、その部分で電気機械結
合係数が大きくなった為である。磁気ペン200を磁歪
伝達媒体の長手方向X方向に沿って移動させると磁歪振
動波による誘導電圧もそれに応じて時間軸上を移動する
FIG. 7 shows an example of the temporal change in the induced electromotive force generated in the second coil 109 in the X direction, assuming that the time when the pulse current is applied to the first coil 105 in the X direction is 1=0. As shown in the figure, the amplitude of the induced electromotive force becomes large immediately after time t-Q and around 11 to 12 seconds after time to, and becomes small at other times. The amplitude of the induced electromotive force becomes large immediately after time ○, when the first coil 1 in the X direction
05 and the second coil 109 in the X direction, and the time 1-1. The reason why the amplitude of the induced electromotive force (induced voltage due to the m-strain vibration wave) of 1 nicle becomes large at ~t2 is that the magnetostriction vibration wave generated in the first coil 1050 winding portion in the X direction propagates through the magnetostriction transmission medium 101. This is because the magnetic pen 200 reaches the vicinity directly below the magnetic pen 200, and the electromechanical coupling coefficient becomes large at that portion. When the magnetic pen 200 is moved along the longitudinal direction X of the magnetostrictive transmission medium, the voltage induced by the magnetostrictive vibration waves also moves on the time axis accordingly.

従って、時刻toからt1〜t、までの時間を測定する
ことにより磁気ペン200で指定されたX方向の位置、
即ち距離文、を算出することができる。位置を算出する
為の伝搬時間としては、例えば第7図に示すように磁歪
振動による誘導電圧の振幅が閾値−Elより小さくなっ
た時点13.閾値F1 より大きくなった時点t4を使
用しても良く、又、ゼロクロス点t5を使用しても良い
Therefore, by measuring the time from time to to t1 to t, the position in the X direction specified by the magnetic pen 200,
In other words, a distance sentence can be calculated. The propagation time for calculating the position is, for example, as shown in FIG. 7, at the time 13. when the amplitude of the induced voltage due to magnetostrictive vibration becomes smaller than the threshold value -El. The time point t4, which is greater than the threshold value F1, may be used, or the zero-crossing point t5 may be used.

前述したX方向第2コイル109で発生する誘導起電力
はX方向用パルス検出器7109に入ノフされる。X方
向用パルス検出器409は増幅器。
The induced electromotive force generated in the X-direction second coil 109 described above is input to the X-direction pulse detector 7109. The X-direction pulse detector 409 is an amplifier.

比較器等からなっており、誘導起電力が例えば前述した
閾値[、Jこり人きいIff、即ち磁歪振動波にJ:る
誘S電圧の正極性部分を検出したときにその出力をハイ
レベルどする。制御回路404は入力バラノア403を
介してこのハイレベルの信号を読み込むと、出力バッフ
ァ405を介してカウンタ406にストップ信号を出力
しカウントを停止1:づる。この時カウンタ406には
X方向第1コイル105にパルス電流が加えられた時刻
からX方向第2コイル109に磁歪振動波による誘導電
圧が現われるまでの時間に相当するディジタル値が得ら
れる。また、この値は、磁歪振動波が毎秒約5000I
llの速さで進むことにJ:す、X方向第1コイル10
5から磁気ベン200までのX方向の1?l’i m 
i、に対応したものとなる。このようにしてディジタル
値としてカウンタ406に得られたX方向の座標値は入
力バッファ403を介して制御回路404に読み込まれ
、更に処理装置600に送出され一時記憶される。
It consists of a comparator, etc., and when the induced electromotive force is detected, for example, at the above-mentioned threshold [, Iff, i.e., the positive polarity portion of the induced S voltage caused by the magnetostrictive oscillation wave, the output is set to a high level. do. When the control circuit 404 reads this high-level signal through the input balanoor 403, it outputs a stop signal to the counter 406 through the output buffer 405 to stop counting. At this time, the counter 406 obtains a digital value corresponding to the time from the time when the pulse current is applied to the first coil 105 in the X direction until the induced voltage due to the magnetostrictive vibration wave appears in the second coil 109 in the X direction. Also, this value means that the magnetostrictive vibration wave is approximately 5000I per second.
The first coil in the X direction moves at a speed of 10.
1 in the X direction from 5 to Magnetic Ben 200? l'i m
It corresponds to i. The X-direction coordinate value thus obtained as a digital value by the counter 406 is read into the control circuit 404 via the input buffer 403, and further sent to the processing device 600 where it is temporarily stored.

ついで制御回路404は再旧カウンタ406をリセット
しY方向用パルス電流発生器410を動作し、Y方向用
パルス検出器411の出ノフを監視し、前記同様にして
磁気ペン200のY方向の座標値を得て、これを処理装
置600に送出する。
Next, the control circuit 404 resets the old counter 406, operates the Y-direction pulse current generator 410, monitors the output of the Y-direction pulse detector 411, and determines the Y-direction coordinate of the magnetic pen 200 in the same manner as described above. A value is obtained and sent to the processing device 600.

以下、これを繰り返し、次々に指示される位置データを
得ることができる。
Thereafter, by repeating this process, it is possible to obtain position data that is instructed one after another.

一方、処理装置600に記憶されたX方向及びY方向の
座標値からなる位置データは、表示制御回路500のデ
ィスプレイメモリ501に送出され、一定の順序に従っ
て並べられて記憶されると共に、制御回路502からの
タイミングパルスにより順次読み出されてX方向ドライ
バ503゜Y方向ドライバ504に出力される。またこ
れらのX方向ドライバ503.Y方向ドライバ504に
は、制御回路502のタイミングパルスに同1111し
て走査回路505が発生するスキャニングパルスが入力
され、各ドライバ503,504はディスプレイ300
の前記X方向及びY方向の座標値に対応する電極を駆動
し、タブレット100十に指示した位置をディスプレイ
300上の同一位置に表示覆る。従ってタブレット10
0.1に重ねたfイスプレイ300の一部から磁気ベン
200で書いた文字や図形の筆跡が、ディスプレイ30
0上に光表示によって同一筆跡にて表示される。
On the other hand, position data consisting of coordinate values in the X and Y directions stored in the processing device 600 is sent to the display memory 501 of the display control circuit 500, arranged and stored in a certain order, and is stored in the control circuit 502. The signals are sequentially read out by timing pulses from the X direction driver 503 and the Y direction driver 504. Moreover, these X direction drivers 503. A scanning pulse generated by the scanning circuit 505 at the same time as the timing pulse of the control circuit 502 is input to the Y direction driver 504, and each driver 503, 504 controls the display 300.
The electrodes corresponding to the X-direction and Y-direction coordinate values are driven, and the indicated position on the tablet 100 is displayed at the same position on the display 300. Therefore tablet 10
The handwriting of letters and figures drawn with the magnetic ben 200 from a part of the f display 300 superimposed on the display 30
The same handwriting is displayed on 0 by optical display.

また一方、前記処理装E 600に配憶された(i’?
買データ、即1う手出き文字9)図形を(14成する複
数のドラ1〜の各座標値は、周知のR8232Cインタ
フエイスコニツi〜700を介してNGボール盤800
に送らねる。NGボール盤800では、前記位置データ
を受け取るとテーブルを動かし金属板900を移動し、
該位置データの最初の座標1直に該当する部位をドリル
直下に位置させ、ついでドリルを所定fi1だけ重下さ
14−1金属板900の表面の前記位置に穴を穿つ。こ
の後はテーブルのみをりlか1)金属板900を、ドリ
ルが前記位置データ中の座標値に該当する部位に順次R
7置づるよう移動さゼ、金属板900の表面をドリルに
よって切削づる。一連の座標1直が終了した場合は、−
F−1、ドリルを上背させ金属板900の表面より引さ
蘭し、以下前記同様の’tJ)+作を繰り返す。従って
磁気ペン200で書いた通りの文字や図形が金属板90
0の表面に切削加工される。
On the other hand, (i'?
The purchase data, each coordinate value of the plurality of drills 1 to 9) forming the figure (14), is transferred to the NG drilling machine 800 via the well-known R8232C interface 700.
I can't send it to. When the NG drilling machine 800 receives the position data, it moves the table and moves the metal plate 900,
The part corresponding to the first coordinate 1 axis of the position data is positioned directly under the drill, and then the drill is lowered by a predetermined amount fi1 to drill a hole at the position on the surface of the metal plate 900 14-1. After this, remove the table or 1) Sequentially drill the metal plate 900 into the parts corresponding to the coordinate values in the position data.
7, and cut the surface of the metal plate 900 with a drill. When a series of coordinates is completed, -
F-1, turn the drill upside down and pull it out from the surface of the metal plate 900, and repeat the same operations as above. Therefore, the characters and figures written with the magnetic pen 200 are displayed on the metal plate 90.
The surface of 0 is machined.

また前記位置データは処理装置600内に一時記憶され
ているから多数の金属板に同一の手書き文字や図形を施
こすこともでき、また−投石に手書入力を行なって個々
に個性のある製品を作ることもできる。また前記位置デ
ータを外部記憶装置(図示せず)に記憶させ、必要な時
に取り出し、ディスプレイ300に表示さけ確認した後
、金属板900に切削加工することもできる。
Furthermore, since the position data is temporarily stored in the processing device 600, it is possible to apply the same handwritten characters and figures to a large number of metal plates, and it is also possible to create unique products by inputting handwritten notes to the stones. You can also make Alternatively, the position data may be stored in an external storage device (not shown), retrieved when necessary, displayed on the display 300 for confirmation, and then cut into the metal plate 900.

また、磁気ベン200は、わずかのバイアス磁界をタブ
レット100の磁歪伝達媒体101゜102に与えれば
良く、特にタブレット10C)(ディスプレイ300も
含めて)に近接させる必要はない。従ってディスプレイ
300上に既に手書き文字や図形が施こされている金属
板の原木(但し、強磁性体Jズ外のものに限る。〉を載
nし、その文字や図形の切削痕を磁気ペン200でなぞ
ればその座標値を入力覆ることができ、前記原本と同一
の文字や図形を施こした金属板を得ることができる。
Further, the magnetic ben 200 only needs to apply a slight bias magnetic field to the magnetostrictive transmission media 101 and 102 of the tablet 100, and does not need to be particularly close to the tablet 10C (including the display 300). Therefore, a raw metal plate on which handwritten letters and figures have already been made (but only those other than ferromagnetic materials) is placed on the display 300, and the cutting marks of the letters and figures are marked with a magnetic pen. 200, the coordinate values can be input and overwritten, and a metal plate with the same characters and figures as the original can be obtained.

また、処理装置600に文字編集、図形処理機能をイ1
加してタブレット100に入力した文字や図形を修正し
たり追加、削除できるようにし、この修1−等を施こし
た文字や図形の位置データをNGボール盤800に送出
して切削加工づる如くなしてもよい。
In addition, the processing device 600 is equipped with character editing and graphic processing functions.
In addition, the characters and figures entered on the tablet 100 can be modified, added, and deleted, and the position data of the modified characters and figures can be sent to the NG drilling machine 800 for cutting. It's okay.

これまで説明した実施例では、タブレツl〜100に#
いTX方向第1コイル105.Y方向第1コイル106
を磁歪振動波の発生用に使用し、×方向第2]イル10
9.Y方向第2コイル110を11歪振動波の検知用と
して使用したが、逆としても良く、その場合には磁気ベ
ン200直下で磁歪振動波が発生し、第2コイル109
゜110で誘導電圧が発生することになる。
In the embodiments described so far, tablets l to 100 have #
TX direction first coil 105. Y direction first coil 106
is used for generating magnetostrictive vibration waves,
9. Although the Y-direction second coil 110 is used for detecting the 11 strain vibration waves, it may be reversed. In that case, magnetostriction vibration waves are generated directly under the magnetic bend 200, and the second coil 109
An induced voltage will be generated at 110 degrees.

なお、本発明ではt■揚(磁束)変動を電圧。In addition, in the present invention, t(magnetic flux) fluctuation is defined as voltage.

電流等の変化に変換し、又は電圧、電流等の変化を磁場
変動に変換する索子9装置を、電磁変換器と呼ぶものと
する。実施例では電磁変換器としてコイルを用いたが、
これに限られることはなく、特にX方向第1コイル、Y
方向第1コイルの代りに磁気ヘッドを用いれば外部に漏
れる磁束が極めて少なくなり、より高精度な座標位置の
検出が可能となる。
The cord 9 device that converts changes in current, etc., or converts changes in voltage, current, etc. into magnetic field fluctuations is called an electromagnetic transducer. In the example, a coil was used as an electromagnetic transducer, but
It is not limited to this, and in particular, the first coil in the X direction, the first coil in the Y direction,
If a magnetic head is used instead of the first coil in the direction, the magnetic flux leaking to the outside will be extremely reduced, making it possible to detect the coordinate position with higher precision.

(発明の効果) 以上説明したように本発明によれば、液加、L物の表面
に所定の文字や図形を切削するNG工作装置において、
互いにほぼ平行に配列した複数の磁歪伝達媒体をX方向
及びY方向にほぼ直交する様に重ね合わせ、且つ、これ
らの広い範囲にわたって電磁変換器を配設してなるタブ
レットと、該タブレットの位置検出領域とほぼ同一の表
示面積を有し、且つ、タブレット上に重ね合わされた平
面形ディスプレイと、前記タブレッ1−の磁歪伝達媒体
の局部的な電気機械結合係数を大きくする程度の磁気を
発生する位置指定用磁気発生器と、前記タブレットの電
磁変換器にパルス電流を印加して前記各磁歪伝達媒体の
M準位間又はilrl位記位置指定気発生器で指定した
位置に磁歪振動波を9二起させ、該磁歪振動波が生起し
てから前記電磁変換器の前記位置指定用磁気発生器で指
定した位置又は基準位Uに磁歪振動波による誘8J電圧
が現われるまでの時間を検知することにより位置指定用
磁気発生器の指定座標値を検出する位置検出回路と、前
記座標値に対応する位置を表示するにう前記ディスプレ
イを駆動する表示制御回路とを備えたので、従来のもの
の如く複雑なプログラミングを必要とせず、ディスプレ
イ上で位置指定用磁気弁!1:器を操作するのみで任意
の手書き文字や手出き図形の入力ができ、その入力結果
をディスプレイで確認しながら被加工物の表面に切削加
工することができ、従って熟練者以外でも容易に手書き
文字や手書き図形の切削加工を行なうことができ、生産
性の向上やコストダウンを図ることができ、また個々の
被加工品毎に座標入力を行なって個性のある製品を作る
こともできる。またディスプレイをタブレット−にに重
ねたため表示文字等が視差によって二重に見える様な不
都合がなく、また位4指定用磁気発生器は従来の磁歪振
動波を利用したタブレッ1〜のものとは異なり、磁場変
動を加えた、あるいは磁場変動を検出したタイミングを
取り出す必要がなく、コードレスとすることができるた
め、座標入力の操作性を大幅に改善号−ることができる
。更にまた、位置指定用磁気発生器はわずかのバイアス
磁界をタブレットに与えるのみで良く特に近接させる必
要はないから、ディスプレイ上に既に手書き文字や図形
が切削加工されている被加工物の原本(但し、強磁性体
以外のものに限る。)を載置し、その文字や図形切削痕
を位置指定用磁気発生器でなぞれば、その座標値を入力
することができ、前記原本と同一の文字や図形を施こし
た製品を得ることができる等の利点がある。
(Effects of the Invention) As explained above, according to the present invention, in the NG machining device that applies liquid and cuts predetermined characters and figures on the surface of L objects,
A tablet formed by overlapping a plurality of magnetostrictive transmission media arranged substantially parallel to each other so as to be substantially orthogonal to the X direction and the Y direction, and disposing electromagnetic transducers over a wide range thereof, and position detection of the tablet a position that generates magnetism to an extent that increases the local electromechanical coupling coefficient between the planar display superimposed on the tablet and the magnetostrictive transmission medium of the tablet 1-; A pulse current is applied to the designated magnetic generator and the electromagnetic transducer of the tablet to generate 92 magnetostrictive vibration waves between the M levels of each magnetostrictive transmission medium or at the position designated by the ilrl position designated magnetic generator. by detecting the time from when the magnetostrictive vibration wave is generated until an induced 8J voltage due to the magnetostrictive vibration wave appears at the position specified by the position specifying magnetic generator of the electromagnetic transducer or at the reference position U. Since it is equipped with a position detection circuit that detects the specified coordinate values of the magnetic generator for position specification, and a display control circuit that drives the display to display the position corresponding to the coordinate values, it is not as complicated as the conventional one. Magnetic valve for positioning on display without programming required! 1: You can input any handwritten characters or hand-drawn figures just by operating the device, and you can cut the surface of the workpiece while checking the input results on the display, making it easy even for non-experts. It is possible to cut handwritten characters and handwritten figures, improving productivity and reducing costs, and it is also possible to input coordinates for each workpiece to create unique products. . In addition, since the display is stacked on top of the tablet, there is no inconvenience such as characters being displayed twice due to parallax, and the magnetic generator for digit 4 designation is different from the tablets 1 to 1 which use conventional magnetostrictive vibration waves. Since there is no need to take out the timing at which magnetic field fluctuations are applied or magnetic field fluctuations are detected, and the system can be cordless, the operability of coordinate input can be greatly improved. Furthermore, since the magnetic generator for position specification only applies a slight bias magnetic field to the tablet and does not need to be particularly close to the tablet, it is possible to use the original workpiece with handwritten characters or figures already cut on the display (however, , limited to materials other than ferromagnetic materials), and trace the cut marks of characters and figures with a magnetic generator for position specification, you can input the coordinate values, and the same characters as the original can be entered. It has the advantage that it is possible to obtain products with shapes and shapes applied to them.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図はNO工
作装置の概要を示す斜視図、第2図はタブレットの構造
を示す平面図、第3図は第2図A−A”線に沿う断面図
、第4図は磁気バイアス対電気機械結合係数の特性図、
第5図は磁気ペンの構造を元号断面図、第6図は’!装
要部の回路ブロック図、第7図はX方向第2コイル10
9に発生ずる誘導起電力の時間的変化の一例を示す線図
である。 100・・・・・・タブレット 200・・・・・・磁気ペン 300・・・・・・ディスプレイ 400・・・・・・位置検出回路 500・・・・・・表示制御回路 600・・・・・・処理装置 700・・・・・・R8232C インタフTイスコニット 800・・・・・・NGボール盤。 第4図 0 2 4 6 B 10 慮ル\イアス(Oe) 第5図
The drawings show one embodiment of the present invention; Fig. 1 is a perspective view showing an overview of the NO machining device, Fig. 2 is a plan view showing the structure of a tablet, and Fig. 3 is a diagram 2-A. A cross-sectional view along the line, Figure 4 is a characteristic diagram of magnetic bias versus electromechanical coupling coefficient,
Figure 5 is a sectional view of the structure of the magnetic pen, and Figure 6 is '! A circuit block diagram of the equipment part, FIG. 7 shows the second coil 10 in the X direction.
9 is a diagram showing an example of a temporal change in induced electromotive force generated in FIG. 100...Tablet 200...Magnetic pen 300...Display 400...Position detection circuit 500...Display control circuit 600... ...Processing device 700...R8232C Intuff T Isconit 800...NG drilling machine. Figure 4 0 2 4 6 B 10 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 被加工物の表面に所定の文字や図形を切削するNC工作
装置において、豆いにほぼ平行に配列した複数の磁歪伝
達媒体をX方向及びY方向にほぼ直交する様に重ね合わ
せ、月つ、これらの広い範囲にわたって電磁変換器を配
設してなるタブレッ]へと、該タブレットの位置検出領
域とほぼ同一の表示面積を有し、目つ、タブレット上に
重ね合わされた平面形ディスプレイと、前記タブレット
の磁歪伝達媒体の局部的な電気機械結合係数を大きくす
る程度の磁気を発生する位置指定用磁気発生器と、前記
タブレットの電磁変換器にパルス電流を印加して前記各
磁歪伝達媒体の基準位置又は前記(f/置桁指定用磁気
発生器指定した位置に磁歪振動波を生起させ、該磁歪振
動波が生起してから前記電磁変換器の前記位置指定用磁
気発生器で指定した位置又はす型位置に磁歪振動波によ
る誘導電圧が現われるまでの時間を検知することにより
位置指定用磁気発生器の指定座標値を検出する位置検出
回路と、前記座標値に対応する位置を表示J−るよう前
記ディスプレイを駆動する表示制御回路とを備えたこと
を特徴とするNC工作装置。
In an NC machining device that cuts predetermined characters and figures on the surface of a workpiece, a plurality of magnetostrictive transmission media arranged approximately parallel to each other are superimposed so as to be approximately orthogonal to the X and Y directions. A tablet with electromagnetic transducers disposed over a wide range] has a display area that is almost the same as the position detection area of the tablet, and a flat display superimposed on the tablet; a position specifying magnetic generator that generates magnetism to an extent that increases the local electromechanical coupling coefficient of the magnetostrictive transmission medium of the tablet; and a position specifying magnetic generator that applies a pulse current to the electromagnetic transducer of the tablet to create a reference for each of the magnetostrictive transmission media. A magnetostrictive vibration wave is generated at the position specified by the magnetic generator for position designation of the electromagnetic transducer after the magnetostriction vibration wave is generated. A position detection circuit that detects the designated coordinate values of a magnetic generator for position designation by detecting the time until an induced voltage by a magnetostrictive vibration wave appears at the mold position, and displays a position corresponding to the coordinate value. and a display control circuit for driving the display.
JP59006104A 1984-01-17 1984-01-17 Numerically controlled machine tool Granted JPS60150945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59006104A JPS60150945A (en) 1984-01-17 1984-01-17 Numerically controlled machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59006104A JPS60150945A (en) 1984-01-17 1984-01-17 Numerically controlled machine tool

Publications (2)

Publication Number Publication Date
JPS60150945A true JPS60150945A (en) 1985-08-08
JPH0210971B2 JPH0210971B2 (en) 1990-03-12

Family

ID=11629191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59006104A Granted JPS60150945A (en) 1984-01-17 1984-01-17 Numerically controlled machine tool

Country Status (1)

Country Link
JP (1) JPS60150945A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192979A (en) * 1975-02-13 1976-08-14 nc teepunosakuseihoho
JPS5338228A (en) * 1976-09-20 1978-04-08 Seiko Instr & Electronics Ltd Display unit
JPS53125726A (en) * 1977-04-11 1978-11-02 Kokusai Denshin Denwa Co Ltd Code generator
JPS58114861A (en) * 1981-12-25 1983-07-08 Hitachi Zosen Corp Controlling method of rust removing machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192979A (en) * 1975-02-13 1976-08-14 nc teepunosakuseihoho
JPS5338228A (en) * 1976-09-20 1978-04-08 Seiko Instr & Electronics Ltd Display unit
JPS53125726A (en) * 1977-04-11 1978-11-02 Kokusai Denshin Denwa Co Ltd Code generator
JPS58114861A (en) * 1981-12-25 1983-07-08 Hitachi Zosen Corp Controlling method of rust removing machine

Also Published As

Publication number Publication date
JPH0210971B2 (en) 1990-03-12

Similar Documents

Publication Publication Date Title
JPS60153537A (en) Coordinate input device having display
EP0152740B1 (en) Coordinate input device with display
USRE33936E (en) Electronic blackboard apparatus
KR0135985B1 (en) Coordinate input device
JPH0210969B2 (en)
US4631356A (en) Coordinate input device with display
US4617515A (en) Position detecting apparatus
JPS61260321A (en) Position detecting device
JPS60221820A (en) Position detecting device
JPH0610613B2 (en) Position detector
US3904821A (en) Position determination devices
EP0184835A2 (en) Position detecting device
EP0146947B1 (en) Coordinate input device with display
JPS60150945A (en) Numerically controlled machine tool
JPH0210446B2 (en)
JPH0255806B2 (en)
JPH0210445B2 (en)
JPS6175416A (en) Input device
JPS6136823A (en) Position detector
JPS60150119A (en) Coordinate input device provided with display
JPS60196833A (en) Input device for menue sheet
JPH0210972B2 (en)
JPS63295901A (en) Winding structure of coil of position detecting apparatus
JPS60111918A (en) Position detecting apparatus
JPS6175421A (en) Position detecting device