JPH0210971B2 - - Google Patents

Info

Publication number
JPH0210971B2
JPH0210971B2 JP59006104A JP610484A JPH0210971B2 JP H0210971 B2 JPH0210971 B2 JP H0210971B2 JP 59006104 A JP59006104 A JP 59006104A JP 610484 A JP610484 A JP 610484A JP H0210971 B2 JPH0210971 B2 JP H0210971B2
Authority
JP
Japan
Prior art keywords
electromagnetic transducer
magnetostrictive
coil
transmission media
transmission medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59006104A
Other languages
Japanese (ja)
Other versions
JPS60150945A (en
Inventor
Azuma Murakami
Yoshinori Taguchi
Tsugunari Yamanami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakomu KK
Original Assignee
Wakomu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakomu KK filed Critical Wakomu KK
Priority to JP59006104A priority Critical patent/JPS60150945A/en
Publication of JPS60150945A publication Critical patent/JPS60150945A/en
Publication of JPH0210971B2 publication Critical patent/JPH0210971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35461Digitizing, menu tablet, pencil
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36372Light, magnetic pen

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Position Input By Displaying (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は手書き文字や図形を被加工物の表面に
容易に切削できるNC工作装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an NC machining device that can easily cut handwritten characters and figures onto the surface of a workpiece.

(従来技術と問題点) 従来のNC(数値制御)工作装置のうち、被加
工物の表面に任意の文字や図形を切削する装置で
は、予めプログラムされた複数の文字や図形のう
ちのいずれかを選択して実行する場合は比較的容
易に操作できるが、それ以外の文字や図形、例え
ば手書き文字や手書き図形を切削したい場合に
は、該手書き文字や手書き図形を直線や円弧に分
解しこれらの始点、終点の座標値、半径等をキー
ボードよりプログラム入力しなければならなかつ
たため、熟練者でなければ扱かうことができず、
また熟練者であつても時間を要し、生産性が悪
く、且つコストも高くなる等の欠点があつた。
(Prior art and problems) Among conventional NC (numerical control) machining devices, devices that cut arbitrary characters or figures on the surface of a workpiece have the ability to cut arbitrary characters or figures on the surface of a workpiece. It is relatively easy to select and execute the operation, but if you want to cut other characters or shapes, such as handwritten characters or handwritten figures, you can break down the handwritten characters or handwritten figures into straight lines or arcs, and then cut them. Since the coordinate values of the start point and end point, radius, etc. had to be entered into the program from the keyboard, only an experienced person could handle it.
Further, there are disadvantages such as it takes time even for an experienced person, has low productivity, and is expensive.

(発明の目的) 本発明は前記従来の欠点を除去するため、座標
入力用のタブレツトと、該タブレツト上に重ね合
わされた平面形のデイスプレイとを備え、該タブ
レツトより入力した文字や図形をデイスプレイに
表示すると共に被加工物に切削するようになした
もので、その目的とするところは手書き文字や図
形を被加工物の表面に容易に切削できるNC工作
装置を提供することにある。以下、図面について
詳細に説明する。
(Object of the Invention) In order to eliminate the above-mentioned conventional drawbacks, the present invention includes a tablet for inputting coordinates and a flat display superimposed on the tablet, and allows characters and figures input from the tablet to be displayed on the display. It is designed to both display and cut into the workpiece, and its purpose is to provide an NC machining device that can easily cut handwritten characters and figures onto the surface of the workpiece. The drawings will be described in detail below.

(実施例) 第1図は本発明の一実施例の概要を示す斜視図
である。同図において、100は座標を入力する
為のタブレツト、200は座標の指定を行なう位
置指定用磁気発生器(以下、単に磁気ペンと称
す。)、300はタブレツト100上に重ね合わさ
れた平面形のデイスプレイ、400は磁気ペン2
00で指定したタブレツト100上の座標値を検
出する位置検出回路、500はデイスプレイ20
0を駆動する表示制御回路、600は処理装置、
700はRS232Cインタフエイスユニツト、80
0はNC工作装置本体、例えばNC(数値制御)ボ
ール盤、900は被加工物、例えば金属板であ
る。
(Embodiment) FIG. 1 is a perspective view showing an outline of an embodiment of the present invention. In the figure, 100 is a tablet for inputting coordinates, 200 is a position specifying magnetic generator (hereinafter simply referred to as a magnetic pen) for specifying coordinates, and 300 is a planar pen superimposed on the tablet 100. Display, 400 is magnetic pen 2
00 is a position detection circuit that detects the specified coordinate value on the tablet 100, and 500 is the display 20.
0, a display control circuit that drives 600, a processing device;
700 is RS232C interface unit, 80
0 is an NC machining device main body, such as an NC (numerically controlled) drilling machine, and 900 is a workpiece, such as a metal plate.

第2図はタブレツト100の構造を示す平面
図、第3図は第2図A−A′線に沿う断面図であ
る。同図において、101はX方向の磁歪伝達媒
体、102はY方向の磁歪伝達媒体であり、それ
ぞれ複数本互いにほぼ平行に配置される。磁歪伝
達媒体101,102は強磁性体であれば使用で
きるが、強い磁歪振動波を発生させる為に磁歪効
果の大きな材料たとえば鉄を多量に含むアモルフ
アス合金が特に望ましい。又、磁石を接近させて
も磁化され難い保持力の小さな材料が好ましい。
アモルフアス合金としては、例えば
Fe67CO18B14Si1(原子%)、Fe81B13.5Si3.5C2(原子
%)等が使用できる。磁歪伝達媒体101,10
2は細長い形状をしており、その断面は長方形の
薄帯状か円形の線状が望ましく、薄帯状の場合幅
は数mm程度、厚さは数μm〜数10μm程度が製造
も容易で且つ特性も良好である。アモルフアス合
金は製造上、厚さが20〜50μmの薄いものが作れ
るので、これを薄板状或は線状に切断すれば良
い。本実施例では、Fe81B13.5Si3.5C2(原子%)か
ら成る幅2mm、厚さ0.02mmの磁歪伝達媒体を使用
している。
FIG. 2 is a plan view showing the structure of the tablet 100, and FIG. 3 is a sectional view taken along line A-A' in FIG. In the figure, reference numeral 101 indicates a magnetostrictive transmission medium in the X direction, and reference numeral 102 indicates a magnetostrictive transmission medium in the Y direction, and a plurality of them are arranged substantially parallel to each other. Although any ferromagnetic material can be used for the magnetostrictive transmission media 101 and 102, a material with a large magnetostrictive effect, such as an amorphous alloy containing a large amount of iron, is particularly desirable in order to generate strong magnetostrictive vibration waves. Further, it is preferable to use a material with a small coercive force that is difficult to magnetize even when a magnet is brought close to the material.
Examples of amorphous amorphous alloys include
Fe 67 CO 18 B 14 Si 1 (atomic %), Fe 81 B 13.5 Si 3.5 C 2 (atomic %), etc. can be used. Magnetostrictive transmission medium 101, 10
2 has an elongated shape, and its cross section is preferably a rectangular thin strip or a circular linear shape, and in the case of a thin strip, the width is about several mm and the thickness is about several μm to several tens of μm, which is easy to manufacture and has characteristics. is also good. Amorphous alloys can be manufactured into thin pieces with a thickness of 20 to 50 μm, so they can be cut into thin plates or lines. In this example, a magnetostrictive transmission medium made of Fe 81 B 13.5 Si 3.5 C 2 (atomic %) and having a width of 2 mm and a thickness of 0.02 mm is used.

103,104は、合成樹脂等から成る細長円
筒状の補強材で、前記磁歪伝達媒体101,10
2をそれぞれその内部に収容している。
Reference numerals 103 and 104 are elongated cylindrical reinforcing materials made of synthetic resin or the like, which are used for the magnetostrictive transmission media 101 and 10
2 are housed inside each.

105は磁歪伝達媒体101の一端の補強材1
03上に配設されたX方向第1電磁変換器、例え
ばX方向第1コイルである。このX方向第1コイ
ル105は隣接する補強材103間でひねられ、
隣接する磁歪伝達媒体101毎に逆方向に巻回さ
れており、コイル105に電流を流した時に各磁
歪伝達媒体101に対応した部分より生起される
磁束、又はコイル105に一方向の磁束が加わつ
た時に前記各部分に生起する電圧が逆方向となる
如くしてある。このため、コイル105にパルス
電流を流した時に発生するパルス雑音や外部から
の誘導がコイル105の隣接する各部分の間で互
いに打ち消し合つて弱められる。なお、巻回数は
図示例では1回であるが、2回以上にしても良
い。このX方向第1コイル105は瞬時的磁場変
動を発生して磁歪伝達媒体101の各々の巻回部
位に磁歪振動波を生起させる為のものであり、コ
イル105の一端は、後述する位置検出回路40
0内のパルス電流発生器に接続され、その他端は
接地される。
105 is a reinforcing material 1 at one end of the magnetostrictive transmission medium 101
03, the first electromagnetic transducer in the X direction, for example, the first coil in the X direction. This X-direction first coil 105 is twisted between adjacent reinforcing members 103,
Each adjacent magnetostrictive transmission medium 101 is wound in the opposite direction, and when a current is passed through the coil 105, a magnetic flux is generated from a portion corresponding to each magnetostrictive transmission medium 101, or a magnetic flux in one direction is applied to the coil 105. The voltages generated in the respective parts when the voltage is applied are in opposite directions. Therefore, pulse noise and external induction generated when a pulse current is passed through the coil 105 are canceled out and weakened between adjacent portions of the coil 105. Note that although the number of turns is one in the illustrated example, it may be wound two or more times. This X-direction first coil 105 is for generating instantaneous magnetic field fluctuations to generate magnetostrictive oscillation waves in each winding portion of the magnetostrictive transmission medium 101, and one end of the coil 105 is connected to a position detection circuit to be described later. 40
0, and the other end is grounded.

また、106は磁歪伝達媒体102の一端の補
強材104上に配設されたY方向第1電磁変換
器、例えばY方向第1コイルであり、隣接する補
強材104間でひねられ、隣接する磁歪伝達媒体
102毎に逆方向に巻回されている。このY方向
第1コイル106の一端は、コイル105と同様
に、パルス電流発生器に接続され、他端は接地さ
れる。なお、作用についてはコイル105と同様
である。
Further, 106 is a Y-direction first electromagnetic transducer, for example, a Y-direction first coil, which is disposed on the reinforcing material 104 at one end of the magnetostrictive transmission medium 102, and is twisted between the adjacent reinforcing materials 104, and the adjacent magnetostrictive Each transmission medium 102 is wound in the opposite direction. One end of this Y-direction first coil 106 is connected to a pulse current generator like the coil 105, and the other end is grounded. Note that the action is similar to that of the coil 105.

107,108は基準位置指定用磁気発生器、
例えば角磁石であり、磁歪伝達媒体101のX方
向第1コイル105の巻回部分、及び磁歪伝達媒
体102のY方向第1コイル106の巻回部分に
長手方向に平行なバイアス磁界をそれぞれ加える
為のものである。このようにバイアス磁界を印加
するのは、少ない電流で大きな磁歪振動波の発生
を可能にすると共に、この磁歪振動波の発生位置
を指定する為である。即ち、磁歪伝達媒体10
1,102の電気機械結合係数(機械的エネルギ
ーから電気的エネルギー、又は電気的エネルギー
から機械的エネルギーへの変換効率を示す係数)
は例えば第4図に示すようにあるバイアス磁界の
とき最大となるから、このような磁気バイアス
を、X方向第1コイル105、Y方向第1コイル
106の巻回部分に印加しておくことにより効率
良く磁歪振動波を発生することができる。
107 and 108 are reference position designating magnetic generators;
For example, a square magnet is used to apply a bias magnetic field parallel to the longitudinal direction to the wound portion of the first coil 105 in the X direction of the magnetostrictive transmission medium 101 and the wound portion of the first coil 106 in the Y direction of the magnetostrictive transmission medium 102, respectively. belongs to. The reason for applying the bias magnetic field in this manner is to enable the generation of large magnetostrictive vibration waves with a small amount of current, and to specify the generation position of the magnetostrictive vibration waves. That is, the magnetostrictive transmission medium 10
Electromechanical coupling coefficient of 1,102 (coefficient indicating conversion efficiency from mechanical energy to electrical energy or from electrical energy to mechanical energy)
For example, as shown in FIG. 4, the maximum value is reached at a certain bias magnetic field, so by applying such a magnetic bias to the wound portions of the first coil 105 in the X direction and the first coil 106 in the Y direction, Magnetostrictive vibration waves can be generated efficiently.

109は磁歪伝達媒体101の前記一端を除く
ほぼ全長にわたつて補強材103上に配設された
X方向第2電磁変換器、例えばコイルである。該
コイル109は各磁歪伝達媒体101上に全て同
一方向(この実施例では左巻き)に巻回され、且
つ隣接するコイル同士で接続の極性が逆になる如
く直列に接続されている。従つて、全てのコイル
109に一方向の磁束が加わつた時に各コイル1
09に生起する電圧、電流の方向、又はコイル1
09全体に電流を流した時に各コイル109に生
起される磁束の方向が隣接するコイル同士で逆方
向となり、外部からの誘導や雑音が隣接するコイ
ル間で互いに打ち消し合つて弱められる。
Reference numeral 109 denotes a second electromagnetic transducer in the X direction, such as a coil, which is disposed on the reinforcing member 103 over almost the entire length of the magnetostrictive transmission medium 101 except for the one end. The coils 109 are all wound in the same direction (left-handed in this embodiment) on each magnetostrictive transmission medium 101, and are connected in series such that adjacent coils have opposite polarities. Therefore, when magnetic flux in one direction is applied to all coils 109, each coil 1
09 voltage, current direction, or coil 1
When a current is passed through the entire coil 109, the direction of the magnetic flux generated in each coil 109 is opposite between adjacent coils, and external induction and noise are canceled out and weakened between the adjacent coils.

前記コイル109の巻きピツチはX方向第1コ
イル105に近接している側の一端より反対側の
他端に向つて徐々に密に巻回されており、磁歪振
動波の減衰により誘導電圧が小さくなるのを補な
つている。一般的に誘導起電力を高める為には巻
きピツチは大きい方が好ましい。このX方向第2
コイル109は磁歪伝達媒体101を伝搬する磁
歪振動波による誘導電圧を検出する為のものであ
り、一端は位置検出回路400のパルス検出器に
接続され、又他端は接地され、巻回された領域が
位置検出領域となる。
The winding pitch of the coil 109 is gradually more densely wound from one end on the side close to the first coil 105 in the X direction toward the other end on the opposite side, and the induced voltage is small due to the attenuation of the magnetostrictive vibration waves. I'm making up for it. Generally, in order to increase the induced electromotive force, it is preferable to have a larger winding pitch. This X direction second
The coil 109 is for detecting the induced voltage due to the magnetostrictive vibration waves propagating through the magnetostrictive transmission medium 101, and one end is connected to the pulse detector of the position detection circuit 400, and the other end is grounded and wound. The area becomes the position detection area.

また、110は磁歪伝達媒体102の広い範囲
にわたつて補強材104上に配設されたY方向第
2電磁変換器、例えばコイルであり、該コイル1
10は各磁歪伝達媒体102上に全て同一方向
(この実施例では左巻き)に巻回され、且つ隣接
するコイル同士で接続の極性が逆になる如く直列
に接続されている。また、このコイル110の巻
きピツチはY方向第1コイル104に近接してい
る側の一端より反対側の他端に向つて徐々に密に
巻回されており、その一端は位置検出回路400
のパルス検出器に接続され、他端は接地されてい
る。なお、作用についてはコイル109と同様で
ある。
Further, 110 is a Y-direction second electromagnetic transducer, for example a coil, disposed on the reinforcing member 104 over a wide range of the magnetostrictive transmission medium 102;
10 are all wound in the same direction (left-handed in this embodiment) on each magnetostrictive transmission medium 102, and are connected in series such that adjacent coils have opposite polarities. Further, the winding pitch of this coil 110 is gradually denser from one end on the side close to the first coil 104 in the Y direction toward the other end on the opposite side, and one end is connected to the position detection circuit 404.
is connected to the pulse detector, and the other end is grounded. Note that the action is similar to that of the coil 109.

前述したX方向の磁歪伝達媒体101と補強材
103とX方向第1コイル105とX方向第2コ
イル109とから成るX方向の位置検出部は非磁
性の金属ケース111の内部底面に設けた窪みに
挿入され、又、磁歪伝達媒体102と補強材10
4とY方向第1コイル106とY方向第2コイル
110とから成るY方向の位置検出部は前記X方
向の位置検出部の上に直交するよう重ね合わさ
れ、必要に応じて接着剤等で固定される。また、
基準位置指定用角磁石105,106は磁歪伝達
媒体101,102の端部に対向するように金属
ケース111の内部底面に固定されるが、磁歪伝
達媒体101,102の上方、下方、側方に並列
に配置しても良い。金属ケース111の上部には
非磁性の金属より成る蓋112が被せられる。
The X-direction position detection unit, which is composed of the X-direction magnetostrictive transmission medium 101, the reinforcing material 103, the X-direction first coil 105, and the X-direction second coil 109, is a recess provided in the inner bottom surface of the non-magnetic metal case 111. The magnetostrictive transmission medium 102 and the reinforcing material 10
4, a first Y-direction coil 106, and a second Y-direction coil 110, the Y-direction position detecting section is superimposed orthogonally on the X-direction position detecting section, and is fixed with adhesive or the like as necessary. be done. Also,
The reference position specifying square magnets 105 and 106 are fixed to the inner bottom surface of the metal case 111 so as to face the ends of the magnetostrictive transmission media 101 and 102, but are located above, below, and to the sides of the magnetostrictive transmission media 101 and 102. They may be arranged in parallel. The top of the metal case 111 is covered with a lid 112 made of non-magnetic metal.

第5図は磁気ペン200の構造を示す断面図で
ある。同図において、201は円筒形の棒磁石で
あり、ペン状の容器202の先端にN極を下にし
て取り付けられている。また203は測定開始を
示す所定の信号を発生する信号発生器であり、操
作スイツチ204をオンすることにより動作し、
前記測定開始を示す信号を超音波の送波器205
より後述する位置検出回路400内の受波器へ超
音波信号に変えて送出する。
FIG. 5 is a sectional view showing the structure of the magnetic pen 200. In the figure, 201 is a cylindrical bar magnet, which is attached to the tip of a pen-shaped container 202 with its north pole facing down. Further, 203 is a signal generator that generates a predetermined signal indicating the start of measurement, and is activated by turning on the operation switch 204.
The ultrasonic transmitter 205 sends a signal indicating the start of measurement.
The ultrasonic signal is converted into an ultrasonic signal and sent to a receiver in the position detection circuit 400, which will be described later.

デイスプレイ300としては例えば交差させた
複数の水平電極及び垂直電極間に液晶媒体を介在
した周知のマトリクス型液晶表示パネルが用いら
れる。また、デイスプレイ300の表示面積はタ
ブレツト100の入力可能範囲とほぼ等しく、そ
の座標位置がタブレツト100の座標位置と一致
するよう上下に重ねられている。
As the display 300, for example, a well-known matrix type liquid crystal display panel in which a liquid crystal medium is interposed between a plurality of crossed horizontal and vertical electrodes is used. Further, the display area of the display 300 is approximately equal to the inputtable range of the tablet 100, and the display areas are stacked vertically so that the coordinate positions thereof coincide with the coordinate positions of the tablet 100.

NCボール盤800は、パルスモータ等により
任意の位置に移動可能なテーブル上に金属板90
0を固定し、その表面に高速回転するドリルを当
て、前記テーブルを移動することにより穴あけ及
び切削を行なうもので、ここでは公知のTNV−
50(セイロ、マシナリー、ジヤパン製)NCボー
ル盤を用いている。
The NC drilling machine 800 has a metal plate 90 mounted on a table that can be moved to any position using a pulse motor or the like.
0 is fixed, a high-speed rotating drill is applied to the surface, and the table is moved to perform drilling and cutting.
50 (made by Seiro, Machinery, Japan) NC drilling machine is used.

第6図は装置の要部を示す回路ブロツク図であ
る。以下、前記の回路ブロツクの説明と共に本発
明の装置の動作について詳述する。
FIG. 6 is a circuit block diagram showing the main parts of the device. Hereinafter, the operation of the apparatus of the present invention will be described in detail together with a description of the circuit blocks described above.

今、NCボール盤800のテーブル上に金属板
900が固定されており、また磁気ペン200が
デイスプレイ300を介してタブレツト100の
X方向第1コイル105のコイル面中心からX軸
方向の距離l1の磁歪伝達媒体101上、更にY方
向第1コイル106のコイル面中心からY軸方向
の距離l2の磁歪伝達媒体102上にあり、電気機
械結合係数が大きくなる程度の磁気を磁歪伝達媒
体101,102に加えているものとする。
Now, a metal plate 900 is fixed on the table of the NC drilling machine 800, and the magnetic pen 200 is displayed at a distance l 1 in the X-axis direction from the center of the coil surface of the first coil 105 in the X direction of the tablet 100 via the display 300 . It is located on the magnetostrictive transmission medium 101 and further on the magnetostrictive transmission medium 102 at a distance l 2 in the Y-axis direction from the center of the coil surface of the first coil 106 in the Y direction. 102.

このような状態において、磁気ペン200の操
作スイツチ204をオンすると、送波器205よ
り測定開始を示す超音波信号が発信される。該超
音波信号は、受波器401で受信され電気信号に
変換され、受信器402で増幅、波形整形され
て、入力バツフア403に送出される。制御回路
404は入力バツフア403より前記測定開始信
号を読み取り、測定開始を認識し、出力バツフア
405を介してカウンタ406をリセツトすると
共にX方向用パルス電流発生器407を動作させ
る。カウンタ406はクロツク発生器408のク
ロツクパルス(パルス繰り返し周波数は、例えば
100MHz)のカウントを開始する。
In this state, when the operating switch 204 of the magnetic pen 200 is turned on, the transmitter 205 transmits an ultrasonic signal indicating the start of measurement. The ultrasonic signal is received by a receiver 401 and converted into an electrical signal, amplified and waveform-shaped by a receiver 402, and sent to an input buffer 403. The control circuit 404 reads the measurement start signal from the input buffer 403, recognizes the start of measurement, resets the counter 406 via the output buffer 405, and operates the X-direction pulse current generator 407. Counter 406 receives clock pulses from clock generator 408 (pulse repetition frequency is, for example,
100MHz).

X方向用パルス電流発生器407が動作しパル
ス電流がX方向第1コイル105に印加される
と、X方向第1コイル105で瞬時的磁場変動が
発生し、これが原因で磁歪伝達媒体101のX方
向第1コイル105の巻回部分で磁歪振動波が生
起する。この磁歪振動波は磁歪伝達媒体101固
有の伝搬速度(約5000m/秒)で磁歪伝達媒体1
01を長手方向に沿つて伝搬する。そして、この
伝搬中において、磁歪振動波が存在する磁歪伝達
媒体101の部位でその部位の電気機械結合係数
の大きさに応じて機械的エネルギーから磁気的エ
ネルギーへの変換が行なわれ、その為X方向第2
コイル109に誘導起電力が発生する。
When the X-direction pulse current generator 407 operates and a pulse current is applied to the X-direction first coil 105, an instantaneous magnetic field fluctuation occurs in the X-direction first coil 105, which causes the A magnetostrictive vibration wave is generated in the winding portion of the first coil 105. This magnetostrictive vibration wave is transmitted to the magnetostrictive transmission medium 101 at a propagation speed (approximately 5000 m/sec) specific to the magnetostrictive transmission medium 101.
01 is propagated along the longitudinal direction. During this propagation, mechanical energy is converted into magnetic energy at a portion of the magnetostrictive transmission medium 101 where the magnetostrictive vibration wave exists, depending on the magnitude of the electromechanical coupling coefficient at that portion, so that Direction 2nd
An induced electromotive force is generated in the coil 109.

第7図はX方向第2コイル109に発生する誘
導起電力の時間的変化の一例をX方向第1コイル
105にパルス電流を印加した時刻をt=Oとし
て図示したものである。同図に示すように、誘導
起電力の振幅は時刻t=O直後と時刻t0からt1
t2秒経過したあたりで大きくなり、他の時刻では
小さくなる。時刻t=O直後で誘導起電力の振幅
が大きくなるのは、X方向第1コイル105とX
方向第2コイル109間の電磁誘導作用によるも
のであり、時刻t=t1〜t2において1サイクルの
誘導起電力(磁歪振動波による誘導電圧)の振幅
が大きくなるのは、X方向第1コイル105の巻
回部分で発生した磁歪振動波が、磁歪伝達媒体1
01を伝搬して磁気ペン200の直下付近に到達
し、その部分で電気機械結合係数が大きくなつた
為である。磁気ペン200を磁歪伝達媒体の長手
方向X方向に沿つて移動させると磁歪振動波によ
る誘導電圧もそれに応じて時間軸上を移動する。
従つて、時刻t0からt1〜t2までの時間を測定する
ことにより磁気ペン200で指定されたX方向の
位置、即ち距離l1を算出することができる。位置
を算出する為の伝搬時間としては、例えば第7図
に示すように磁歪振動による誘導電圧の振幅が閾
値−E1より小さくなつた時点t3、閾値E1より大き
くなつた時点t4を使用しても良く、又、ゼロクロ
ス点t5を使用しても良い。
FIG. 7 illustrates an example of a temporal change in the induced electromotive force generated in the second coil 109 in the X direction, with the time when a pulse current is applied to the first coil 105 in the X direction being t=O. As shown in the figure, the amplitude of the induced electromotive force changes immediately after time t=O and from time t 0 to t 1 ~
It becomes larger after t 2 seconds and becomes smaller at other times. Immediately after time t=O, the amplitude of the induced electromotive force becomes large because the first coil 105 in the X direction and the
This is due to the electromagnetic induction effect between the second coils 109 in the X direction, and the reason why the amplitude of one cycle of induced electromotive force (induced voltage due to magnetostrictive vibration waves) increases at time t=t 1 to t 2 is due to the electromagnetic induction effect between the second coils 109 in the X direction. The magnetostrictive vibration waves generated in the winding portion of the coil 105 are transmitted to the magnetostrictive transmission medium 1.
01 and reached the vicinity directly below the magnetic pen 200, where the electromechanical coupling coefficient became large. When the magnetic pen 200 is moved along the longitudinal direction X of the magnetostrictive transmission medium, the voltage induced by the magnetostrictive vibration waves also moves on the time axis accordingly.
Therefore, by measuring the time from time t 0 to t 1 to t 2 , it is possible to calculate the position in the X direction specified by the magnetic pen 200, that is, the distance l 1 . As the propagation time for calculating the position, for example, as shown in Fig. 7, the time t 3 when the amplitude of the induced voltage due to magnetostrictive vibration becomes smaller than the threshold value -E 1 and the time t 4 when it becomes larger than the threshold value E 1 are used. Alternatively, the zero cross point t5 may be used.

前述したX方向第2コイル109で発生する誘
導起電力はX方向用パルス検出器409に入力さ
れる。X方向用パルス検出器409は増幅器、比
較器等からなつており、誘導起電力が例えば前述
した閾値E1より大きい間、即ち磁歪振動波によ
る誘導電圧の正極性部分を検出したときにその出
力をハイレベルとする。制御回路404は入力バ
ツフア403を介してこのハイレベルの信号を読
み込むと、出力バツフア405を介してカウンタ
406にストツプ信号を出力しカウントを停止す
る。この時カウンタ406にはX方向第1コイル
105にパルス電流が加えられた時刻からX方向
第2コイル109に磁歪振動波による誘導電圧が
現われるまでの時間に相当するデイジタル値が得
られる。また、この値は、磁歪振動波が毎秒約
5000mの速さで進むことにより、X方向第1コイ
ル105から磁気ペン200までのX方向の距離
l1に対応したものとなる。このようにしてデイジ
タル値としてカウンタ406に得られたX方向の
座標値は入力バツフア403を介して制御回路4
04に読み込まれ、更に処理装置600に送出さ
れ一時記憶される。
The induced electromotive force generated in the X-direction second coil 109 described above is input to the X-direction pulse detector 409. The X-direction pulse detector 409 is composed of an amplifier, a comparator, etc., and its output is detected while the induced electromotive force is greater than the threshold value E1 mentioned above, that is, when the positive polarity portion of the induced voltage due to the magnetostrictive oscillation wave is detected. is considered a high level. When the control circuit 404 reads this high level signal through the input buffer 403, it outputs a stop signal to the counter 406 through the output buffer 405 to stop counting. At this time, the counter 406 obtains a digital value corresponding to the time from the time when the pulse current is applied to the first coil 105 in the X direction until the induced voltage due to the magnetostrictive vibration wave appears in the second coil 109 in the X direction. Also, this value means that the magnetostrictive vibration waves are approximately
By moving at a speed of 5000 m, the distance in the X direction from the first coil 105 in the X direction to the magnetic pen 200
It corresponds to l 1 . The X-direction coordinate value thus obtained as a digital value by the counter 406 is sent to the control circuit 4 via the input buffer 403.
04, and further sent to the processing device 600 where it is temporarily stored.

ついで制御回路404は再度カウンタ406を
リセツトしX方向用パルス電流発生器410を動
作し、Y方向用パルス検出器411の出力を監視
し、前記同様にして磁気ペン200のY方向の座
標値を得て、これを処理装置600に送出する。
以下、これを繰り返し、次々に指示される位置デ
ータを得ることができる。
Next, the control circuit 404 resets the counter 406 again, operates the X-direction pulse current generator 410, monitors the output of the Y-direction pulse detector 411, and determines the Y-direction coordinate value of the magnetic pen 200 in the same manner as described above. and sends it to the processing device 600.
Thereafter, by repeating this process, it is possible to obtain position data that is instructed one after another.

一方、処理装置600に記憶されたX方向及び
Y方向の座標値からなる位置データは、表示制御
回路500のデイスプレイメモリ501に送出さ
れ、一定の順序に従つて並べられて記憶されると
共に、制御回路502からのタイミングパルスに
より順次読み出されてX方向ドライバ503、Y
方向ドライバ504に出力される。またこれらの
X方向ドライバ503、Y方向ドライバ504に
は、制御回路502のタイミングパルスに同期し
て走査回路505が発生するスキヤニングパルス
が入力され、各ドライバ503,504はデイス
プレイ300の前記X方向及びY方向の座標値に
対応する電極を駆動し、タブレツト100上に指
示した位置をデイスプレイ300上の同一位置に
表示する。従つてタブレツト100上に重ねたデ
イスプレイ300の上から磁気ペン200で書い
た文字や図形の筆跡が、デイスプレイ300上に
光表示によつて同一筆跡にて表示される。
On the other hand, position data consisting of coordinate values in the X and Y directions stored in the processing device 600 is sent to the display memory 501 of the display control circuit 500, where it is arranged and stored in a certain order and is The signals are sequentially read out by timing pulses from the circuit 502 and sent to the X direction driver 503, Y
It is output to the direction driver 504. A scanning pulse generated by a scanning circuit 505 in synchronization with the timing pulse of the control circuit 502 is input to the X direction driver 503 and Y direction driver 504, and each driver 503, 504 controls the display 300 in the X direction. and the electrodes corresponding to the coordinate values in the Y direction are driven, and the indicated position on the tablet 100 is displayed at the same position on the display 300. Therefore, handwriting of characters and figures written with the magnetic pen 200 on the display 300 stacked on the tablet 100 is displayed as the same handwriting on the display 300 by optical display.

また一方、前記処理装置600に記憶された位
置データ、即ち手書き文字や図形を構成する複数
のドツトの各座標値は、周知のRS232Cインタフ
エイスユニツト700を介してNCボール盤80
0に送られる。NCボール盤800では、前記位
置データを受け取るとテーブルを動かし金属板9
00を移動し、該位置データの最初の座標値に該
当する部位をドリル直下に位置させ、ついでドリ
ルを所定量だけ垂下させ、金属板900の表面の
前記位置に穴を穿つ。この後はテーブルのみを動
かし金属板900を、ドリルが前記位置データ中
の座標値に該当する部位に順次位置するよう移動
させ、金属板900の表面をドリルによつて切削
する。一連の座標値が終了した場合は、一旦、ド
リルを上昇させ金属板900の表面より引き離
し、以下前記同様の動作を繰り返す。従つて磁気
ペン200で書いた通りの文字や図形が金属板9
00の表面に切削加工される。
On the other hand, the position data stored in the processing device 600, that is, each coordinate value of a plurality of dots constituting handwritten characters and figures, is sent to the NC drilling machine 80 via a well-known RS232C interface unit 700.
Sent to 0. When the NC drilling machine 800 receives the position data, it moves the table and presses the metal plate 9.
00 to position the part corresponding to the first coordinate value of the position data directly under the drill, and then lower the drill by a predetermined amount to drill a hole at the above position on the surface of the metal plate 900. After this, only the table is moved and the metal plate 900 is moved so that the drill is sequentially positioned at the locations corresponding to the coordinate values in the position data, and the surface of the metal plate 900 is cut with the drill. When the series of coordinate values is completed, the drill is once raised and separated from the surface of the metal plate 900, and the same operation as described above is repeated. Therefore, the characters and figures written with the magnetic pen 200 are printed on the metal plate 9.
The surface of 00 is machined.

また前記位置データは処理装置600内に一時
記憶されているから多数の金属板に同一の手書き
文字や図形を施こすこともでき、また一枚毎に手
書入力を行なつて個々に個性のある製品を作るこ
ともできる。また前記位置データを外部記憶装置
(図示せず)に記憶させ、必要な時に取り出し、
デイスプレイ300に表示させ確認した後、金属
板900に切削加工することもできる。
In addition, since the position data is temporarily stored in the processing device 600, it is possible to apply the same handwritten characters and figures to a large number of metal plates, and it is also possible to input handwriting to each sheet to create individualized designs. You can also make a product. In addition, the position data is stored in an external storage device (not shown) and retrieved when necessary.
After displaying it on the display 300 and confirming it, the metal plate 900 can also be cut.

また、磁気ペン200は、わずかのバイアス磁
界をタブレツト100の磁歪伝達媒体101,1
02に与えれば良く、特にタブレツト100(デ
イスプレイ300も含めて)に近接させる必要は
ない。従つてデイスプレイ300上に既に手書き
文字や図形が施こされている金属板の原本(但
し、強磁性体以外のものに限る。)を載置し、そ
の文字や図形の切削痕を磁気ペン200でなぞれ
ばその座標値を入力することができ、前記原本と
同一の文字や図形を施こした金属板を得ることが
できる。
Furthermore, the magnetic pen 200 applies a slight bias magnetic field to the magnetostrictive transmission media 101 and 1 of the tablet 100.
02, and there is no need to place it close to the tablet 100 (including the display 300). Therefore, an original metal plate (limited to materials other than ferromagnetic materials) on which handwritten letters and figures have already been applied is placed on the display 300, and the cutting marks of the letters and figures are drawn using the magnetic pen 200. By tracing the coordinates, you can input the coordinate values and obtain a metal plate with the same characters and figures as the original.

また、処理装置600に文字編集、図形処理機
能を付加してタブレツト100に入力した文字や
図形を修正したり追加、削除できるようにし、こ
の修正等を施こした文字や図形の位置データを
NCボール盤800に送出して切削加工する如く
なしてもよい。
Furthermore, character editing and graphic processing functions are added to the processing device 600 so that characters and figures input to the tablet 100 can be modified, added, and deleted, and the position data of the modified characters and figures can be stored.
It may also be sent to an NC drilling machine 800 for cutting.

これまで説明した実施例では、タブレツト10
0においてX方向第1コイル105、Y方向第1
コイル106を磁歪振動波の発生用に使用し、X
方向第2コイル109、Y方向第2コイル110
を磁歪振動波の検知用として使用したが、逆とし
ても良く、その場合には磁気ペン200直下で磁
歪振動波が発生し、第2コイル109,110で
誘導電圧が発生することになる。
In the embodiments described so far, the tablet 10
0, the first coil 105 in the X direction, the first coil 105 in the Y direction
The coil 106 is used to generate magnetostrictive vibration waves, and
Direction second coil 109, Y direction second coil 110
was used for detecting magnetostrictive vibration waves, but it may be reversed. In that case, magnetostrictive vibration waves will be generated directly under the magnetic pen 200, and induced voltage will be generated in the second coils 109 and 110.

なお、本発明では磁場(磁束)変動を電圧、電
流等の変化に変換し、又は電圧、電流等の変化を
磁場変動に変換する素子、装置を、電磁変換器と
呼ぶものとする。実施例では電磁変換器としてコ
イルを用いたが、これに限られることはなく、特
にX方向第1コイル、Y方向第1コイルの代りに
磁気ヘツドを用いれば外部に漏れる磁束が極めて
少なくなり、より高精度な座標位置の検出が可能
となる。また、実施例の説明中で第2電磁変換器
は磁歪伝達媒体の第1電磁変換器を配設した一端
を除くほぼ全長にわたつて配設すると述べたが、
これには第1電磁変換器から漏洩する磁束による
電磁誘導を避けるために第1電磁変換器との間に
若干、配設しない部分がある場合等も含まれ、特
許請求の範囲も同様に解釈されなければならな
い。
In the present invention, an element or device that converts magnetic field (magnetic flux) fluctuations into changes in voltage, current, etc., or converts changes in voltage, current, etc. into magnetic field fluctuations is referred to as an electromagnetic converter. In the embodiment, a coil was used as the electromagnetic transducer, but it is not limited to this. In particular, if a magnetic head is used instead of the first coil in the X direction and the first coil in the Y direction, the magnetic flux leaking to the outside can be extremely reduced. It becomes possible to detect coordinate positions with higher precision. Furthermore, in the description of the embodiment, it was stated that the second electromagnetic transducer is disposed over almost the entire length of the magnetostrictive transmission medium except for one end where the first electromagnetic transducer is disposed.
This includes cases where there is a portion that is not disposed between the first electromagnetic converter and the first electromagnetic converter in order to avoid electromagnetic induction due to magnetic flux leaking from the first electromagnetic converter, and the scope of the claims is also interpreted in the same way. It must be.

(発明の効果) 以上説明したように本発明によれば、互いにほ
ぼ平行に配列された複数のX方向の磁歪伝達媒体
と、互いにほぼ平行に配列された複数のY方向の
磁歪伝達媒体とが互いにほぼ垂直に交叉するよう
に重ね合わされた構成を有し、且つ、前記複数の
X方向の磁歪伝達媒体の一端に配設されたX方向
第1電磁変換器と前記複数のY方向の磁歪伝達媒
体の一端に配設されたY方向第1電磁変換器とか
らなる第1の電磁変換器と、前記複数のX方向の
磁歪伝達媒体の前記一端を除くほぼ全長にわたつ
て配設されたX方向第2電磁変換器と前記複数の
Y方向の磁歪伝達媒体の前記一端を除くほぼ全長
にわたつて配設されたY方向第2電磁変換器とか
らなる第2の電磁変換器とを有するタブレツト
と、前記磁歪伝達媒体の局部的な電気機械結合係
数を大きくする程度の磁気を発生し且つどこにも
接続されない位置指定用磁気発生器と、前記第1
の電磁変換器又は第2の電磁変換器の一方にパル
ス電流を印加して前記各磁歪伝達媒体に磁歪振動
波を生起させ、該磁歪振動波が生起してから前記
第1の電磁変換器又は第2の電磁変換器の他方に
磁歪振動波による誘導電圧が現われるまでの時間
を検知することにより、前記位置指定用磁気発生
器による指定位置のX方向及びY方向の位置デー
タを求める位置検出回路とを具備してなる座標入
力装置を備えたので、位置指定用磁気発生器は位
置検出のためのタイミング信号等を装置側へ送る
必要がなく、装置との間をコードレスとすること
ができ、コードがその疲労により断線したり、か
らみついたり、じやましたりすることがなく、従
つて、操作性が良く、位置指定用磁気発生器を任
意の位置に容易に移動させることができ、また、
磁歪伝達媒体の電気機械結合係数をある部分のみ
数Oe程度変化させることにより位置指定できる
ので、位置指定用磁気発生器をタブレツトに必ず
しも近接させる必要はなく、数cm以上の間隔をあ
けても良く、また、磁性体以外の物体を介在させ
ても良く、これらの場合でも高い分解能で位置検
出できる。
(Effects of the Invention) As explained above, according to the present invention, a plurality of X-direction magnetostrictive transmission media arranged substantially parallel to each other and a plurality of Y-direction magnetostriction transmission media arranged substantially parallel to each other are arranged. A first X-direction electromagnetic transducer and a plurality of Y-direction magnetostrictive transducers, which have a configuration in which they are superimposed so as to intersect substantially perpendicularly to each other, and are disposed at one end of the plurality of X-direction magnetostrictive transmission media. a first electromagnetic transducer in the Y direction disposed at one end of the medium; and a first electromagnetic transducer in the Y direction disposed at one end of the medium, and an X A tablet having a second electromagnetic transducer including a second electromagnetic transducer in the Y direction and a second electromagnetic transducer in the Y direction disposed over substantially the entire length of the plurality of Y direction magnetostrictive transmission media except for the one end. and a position specifying magnetic generator that generates a sufficient amount of magnetism to increase the local electromechanical coupling coefficient of the magnetostrictive transmission medium and is not connected to any part.
A pulse current is applied to one of the electromagnetic transducer or the second electromagnetic transducer to generate a magnetostrictive vibration wave in each of the magnetostrictive transmission media, and after the magnetostriction vibration wave is generated, the first electromagnetic transducer or A position detection circuit that obtains position data in the X and Y directions of the specified position by the position specifying magnetic generator by detecting the time until an induced voltage by the magnetostrictive vibration wave appears on the other side of the second electromagnetic transducer. Since the position specifying magnetic generator is equipped with a coordinate input device comprising The cord will not break, become tangled, or become loose due to fatigue, so it is easy to operate, and the magnetic generator for positioning can be easily moved to any position. ,
Since the position can be specified by changing the electromechanical coupling coefficient of the magnetostrictive transmission medium by a few Oe in a certain part, the magnetic generator for position specification does not necessarily have to be close to the tablet, and can be spaced several centimeters or more apart. Furthermore, an object other than a magnetic material may be interposed, and the position can be detected with high resolution even in these cases.

また、前記タブレツト上にデイスプレイを重ね
合わせるとともに、該デイスプレイを駆動する表
示制御回路と、前記位置データに従つて被加工物
の表面を切削するNC工作装置本体と、これらを
制御する処理装置とを備えたため、従来のタブレ
ツトとデイスプレイとが別々のものの如く頭を動
かしてこれらを交互に見る必要がなくなるととも
に、位置指定用磁気発生器による指定位置とデイ
スプレイの表示位置との視差がほとんどなく、極
めて自然な感覚で入力作業を行なうことができ、
また、従来のものの如く複雑なプログラミングを
必要とせず、デイスプレイ上で位置指定用磁気発
生器を操作して任意の文字や図形を入力するのみ
でその入力結果を確認しながら被加工物の表面に
切削加工することができ、従つて、熟練者以外で
も容易に手書き文字や図形の切削加工を行なうこ
とができ、生産性の向上やコストダウンを図るこ
とができ、また、個々の被加工品毎に座標入力を
行なつて個性のある製品を作ることもできる。さ
らにまた、前述したように位置指定用磁気発生器
はわずかのバイアス磁界をタブレツトに与えるの
みで良く特に近接させる必要はないから、デイス
プレイ上に既に手書き文字や図形が切削加工され
ている被加工物の原本(但し、強磁性体以外のも
のに限る。)を載置し、その文字や図形の切削痕
を位置指定用磁気発生器でなぞれば、その座標値
を入力することができ、前記原本と同一の文字や
図形を施こした製品を得ることができる等の利点
がある。
In addition, a display is superimposed on the tablet, and a display control circuit that drives the display, an NC machining device main body that cuts the surface of the workpiece according to the position data, and a processing device that controls these are provided. This eliminates the need to move your head to look at the tablet and display alternately as if they were two separate devices, and there is almost no parallax between the position designated by the position designating magnetic generator and the display position, making it extremely convenient. You can input data in a natural way,
In addition, there is no need for complicated programming as with conventional methods; simply operate the magnetic generator for position designation on the display, input any characters or figures, and while checking the input results, the surface of the workpiece is Therefore, even non-experts can easily cut handwritten characters and figures, improving productivity and reducing costs. You can also create unique products by inputting coordinates. Furthermore, as mentioned above, the position specifying magnetic generator only needs to apply a slight bias magnetic field to the tablet, and there is no need to place it particularly close to the tablet. By placing the original document (limited to materials other than ferromagnetic materials) and tracing the cutting marks of the characters and figures with the position specifying magnetic generator, the coordinate values can be input. It has the advantage that it is possible to obtain a product with the same characters and figures as the original.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図
はNC工作装置の概要を示す斜視図、第2図はタ
ブレツトの構造を示す平面図、第3図は第2図A
−A′線に沿う断面図、第4図は磁気バイアス対
電気機械結合係数の特性図、第5図は磁気ペンの
構造を示す断面図、第6図は装置要部の回路ブロ
ツク図、第7図はX方向第2コイル109に発生
する誘導起電力の時間的変化の一例を示す線図で
ある。 100……タブレツト、200……磁気ペン、
300……デイスプレイ、400……位置検出回
路、500……表示制御回路、600……処理装
置、700……RS232Cインタフエイスユニツ
ト、800……NCボール盤。
The drawings show one embodiment of the present invention; Fig. 1 is a perspective view showing an outline of the NC machining device, Fig. 2 is a plan view showing the structure of a tablet, and Fig. 3 is Fig. 2A.
4 is a characteristic diagram of magnetic bias versus electromechanical coupling coefficient, 5 is a sectional view showing the structure of the magnetic pen, 6 is a circuit block diagram of the main part of the device, FIG. 7 is a diagram showing an example of a temporal change in the induced electromotive force generated in the second coil 109 in the X direction. 100...tablet, 200...magnetic pen,
300...Display, 400...Position detection circuit, 500...Display control circuit, 600...Processing device, 700...RS232C interface unit, 800...NC drilling machine.

Claims (1)

【特許請求の範囲】 1 互いにほぼ平行に配列された複数のX方向の
磁歪伝達媒体と、互いにほぼ平行に配列された複
数のY方向の磁歪伝達媒体とが互いにほぼ垂直に
交叉するように重ね合わされた構成を有し、且
つ、前記複数のX方向の磁歪伝達媒体の一端に配
設されたX方向第1電磁変換器と前記複数のY方
向の磁歪伝達媒体の一端に配設されたY方向第1
電磁変換器とからなる第1の電磁変換器と、前記
複数のX方向の磁歪伝達媒体の前記一端を除くほ
ぼ全長にわたつて配設されたX方向第2電磁変換
器と前記複数のY方向の磁歪伝達媒体の前記一端
を除くほぼ全長にわたつて配設されたY方向第2
電磁変換器とからなる第2の電磁変換器とを有す
るタブレツトと、 前記磁歪伝達媒体の局部的な電気機械結合係数
を大きくする程度の磁気を発生し且つどこにも接
続されない位置指定用磁気発生器と、 前記第1の電磁変換器又は第2の電磁変換器の
一方にパルス電流を印加して前記各磁歪伝達媒体
に磁歪振動波を生起させ、該磁歪振動波が生起し
てから前記第1の電磁変換器又は第2の電磁変換
器の他方に磁歪振動波による誘導電圧が現われる
までの時間を検知することにより、前記位置指定
用磁気発生器による指定位置のX方向及びY方向
の位置データを求める位置検出回路とを具備して
なる座標入力装置を備え、 前記タブレツト上にデイスプレイを重ね合わせ
るとともに、 該デイスプレイを駆動する表示制御回路と、 前記位置データに従つて被加工物の表面を切削
するNC工作装置本体と、 これらを制御する処理装置とを備えた ことを特徴とするNC工作装置。
[Claims] 1. A plurality of X-direction magnetostrictive transmission media arranged substantially parallel to each other and a plurality of Y-direction magnetostriction transmission media arranged substantially parallel to each other are superimposed so as to intersect each other substantially perpendicularly. an X-direction first electromagnetic transducer disposed at one end of the plurality of X-direction magnetostrictive transmission media, and a Y-direction first electromagnetic transducer disposed at one end of the plurality of Y-direction magnetostriction transmission media. Direction 1
a first electromagnetic transducer consisting of an electromagnetic transducer; a second electromagnetic transducer in the X direction disposed over substantially the entire length of the plurality of magnetostrictive transmission media in the X direction except for the one end; and a second electromagnetic transducer in the X direction and the plurality of Y directions. A second magnetostrictive transmission medium in the Y direction, which is disposed over almost the entire length of the magnetostrictive transmission medium except for the one end.
a second electromagnetic transducer consisting of an electromagnetic transducer; and a position specifying magnetic generator that generates magnetism to an extent that increases the local electromechanical coupling coefficient of the magnetostrictive transmission medium and is not connected to anywhere. and applying a pulse current to one of the first electromagnetic transducer or the second electromagnetic transducer to generate magnetostrictive vibration waves in each of the magnetostrictive transmission media, and after the magnetostriction vibration waves are generated, the first electromagnetic transducer By detecting the time until an induced voltage due to magnetostrictive vibration waves appears in the other electromagnetic transducer or the second electromagnetic transducer, position data in the X direction and Y direction of the specified position by the position specifying magnetic generator is obtained. a coordinate input device comprising a position detection circuit for determining the position data, a display control circuit for superimposing a display on the tablet and driving the display, and a coordinate input device for cutting the surface of the workpiece according to the position data. What is claimed is: 1. An NC machining device characterized by comprising an NC machining device main body that performs operations, and a processing device that controls these devices.
JP59006104A 1984-01-17 1984-01-17 Numerically controlled machine tool Granted JPS60150945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59006104A JPS60150945A (en) 1984-01-17 1984-01-17 Numerically controlled machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59006104A JPS60150945A (en) 1984-01-17 1984-01-17 Numerically controlled machine tool

Publications (2)

Publication Number Publication Date
JPS60150945A JPS60150945A (en) 1985-08-08
JPH0210971B2 true JPH0210971B2 (en) 1990-03-12

Family

ID=11629191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59006104A Granted JPS60150945A (en) 1984-01-17 1984-01-17 Numerically controlled machine tool

Country Status (1)

Country Link
JP (1) JPS60150945A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192979A (en) * 1975-02-13 1976-08-14 nc teepunosakuseihoho
JPS5338228A (en) * 1976-09-20 1978-04-08 Seiko Instr & Electronics Ltd Display unit
JPS53125726A (en) * 1977-04-11 1978-11-02 Kokusai Denshin Denwa Co Ltd Code generator
JPS58114861A (en) * 1981-12-25 1983-07-08 Hitachi Zosen Corp Controlling method of rust removing machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192979A (en) * 1975-02-13 1976-08-14 nc teepunosakuseihoho
JPS5338228A (en) * 1976-09-20 1978-04-08 Seiko Instr & Electronics Ltd Display unit
JPS53125726A (en) * 1977-04-11 1978-11-02 Kokusai Denshin Denwa Co Ltd Code generator
JPS58114861A (en) * 1981-12-25 1983-07-08 Hitachi Zosen Corp Controlling method of rust removing machine

Also Published As

Publication number Publication date
JPS60150945A (en) 1985-08-08

Similar Documents

Publication Publication Date Title
JPH0214724B2 (en)
JPH0210970B2 (en)
USRE33936E (en) Electronic blackboard apparatus
US5134388A (en) Electronic blackboard system marker and eraser therefor
JPH0610613B2 (en) Position detector
JPH0210969B2 (en)
US4631356A (en) Coordinate input device with display
US4617515A (en) Position detecting apparatus
JPH0350285B2 (en)
JPS60221820A (en) Position detecting device
EP0146947B1 (en) Coordinate input device with display
US3956588A (en) Digitizing graphic system using magnetostrictive transducers
JPH0210971B2 (en)
JPH0210446B2 (en)
JPH0210445B2 (en)
JPS6175416A (en) Input device
JPH0255806B2 (en)
JPS60196833A (en) Input device for menue sheet
JPS6136823A (en) Position detector
JPS63295901A (en) Winding structure of coil of position detecting apparatus
JPH0259488B2 (en)
JPS62107323A (en) Position detecting device
JPH0210972B2 (en)
JPS6175421A (en) Position detecting device
JPS6231373B2 (en)