JPS60150887A - Removing method of endotoxin - Google Patents
Removing method of endotoxinInfo
- Publication number
- JPS60150887A JPS60150887A JP467984A JP467984A JPS60150887A JP S60150887 A JPS60150887 A JP S60150887A JP 467984 A JP467984 A JP 467984A JP 467984 A JP467984 A JP 467984A JP S60150887 A JPS60150887 A JP S60150887A
- Authority
- JP
- Japan
- Prior art keywords
- water
- endotoxin
- porous membrane
- membrane
- microfibrils
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)技術分野
本発明は、ポリオレフィン系多孔質膜を用いてエンドト
キシンを除去する方法、特に、膜の目づまりを防止し、
且つエンドトキシン除去能力を高め容易に水または水’
/4 液中のエンドトキシンを除去し得るようにした改
良方法に関する。Detailed Description of the Invention (a) Technical field The present invention relates to a method for removing endotoxin using a polyolefin porous membrane, in particular, a method for preventing clogging of the membrane,
In addition, it increases the ability to remove endotoxins and can be easily mixed with water or water.
/4 This invention relates to an improved method for removing endotoxin from a liquid.
(ロ)従来技術
水の中に存在するパイロジエンは主に細菌の細胞膜由来
のエンドトキシンといわれている。この物質は加温に対
し安定で、100℃では分解せず、250 ’C以上で
分解するとされている。(b) Prior Art Pyrogen present in water is said to be endotoxin mainly derived from bacterial cell membranes. This substance is stable against heating, and is said to not decompose at 100°C, but to decompose at temperatures above 250'C.
エンドトキシンは体内に入ると発熱をおこすため、エン
ドトキシンの除去は、製薬工業、病院用水の他、医用関
連工業などで極めて重要な問題となっている。その除去
法として従来より蒸溜法。Since endotoxin causes fever when it enters the body, the removal of endotoxin has become an extremely important issue in the pharmaceutical industry, hospital water, and medical-related industries. Distillation is the traditional method for removing it.
逆浸透膜法などが用いられているが、エネルギーコスト
や設備費、 ti作性などの点で十分満足できるとは言
えない状況である。Although reverse osmosis membrane methods are being used, they are not fully satisfactory in terms of energy costs, equipment costs, and ti production efficiency.
本発明者らは先にポリオレフィン系多孔質膜によるパイ
ロジエン除去方法を開発し、特願昭57−45983号
等で堤案じた。これらの方法は従来の方法に比べ、簡単
に且つ極めて低いエネルギー消費でエンドトキシンを除
去できる特徴を有するが、水道水等の精盟度の低い水を
濾過する場合、目づまりにより圧力の上昇がおこりやす
いこと、また大量の水を濾過するとエンドトキシンの除
去能力が低下する傾向がみられることがわかった。従っ
て、より大量の水を処理してエンドトキシンを有効に除
去しうる方法が要望されていた。The present inventors previously developed a method for removing pyrodiene using a polyolefin porous membrane, and proposed this method in Japanese Patent Application No. 57-45983. These methods have the advantage of being able to remove endotoxins easily and with extremely low energy consumption compared to conventional methods, but when filtering water with a low purity level such as tap water, the pressure increases due to clogging. It was also found that filtering a large amount of water tends to reduce the ability to remove endotoxins. Therefore, there has been a need for a method that can treat a larger amount of water and effectively remove endotoxins.
(ハ)発明の目的
本発明の目的は、目づまりをおこし難<、且つ大■の水
を濾過してもエンドトキシン除去能力が低下することが
ない水または水溶液中のエンドトキシンの除去方法を提
供するにある。(c) Purpose of the Invention The purpose of the present invention is to provide a method for removing endotoxins from water or an aqueous solution that does not easily cause clogging and does not reduce the endotoxin removal ability even when a large amount of water is filtered. be.
(ニ)発明の構成
本発明に係る水または水溶液中のエンドトキシンの除去
方法は、縦方向に配列したミクロフィブリルを該ミクロ
フィブリルに対してほぼ直角に連結した節部より形成さ
れる多数の短冊状微小空孔が膜の厚さ方向に相互につな
がったミクロ積層構造を有し、水銀ポロシメーターで測
定した空孔率が20〜90容量%であるポリオレフィン
系多孔質膜を用い、水または水溶液を処理するに際し、
被処理液の塩度を35℃乃至70℃に保つことを特徴と
する。(d) Structure of the Invention The method for removing endotoxin in water or an aqueous solution according to the present invention is a method for removing endotoxins from water or an aqueous solution. Processes water or aqueous solutions using a polyolefin porous membrane that has a micro-laminated structure in which micropores are interconnected in the thickness direction of the membrane and has a porosity of 20 to 90% by volume as measured by a mercury porosimeter. In doing so,
It is characterized by maintaining the salinity of the liquid to be treated between 35°C and 70°C.
(ホ)実施態様
本発明の方法に用いるポリオレフィン系多孔質膜の形態
は平膜、チューブ膜等いずれでも良いが、単位容積当り
の膜面積が大きくとれる多孔質中空糸状膜が特に好まし
い。 。(e) Embodiment The polyolefin porous membrane used in the method of the present invention may be in any form such as a flat membrane or a tube membrane, but a porous hollow fiber membrane is particularly preferred since it can provide a large membrane area per unit volume. .
また、上述のような特殊な微細構造を有する多孔質中空
糸は、例えば、ポリプロピレンやポリエチレン等の重合
体を中空糸製造用の専用ノズルを用いて溶融紡糸して得
られた高配向結晶性未延伸中空糸を冷延伸した後、加熱
延伸する主工程において、各工程条件を適切に管理する
ことによって製造される。In addition, porous hollow fibers having a special microstructure as described above can be produced by, for example, highly oriented crystalline fibers obtained by melt-spinning polymers such as polypropylene or polyethylene using a special nozzle for manufacturing hollow fibers. It is produced by appropriately controlling each process condition in the main process of cold stretching and then heating stretching the drawn hollow fibers.
次に本発明において用いられる上記分離膜の特殊な微細
構造を図面にしたがって更に詳細に説明する。Next, the special microstructure of the separation membrane used in the present invention will be explained in more detail with reference to the drawings.
第1図は短冊状微細孔のf1層構造の一平面の模式図で
あり、(1)はミクロフィブリル、(2)は(11のミ
クロフィブリルに対してほぼ直角に連結した節部、(3
)は短冊状微細孔でありミクロフィブリルと節部により
構成された短冊状の微細孔(3)は各節部を介して積層
構造をとっている。Figure 1 is a schematic diagram of one plane of the f1 layer structure of strip-shaped micropores, in which (1) is a microfibril, (2) is a node connected almost at right angles to the microfibril (11), and (3
) are rectangular micropores, and the rectangular micropores (3) constituted by microfibrils and nodes have a laminated structure with each node interposed therebetween.
また微細孔の111層構造は、節部を介して一平面内に
繊維長方向に積層すると同時にこの様な構造を有する平
面が中空繊維の壁膜の厚み方向に積み重なっていること
を意味する。Furthermore, the 111-layer structure of the micropores means that the fibers are laminated in the length direction of the fibers in one plane via the knots, and at the same time, the planes having such a structure are stacked in the thickness direction of the wall membrane of the hollow fibers.
次に本発明においては水銀ポロシメーターで測定した空
孔率は20〜90容量%が適当な範囲であり、20容量
%未満では透水量が低く、90容量%を超えると膜自体
の機械的強度が弱い。中でも40〜80容量%のものが
特に好ましい。Next, in the present invention, the appropriate range for the porosity measured with a mercury porosimeter is 20 to 90% by volume; if it is less than 20% by volume, water permeation rate is low, and if it exceeds 90% by volume, the mechanical strength of the membrane itself is low. weak. Among these, those with a content of 40 to 80% by volume are particularly preferred.
本発明の多孔質膜は微細孔の形状が短冊状であるため通
常の方法で孔径を規定することができない。そこでAS
TMF−316−80に準じた方法で測定したバブルポ
イントでこれを表現すると、本発明の目的には、2.0
kg/crA〜15 kg/c−が適当である。Since the micropores of the porous membrane of the present invention have a rectangular shape, the pore diameter cannot be defined by normal methods. So AS
If this is expressed as a bubble point measured in accordance with TMF-316-80, for the purpose of the present invention, 2.0
kg/crA to 15 kg/c- is appropriate.
バブルポイン1〜2.0 kg / ct未満の場合エ
ンドトキシンの除去が不十分となり、15kg/cff
lを超えると透水性が不十分となる。If the bubble point is less than 1 to 2.0 kg/ct, endotoxin removal will be insufficient, and 15 kg/cff
If it exceeds l, water permeability will be insufficient.
また上記多孔質中空糸の壁膜層の厚さは10〜1.00
μmであることが工業的に安定な生産ができるという面
で好ましい。10μm未満では壁膜自体の機械的強度が
弱< 17℃7題である。しかし、100μmより犬で
ある必要はなく、特に好ましくは20〜80μmである
。Further, the thickness of the wall membrane layer of the porous hollow fiber is 10 to 1.00.
It is preferable that the diameter is μm because industrially stable production can be achieved. If the thickness is less than 10 μm, the mechanical strength of the wall film itself is weak (<17°C). However, it does not have to be smaller than 100 μm, and is particularly preferably 20 to 80 μm.
なお、本発明における上記多孔質中空糸においてその中
空開口部の孔径は特に限定されるものではないが、通常
は直径200〜300 μm程度のものが良く用いられ
る。Although the diameter of the hollow opening in the porous hollow fiber of the present invention is not particularly limited, a diameter of about 200 to 300 μm is usually used.
本発明の要点は、上記のポリオレフィン系多孔質膜を用
い、水または水溶液を濾過してエンドトキシンを除去す
るに際し、被処理液の温度を35℃乃至70°Cに保つ
ことにある。第2図は空孔率63%。The gist of the present invention is to maintain the temperature of the liquid to be treated between 35° C. and 70° C. when filtering water or an aqueous solution to remove endotoxin using the polyolefin porous membrane described above. Figure 2 shows a porosity of 63%.
中空糸内径270μm 、膜厚55μm、バブルポイン
ト4.8 kir / cIIlのポリエチレン中空糸
膜をループ状に束ね、末端をポリエチレン樹脂で接着し
て製造した濾過面積Q、3%のモジュールを用い、名古
屋市の水道水を濾過した場合の圧力上昇を示したもので
ある。水温が35°C以上となると、圧力」−昇が少な
く目づまりが少ないことを示すが、水温が室温前後の場
合、圧力上昇は大きい。A module with a filtration area Q of 3% was manufactured by bundling polyethylene hollow fiber membranes with a hollow fiber inner diameter of 270 μm, a membrane thickness of 55 μm, and a bubble point of 4.8 kir/cIIl into a loop shape and bonding the ends with polyethylene resin. This shows the pressure increase when city tap water is filtered. When the water temperature is 35°C or higher, the pressure rise is small and clogging is small, but when the water temperature is around room temperature, the pressure rise is large.
第3図は、第2図と同一の実験において、濾液のエンド
トキシン濃度を測定した結果である。ここで濾過前の原
水のエンドトキシン濃度は4.7ng/mlであった。FIG. 3 shows the results of measuring the endotoxin concentration of the filtrate in the same experiment as FIG. 2. Here, the endotoxin concentration of the raw water before filtration was 4.7 ng/ml.
水温が35°C以上の場合、積算濾過流量が大きくなっ
ても、濾液中のエンドトキシン濃度の上昇率は僅かであ
るが、水温が室温前後の場合、濾液中のエンF’ I・
キシン濃度は急激な立ち上がりを見せ、ある積算流量以
上ではエンドトキシンを除去できなくなることを示して
いる。When the water temperature is 35°C or higher, the rate of increase in the endotoxin concentration in the filtrate is small even if the integrated filtration flow rate increases; however, when the water temperature is around room temperature, the endotoxin concentration in the filtrate increases.
The toxin concentration shows a rapid rise, indicating that endotoxin cannot be removed above a certain cumulative flow rate.
このように、被濾過水の温度が、目づまり及びエンドト
キシン除去能力に対して特異的に作用することは従来全
く予想出来なかったことであり、これによって、極めて
有利なエンドトキシン除去方法が開発されたのである。In this way, it was completely unexpected that the temperature of the water to be filtered would have a specific effect on clogging and endotoxin removal ability, and as a result, an extremely advantageous endotoxin removal method was developed. It is.
(へ)実施例 以下、実施例について本発明をざらに詳しく説明する。(f) Example The present invention will now be described in more detail with reference to Examples.
■
なお実施例で用いたステラボアー (三菱レイヨン(株
製)は縦方向に配列したミクロフィブリルを該ミクロフ
ィブリルに対してほぼ直角に連結した節部より形成され
る多数の短冊状微小空孔の膜の厚さ方向に相互につなが
ったミクロ禎層構造を有するポリエチレン多孔質中空糸
膜を組み込んだ水濾過モジュールである。■ Stellaboar (manufactured by Mitsubishi Rayon Co., Ltd.) used in the examples is a membrane with many strip-shaped micropores formed by nodes in which microfibrils arranged in the vertical direction are connected at almost right angles to the microfibrils. This is a water filtration module incorporating a polyethylene porous hollow fiber membrane with a microlayer structure interconnected in the thickness direction.
実施例1
水道水を予熱器に通して第1表に示す温度に各ヤ加温し
、7.−i−’yボアー■、股部面積、 3 m +多
孔質中空糸膜の空孔率63容量%、バブルポイント4、
9 kg/ cnl )に通した(流速11 /min
) 、ステラボアー■の圧力−1=!(めづまり)及
び濾液のエンドトキシン濃度を合成基質法で測定した。Example 1 Tap water was passed through a preheater and heated to the temperature shown in Table 1, and 7. -i-'y bore ■, crotch area, 3 m + porosity of porous hollow fiber membrane 63% by volume, bubble point 4,
9 kg/cnl) (flow rate 11/min)
), Stellaboar■ pressure -1=! (clogging) and the endotoxin concentration of the filtrate were measured using a synthetic substrate method.
データは22通水時のもの。The data is for 22 water passes.
第 1 表
温 度 圧力上昇差 エンドトキシン濃度(kg/ c
nt) (ng/m1)
37°C0,60,O8
50°c 0.4 0.20
60°c 0.23 0.17
(膜面積4m′、多孔質中空糸膜の空孔率63容H1%
、バブルポイント4.7 kg / ct )に】mし
た(流速3.5±0.51/・i・)。ステラボアー(
l!0濾過水のエンドトキシン濃度を測定した。使用後
のモジj−−ルに99%のエタノール500m l加え
、濾過し、濾液中の有機物濃度を重量法で測定した。Table 1 Temperature Pressure rise difference Endotoxin concentration (kg/c
nt) (ng/m1) 37°C0,60,O8 50°c 0.4 0.20 60°c 0.23 0.17 (Membrane area 4 m', porosity of porous hollow fiber membrane 63 volume H1 %
, the bubble point was 4.7 kg/ct) (flow rate 3.5±0.51/·i·). Stella Boar (
l! The endotoxin concentration of the filtrated water was measured. 500 ml of 99% ethanol was added to the used module and filtered, and the concentration of organic matter in the filtrate was measured gravimetrically.
データは30M通水時のもの。The data is for 30M water flow.
第 2 表 45〜50°CO,10,150,41Table 2 45~50°CO, 10, 150, 41
第1図は本発明で用いる多孔質中空糸膜の短冊状微小空
孔の積層構造の一平面の模式図である。第2図は被処理
液の種々の温度における積算流量と股間差圧の関係を示
す図である。第3図は被処理液の種々の温度における積
算流量と濾液中のエンドトキシン濃度を示す図である。
I: ミクロフィブリル、
2: 節部、
3: 短冊状の微才■構造。
第1図
第2図
第3図
−オ* 3’t R@ (m3)FIG. 1 is a schematic diagram in one plane of a laminated structure of strip-shaped micropores of a porous hollow fiber membrane used in the present invention. FIG. 2 is a diagram showing the relationship between the integrated flow rate and the crotch differential pressure at various temperatures of the liquid to be treated. FIG. 3 is a diagram showing the integrated flow rate of the liquid to be treated at various temperatures and the endotoxin concentration in the filtrate. I: microfibril, 2: node, 3: strip-like fine structure. Figure 1 Figure 2 Figure 3 - O* 3't R@ (m3)
Claims (1)
ブリルに対してほぼ直角に連結した節部より形成される
多数の短冊状微小空孔が膜の厚さ方向に相互につながっ
たミクロ積層構造を有し、水銀ポロシメーターで測定し
た空孔率が20〜90容量%であるポリオレフィン系多
孔質膜を用い、水または水溶液を処理するに際し、被処
理液の温度を35℃ないし70℃に保つことを特徴とす
る水または水溶液中のエンドトキシンの除去方法。 2、多孔質膜のバブルポイントが2.0kg10J〜1
5 kg / c+Jである特許請求の範囲第1項記載
のエンドトキシンの除去方法。 3、多孔質膜が中空糸膜である特許請求の範囲第1項ま
たは第2項記載のエンドトキシンの除去方法。[Scope of Claims] 1. A large number of strip-shaped micropores formed by nodes in which microfibrils arranged in the longitudinal direction are connected at approximately right angles to the microfibrils are interconnected in the thickness direction of the membrane. When treating water or an aqueous solution using a polyolefin porous membrane that has a micro-laminated structure and a porosity of 20 to 90% by volume as measured by a mercury porosimeter, the temperature of the liquid to be treated is kept between 35°C and 70°C. A method for removing endotoxin in water or an aqueous solution, which comprises maintaining the endotoxin at ℃. 2. Bubble point of porous membrane is 2.0kg10J~1
5 kg/c+J. The method for removing endotoxin according to claim 1. 3. The endotoxin removal method according to claim 1 or 2, wherein the porous membrane is a hollow fiber membrane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP467984A JPS60150887A (en) | 1984-01-17 | 1984-01-17 | Removing method of endotoxin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP467984A JPS60150887A (en) | 1984-01-17 | 1984-01-17 | Removing method of endotoxin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60150887A true JPS60150887A (en) | 1985-08-08 |
Family
ID=11590575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP467984A Pending JPS60150887A (en) | 1984-01-17 | 1984-01-17 | Removing method of endotoxin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60150887A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0316967U (en) * | 1989-06-30 | 1991-02-20 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58163490A (en) * | 1982-03-23 | 1983-09-28 | Mitsubishi Rayon Co Ltd | Method and apparatus for purification of water |
-
1984
- 1984-01-17 JP JP467984A patent/JPS60150887A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58163490A (en) * | 1982-03-23 | 1983-09-28 | Mitsubishi Rayon Co Ltd | Method and apparatus for purification of water |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0316967U (en) * | 1989-06-30 | 1991-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104548975B (en) | Tubular composite nanofiltration membrane | |
CN106552514A (en) | A kind of integral and intelligent clear water faucet specific complex NF membrane and preparation method thereof | |
JP2006088148A (en) | Hollow fiber membrane having excellent water permeability | |
JPS58114702A (en) | Polysulfone hollow fiber membrane and its production | |
JP6374291B2 (en) | Hollow fiber membrane module | |
JP2542572B2 (en) | Hollow fiber | |
JPS63296940A (en) | Polyvinylidene fluoride resin porous film and its manufacture | |
JP2021090952A (en) | Separation membrane element | |
JPH0569571B2 (en) | ||
JPS60150887A (en) | Removing method of endotoxin | |
JPS63296939A (en) | Polyvinylidene fluoride resin porous film and its manufacture | |
Demeuse | Production and applications of hollow fibers | |
JPS61502902A (en) | Hollow fibers, their production and their application especially in the field of membrane-type separations | |
JPH0211263B2 (en) | ||
JPH03270721A (en) | Porous hollow yarn membrane and preparation thereof | |
JPH06343842A (en) | Cellulose acetate hollow fiber separation membrane | |
KR102228747B1 (en) | Separartion membrane leaf, spiral wound module comprising same, and device | |
JP2015171697A (en) | Composite hollow fiber membrane and method of producing the same | |
JPS60172388A (en) | Purifying method of aqueous liquid | |
JPS62221362A (en) | Plasma separation membrane | |
JPS61406A (en) | Purification of aqueous liquid | |
JP2553248B2 (en) | Method for producing porous hollow fiber membrane | |
JP2000210544A (en) | Production of semipermeable membrane | |
JPS6045358A (en) | Serum separating membrane and its preparation | |
JPS60110305A (en) | Hollow fiber film and body fluid treating device using the same |