JPS60150547A - Plasma x-ray generator - Google Patents

Plasma x-ray generator

Info

Publication number
JPS60150547A
JPS60150547A JP681284A JP681284A JPS60150547A JP S60150547 A JPS60150547 A JP S60150547A JP 681284 A JP681284 A JP 681284A JP 681284 A JP681284 A JP 681284A JP S60150547 A JPS60150547 A JP S60150547A
Authority
JP
Japan
Prior art keywords
plasma
ray
particles
hot spot
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP681284A
Other languages
Japanese (ja)
Inventor
▲べ▼ 碩喜
Sekiki Hai
Yasuo Kato
加藤 靖夫
Kozo Ando
安藤 剛三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP681284A priority Critical patent/JPS60150547A/en
Publication of JPS60150547A publication Critical patent/JPS60150547A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/52Generating plasma using exploding wires or spark gaps

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Drying Of Semiconductors (AREA)
  • X-Ray Techniques (AREA)

Abstract

PURPOSE:To obtain a device in which an X-ray permeation window is not damaged and X-rays with high intensity can be efficiently obtained by providing a conical plasma orifice and a charged particle deflection means arranged near the centerl axis of the solid angle of the plasma orifice. CONSTITUTION:The center of the solid angle of a plasma orifice 6 is made to nearly coincide with an X-ray radiation point. The accelerated plasma is focused via the pinch effect, a hot spot 11 with high temperature and high density is formed on the axis near the tip of an anode 1, and soft X-rays are radiated from this hot spot 11 together with ions, electrons, and neutral particles. Although ions, electrons, and neutral particles are discharged together with soft X-rays from portions other than the hot spot 11, these particles discharged from portions other than the hot spot 11 are shielded by the plasma orifice 6 and are prevented from hitting an X-ray permeation window 8. Out of particles radiated from the hot spot 11, charged particles of ions and electrons are bent in orbit by a charged particle deflection means 7 and are prevented from hitting the X-ray permeation window 8.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、軟X線を発生するプラズマX線発生装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a plasma X-ray generator that generates soft X-rays.

(従来技術) X線発生装置、特に軟X線を発生するX線発生装置は、
今日半導体集積回路の微細なi4ターンを軟写するX線
露光装置、X線顕微鏡、短波長レーザ等のX線源として
使用の検討が始めている。軟X線を放射するX線源とし
ては、シンクロトロン、回転対陰極X線管等も知られて
はいるが、前者は装置が大規模で価格が高いという欠点
、後者では線源の輝度が低いという欠点がある。ところ
でプラズマX線発生装置は、線源の輝度が高く、小形で
効率の良い安価で実用的な線源として、上記従来のX線
源よりも優れた線源として期待され始めている。このプ
ラズマX線発生装置は、希ガス雰囲気中において同軸状
に配された棒状陽極と筒状陰極との間に大電流のノクル
ス放電を起こすことにより、発生されたプラズマをピン
チ効果によシフオーカスして(以下、このことをプラズ
マ フォーカスという)、電極の軸線上に高温高密度の
ホットスポットを形成し、このホットスポットから軟X
線を放射するようにしたものである。しかしながら、こ
のプラズマX線発生装置は次のような問題を有していた
(Prior art) X-ray generators, especially X-ray generators that generate soft X-rays,
Today, studies have begun to consider its use as an X-ray source in X-ray exposure devices, X-ray microscopes, short wavelength lasers, etc. that take soft images of minute i4 turns in semiconductor integrated circuits. Synchrotrons and rotating anode cathode X-ray tubes are also known as X-ray sources that emit soft X-rays; It has the disadvantage of being low. By the way, plasma X-ray generators are beginning to be expected to be superior to the above-mentioned conventional X-ray sources, as they have high brightness, are compact, efficient, inexpensive, and practical. This plasma X-ray generator generates a large-current Noculus discharge between a rod-shaped anode and a cylindrical cathode that are coaxially arranged in a rare gas atmosphere, and shifts the generated plasma by a pinch effect. (hereinafter referred to as plasma focus), a high-temperature, high-density hot spot is formed on the axis of the electrode, and a soft X-ray is emitted from this hot spot.
It is designed to emit a line. However, this plasma X-ray generator had the following problems.

プラズマスポット即ちX線放射点はもちろんのこと、X
線放射点以外からもイオン電子などの荷電粒子、中性粒
子等が放射され、従来通常X線透過窓部材として使用さ
れる単に大気圧に耐えうるペリラム製の窓では、上記荷
電粒子、中性粒子等が衝突してこの窓を破損してしまう
という問題があった。特に1プラズマフオーカスによシ
形成されるホットスポットは電極の軸線上に整列して形
成され、これらがX線放射点となるので、線源の輝度が
最も高くなるように、電極の軸線上にこの軸線に垂直に
上記のような従来のX線透過窓を設けるようにすると、
電極の軸線方向に加速された荷電粒子が衝突し、容易に
X線透過窓を破損してしまう。しかしながら、このX線
透過窓の破損を防止しうるように窓部材を単に強固なも
のにしたのではX線輝度が大幅に低下してしまう。
Not only plasma spots, that is, X-ray emitting points, but also
Charged particles such as ions and electrons, as well as neutral particles, are emitted from sources other than the radiation point, and windows made of perillam, which can withstand atmospheric pressure and are conventionally used as X-ray transparent window members, do not emit the charged particles, neutral particles, etc. There was a problem in that the window could be damaged by collision with particles. In particular, the hot spots formed by one plasma focus are aligned on the axis of the electrode, and these become X-ray emission points. If a conventional X-ray transparent window as described above is provided perpendicular to this axis,
Charged particles accelerated in the axial direction of the electrode collide, easily damaging the X-ray transmission window. However, if the window member is simply made stronger to prevent damage to the X-ray transmitting window, the X-ray brightness will drop significantly.

(発明の目的) 本発明の目的は、X線透過窓が、荷電粒子等が衝突する
ことによシ生じる衝撃的圧力により損傷せず、かつ効率
よく高輝度のX線が得られるX線発生装置を提供するこ
とにある。
(Object of the Invention) An object of the present invention is to generate X-rays that can efficiently obtain high-intensity X-rays without damaging the X-ray transmission window due to the impact pressure caused by the collision of charged particles, etc. The goal is to provide equipment.

(発明の構成) 本発明のプラズマX線発生装置は、希ガス雰囲気中に円
柱状の陽極と、この円柱状の陽極に所定の間隔を有して
同軸状に配される円筒状の陰極とからなる電極対、この
電極対にパルス状高電圧を印加することによシ発生され
るX線の放射点をほぼ中心として所定の立体角で広がり
、錐端に開孔を有する錐状のプラズマ絞シ、およびこの
プラズマ絞シの立体角の一一中心軸の近傍に荷電粒子偏
向手段が配されており、XIw!を外部に放−出するX
線透過窓が前記■■中心軸上に位置していることを特徴
とする。即ち、本発明においては、プラズマ絞り、荷電
粒子偏向手段を上述のように配したのでX線放射点以外
から発生される荷電粒子及び中性粒子がプラズマ絞りに
より遮蔽され、このプラズマ絞シの開孔を通過した粒子
のうち荷電粒子が荷電粒子偏向手段によシ偏向を受ける
ので、従来X線透過窓に加わる衝撃的圧力を除去するこ
とができ、これによってX線透過窓としてX線透過率の
高い薄い部材を使用することが可能となシ、高輝度X線
を得ることが可能となった。
(Structure of the Invention) The plasma X-ray generator of the present invention includes a cylindrical anode in a rare gas atmosphere, and a cylindrical cathode disposed coaxially with the cylindrical anode at a predetermined interval. A cone-shaped plasma that spreads at a predetermined solid angle approximately at the center of the X-ray radiation point generated by applying a pulsed high voltage to this electrode pair, and has an opening at the cone end. A charged particle deflection means is arranged near the diaphragm and the central axis of the solid angle of the plasma diaphragm, and XIw! X to release to the outside
It is characterized in that the line-transmitting window is located on the central axis of the above. That is, in the present invention, since the plasma aperture and the charged particle deflection means are arranged as described above, charged particles and neutral particles generated from sources other than the X-ray emission point are blocked by the plasma aperture, and the plasma aperture is opened. Among the particles that have passed through the hole, the charged particles are deflected by the charged particle deflection means, so it is possible to remove the impact pressure that is applied to the conventional X-ray transmitting window. It became possible to use thin members with high brightness, and to obtain high-intensity X-rays.

本発明で使用される荷電粒子偏向手段はX線透過窓の破
損を防止する効果を有する以外に、本発明のX線発生装
置が半導体等の微細加工の/?ターンニングに使用され
る場合は、X線透過窓を通過した為エネルギーのイオン
が半導体等の基板に衝突して、不純物の注入、結晶欠陥
が発生することを防止することができるという別の利点
を得ることができる。この荷電粒子偏向手段としては電
界型、磁界型の偏向器のいずれをも使用しうるが、プラ
ズマ絞シの立体角の■■中心軸と電極の軸線とが一致さ
れている場合には、電極の軸線方向に特に高いエネルギ
ーを有するイオンが入射されるので、電界型の偏向器で
は偏向に必要な電界が高すぎ、磁界型の偏向器を使用し
なければならない場合が多い。この磁界型の偏向器とし
て永久磁石、電磁石のいずれをも使用しうることけ言う
までもないが、本発明においては構造がより簡易になる
永久磁石を用いることがよシ好ましい。なお、磁界型の
偏向器を使用した場合は、プラズマ絞シを高透磁性の材
料から形成し、荷電粒子偏向用の磁界が、プラズマ絞シ
の外部へ漏れて、ホットスポットの形成に悪影響を与え
ることを防止することが望ましい。なお、X線透過窓を
形成する窓部材としては、大気圧に耐え、かつ軟X線を
高い透過率で透過するものであればいかなるものをも使
用しうるが、例えば、ベリリウム、アルミニウム、ポリ
マー等を使用するのが好ましい。
The charged particle deflection means used in the present invention not only has the effect of preventing damage to the X-ray transmission window, but also has the effect of preventing damage to the X-ray transmission window. When used for turning, another advantage is that it can prevent impurity implantation and crystal defects from occurring due to energetic ions colliding with semiconductor substrates due to passing through the X-ray transmission window. can be obtained. Either an electric field type or a magnetic field type deflector can be used as this charged particle deflection means, but if the central axis of the solid angle of the plasma constrictor and the axis of the electrode are aligned, the electrode Since ions having particularly high energy are incident in the axial direction, the electric field required for deflection with an electric field type deflector is too high, and a magnetic field type deflector must be used in many cases. It goes without saying that either a permanent magnet or an electromagnet can be used as this magnetic field type deflector, but in the present invention, it is more preferable to use a permanent magnet because of its simpler structure. In addition, when using a magnetic field type deflector, the plasma constrictor is made of a highly permeable material to prevent the magnetic field for charged particle deflection from leaking outside the plasma constrictor and adversely affect the formation of hot spots. It is desirable to prevent giving. Note that any material that can withstand atmospheric pressure and transmit soft X-rays with high transmittance can be used as the window member forming the X-ray transmission window. For example, beryllium, aluminum, polymer, etc. It is preferable to use

(実施例) 以下、本発明の一実施例を第1図により説明する。第7
図は、本発明のプラズマX線発生装置の一例を示す縦断
面図である。放電管の内部には、円柱状の陽極1とこれ
をと9囲む円筒状の陰極2とが同軸状に配置され、陽極
の根元はガラスなどの絶縁体3で陰極lと電気的に絶縁
されている。
(Example) An example of the present invention will be described below with reference to FIG. 7th
The figure is a longitudinal sectional view showing an example of the plasma X-ray generator of the present invention. Inside the discharge tube, a cylindrical anode 1 and a cylindrical cathode 2 surrounding it are arranged coaxially, and the base of the anode is electrically insulated from the cathode 1 with an insulator 3 such as glass. ing.

これらはケース4とフランジ5によって密閉され、内部
にネオン、アルゴン、クリプトンなどの稀ガスが0.7
〜/ Tqrr の圧力で封入される。フランジ5の内
側には円錐状のプラズマ絞シロの端部が接着されている
。このプラズマ絞#)6の立体角の中心はほぼX線放射
点に一致されて訃り、プラズマ絞シロの錐端に設けられ
た開孔6&を通してX線放射点から放射された軟X線が
プラズマ絞り6内に入射するようになっている。本実施
例においては、電極1,2の軸線とプラズマ絞シロの立
体角の開−中心軸とは一致するようにされておシ、最も
R度が高くなるようにされている。プラズマ絞り6の内
部には荷電粒子を偏向するための荷電粒子偏向手段7が
、プラズマ絞シロの立体角の■−中心軸の近傍に配され
ている。フランジ5には、外部へ軟X線を放射するため
のX線透過窓8が設けられておシ、このX線透過窓8は
高輝度が得られるようシラシマ絞シロの開−中心軸上に
配されている。陽極1と陰極2との間にはコンデンサ9
がスイッチ10を介して接続されている。このよう釦構
成されたプラズマX線発生装置によって、スイッチ10
が閉じられ、コンデンサ9に充電されているエネルギー
が、瞬間的に電極間に印加されて、陽陰電極1.2間延
高電圧が印加されると、陽極1と陰極2との間に露出す
る絶縁体3の沿面において放電が起り、ここ忙プラズマ
が発生する。
These are sealed by a case 4 and a flange 5, and rare gases such as neon, argon, krypton, etc.
Enclosed at a pressure of ~/Tqrr. The end of a conical plasma diaphragm is adhered to the inside of the flange 5. The center of the solid angle of this plasma diaphragm #) 6 almost coincides with the X-ray emission point, and the soft X-rays emitted from the The plasma is made to enter the plasma aperture 6. In this embodiment, the axes of the electrodes 1 and 2 are made to coincide with the open center axis of the solid angle of the plasma diaphragm, so that the R degree is the highest. Inside the plasma aperture 6, a charged particle deflecting means 7 for deflecting charged particles is arranged near the - central axis of the solid angle of the plasma aperture. The flange 5 is provided with an X-ray transmitting window 8 for emitting soft X-rays to the outside. It is arranged. A capacitor 9 is connected between the anode 1 and the cathode 2.
are connected via switch 10. With the plasma X-ray generator having such a button configuration, the switch 10
is closed and the energy charged in the capacitor 9 is instantaneously applied between the electrodes, and when a high voltage is applied across the positive and negative electrodes 1.2, the exposed voltage between the anode 1 and the cathode 2 is A discharge occurs along the creeping surface of the insulator 3, and active plasma is generated there.

この発生したプラズマのイオンと電子は電界に引かれて
運動するが、電極間に存在するループ状の磁場によって
イオンと電子は電極1,2の軸と平行でかつ電極1,2
の端部へ向う力を受け、電極1.2の軸に沿って加速さ
れる。電極1,2の端を越えると、加速されたプラズマ
はピンチ効果によりフォーカスされ陽極1の先端の近傍
の釉上に1高温高密度のホットスポット11が形成され
、このホットスポット11かっ軟X線がイオン、電子、
中性粒子とともに放射される。ホットスポット11以外
からもイオン、電子、中性粒子等が軟X線とともに放出
されるが、これらホットスポット以外から放出される粒
子はプラズマ絞96によって遮蔽され、X線透過窓8に
衝突することが防止される。ホットスポット11から放
射される粒子の内イオンおよび電子の荷電粒子は荷電粒
子偏向手段7によシその軌道を曲げX線透過窓8への衝
突が防がれる。ホットスポット11から放射されるイオ
ンには、/Me■に近いエネルギーを有するものがある
のでこの荷電粒子をX線透過窓8からそらすには荷電粒
子偏向手段7として磁界型の偏向器を使用するのが好ま
しい。この場合70’がウス程度の磁束が用いられる。
The ions and electrons of this generated plasma are attracted by the electric field and move, but due to the loop-shaped magnetic field that exists between the electrodes, the ions and electrons are parallel to the axes of the electrodes 1 and 2, and
is accelerated along the axis of the electrode 1.2. After passing over the edges of the electrodes 1 and 2, the accelerated plasma is focused by the pinch effect to form a high-temperature, high-density hot spot 11 on the glaze near the tip of the anode 1, and this hot spot 11 emits soft X-rays. are ions, electrons,
Emitted along with neutral particles. Ions, electrons, neutral particles, etc. are emitted along with soft X-rays from places other than the hot spot 11, but the particles emitted from places other than the hot spot are blocked by the plasma diaphragm 96 and collide with the X-ray transmission window 8. is prevented. Charged particles such as ions and electrons among the particles emitted from the hot spot 11 are deflected by the charged particle deflection means 7 to prevent them from colliding with the X-ray transmission window 8 . Some of the ions emitted from the hot spot 11 have an energy close to /Me■, so in order to deflect these charged particles from the X-ray transmission window 8, a magnetic field type deflector is used as the charged particle deflection means 7. is preferable. In this case, a magnetic flux of about 70' is used.

この程度の磁束は希土類−コバルト磁石などの永久磁石
にょシ実現できる。さらに本実施例では、プラズマ絞#
)6は、純鉄で製作されておシ、プラズマ絞シロの内部
に配された荷電粒子偏向手段7の磁界が外部へ漏れて、
プラズマホットスポット形成へ悪影響を与えることか防
止されている。また、プラズマ絞シロを固定するフラン
ジ5は、ポリオキシメチレン等の絶縁物で形成されてい
て、ゾラズi絞シが電気的に絶縁されていて、陽極1と
の間の電界さが下げられておシ、荷重粒子の新たな加速
が防止されている。グラズヤ絞シロの開孔6aを形成す
る端部なセラミックスなどの絶縁物で構成するとさらに
電界強度を下げるのに有効である。
This level of magnetic flux can be achieved using permanent magnets such as rare earth-cobalt magnets. Furthermore, in this example, the plasma diaphragm #
) 6 is made of pure iron, and the magnetic field of the charged particle deflection means 7 arranged inside the plasma diaphragm leaks to the outside.
This prevents any negative effects on plasma hot spot formation. Further, the flange 5 that fixes the plasma diaphragm is made of an insulating material such as polyoxymethylene, and the Zolaz i diaphragm is electrically insulated, reducing the electric field between it and the anode 1. However, new acceleration of the loaded particles is prevented. It is effective to further reduce the electric field strength by using an insulating material such as ceramics for the end portions forming the openings 6a of the glazed diaphragm.

なお、プラズマ絞p1荷電粒子偏向手段7によシ除去さ
れなかった中性粒子等の飛散物および赤外線、可視光は
X線透過窓8により除かれる。
Incidentally, scattered objects such as neutral particles, infrared rays, and visible light that have not been removed by the plasma aperture p1 charged particle deflection means 7 are removed by the X-ray transmission window 8.

プラズマ絞り、荷電粒子偏向手段を設けないで本実施例
と同一に構成されたプラズマX線発生装置に、X線透過
窓として厚さ50μmのベリリウムを用いた場合には3
キロジユールの1回の放電で破損してしまうのに対して
、本発明においては、破損せず、連続使用することがで
きることが確認された。
In the case where beryllium with a thickness of 50 μm is used as the X-ray transmission window in a plasma X-ray generator configured the same as this example without providing a plasma aperture or a charged particle deflection means, the
It was confirmed that whereas the kilojoule is damaged by one discharge, the present invention does not break and can be used continuously.

第2図は、本発明のf2ズマX線発生装置の別の実施例
を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing another embodiment of the f2 Zuma X-ray generator of the present invention.

本実施例においては、ゾラズi絞シロの立体角の開開中
心軸が電極の軸線と一致しておらず、電極の軸線方向に
加速された荷重粒子がX線透過窓8に至らないので、荷
電粒子偏向手段7として電界型の偏向器を使用すること
が可能となる。
In this example, the opening and opening axis of the solid angle of the Zolaz i-diaphragm does not coincide with the axis of the electrode, and the loaded particles accelerated in the axial direction of the electrode do not reach the X-ray transmission window 8. It becomes possible to use an electric field type deflector as the charged particle deflection means 7.

第3図は、本発明のプラズマX線発生装置のさらに別の
実施例を示す縦断面図であシ、複数個のX線透過窓8を
設けた場合の態様である。
FIG. 3 is a longitudinal cross-sectional view showing yet another embodiment of the plasma X-ray generating device of the present invention, in which a plurality of X-ray transmission windows 8 are provided.

(発明の効果) 本発明によると、X線放射点以外から放射された荷電粒
子、中性粒子は完全にプラズマ絞りによシ遮蔽され、X
線放射点から放射され、開孔を通してプラズマ絞シ中に
入射した荷電粒子も荷電粒子偏向手段によシ、X線透過
窓に至ることが阻止されるので、X線透過窓の破損か防
止され、X線透過窓の透過率を高めて高輝度の軟X線を
得ることができる。さらに、高エネルギーの荷電粒子、
が外部に放出されることがないので、半導体のパターン
転写等圧も有効に使用しうろことができる。
(Effects of the Invention) According to the present invention, charged particles and neutral particles emitted from sources other than the X-ray emission point are completely blocked by the plasma aperture, and the
Charged particles emitted from the radiation point and entering the plasma constrictor through the aperture are also prevented from reaching the X-ray transmission window by the charged particle deflection means, thereby preventing damage to the X-ray transmission window. , high-intensity soft X-rays can be obtained by increasing the transmittance of the X-ray transmission window. In addition, high-energy charged particles,
Since no particles are released to the outside, it is possible to effectively use equal pressure for semiconductor pattern transfer.

【図面の簡単な説明】[Brief explanation of drawings]

第7図、第2図および第3図は本発明のX線プラズマ発
生装置の実施例の縦断面図でおる。 1・・・・・・・・・陽極、2・・・・・・・・・陰極
、3・・・・・・・・・絶縁体、 6・・・・・・・・
・プラズマ絞シ、7・・・・・・・・・荷電粒子偏向手
段、8・・・・・・・・・X線透過窓
FIG. 7, FIG. 2, and FIG. 3 are longitudinal cross-sectional views of embodiments of the X-ray plasma generator of the present invention. 1...Anode, 2...Cathode, 3...Insulator, 6......
・Plasma aperture, 7...Charged particle deflection means, 8...X-ray transmission window

Claims (1)

【特許請求の範囲】 l)希ガス雰囲気中に、円柱状の陽極と、この柱状の陽
極に所定の間隔を有して同軸状に配される円筒状の陰極
とからなる電極対、この電極対にパルス状高電圧を印加
することによシ発生されるX線の放射点をほぼ中心とし
て所定の立体角をもって広がシ、錐端に開孔を有する錐
状のプラズマ絞シ、およびこのグラズマ絞りの立体角の
一一中心軸の近傍に荷電粒子偏向器が配されておシ、X
線透過窓が前記−一中心軸上に位置していることをIP
j9とするプラズマX線発生装置。 2)前記立体角の■閣中心軸が前記陽極および陰極の軸
線と一致していることを特徴とする特許請求の範囲第1
項記載のプラズマX線発生装置。 3)前記荷電粒子偏向手段が磁界偏向型の偏向器である
ことを特徴とする特許請求の範囲第7項または第2項記
載のプラズマX線発生装置。 4り前記磁界偏向型の偏向器が永久磁石であることを特
徴とする特許請求の範囲第3項記載のプラズマX線発生
装置。 3)前記プラズマ絞シが高透磁性の材料から形成されて
いることを特徴とする特許請求の範囲第3項または第グ
項記載のプラズマX線発生装置。
[Claims] l) An electrode pair consisting of a cylindrical anode and a cylindrical cathode disposed coaxially with the columnar anode at a predetermined distance in a rare gas atmosphere; A conical plasma diaphragm that spreads at a predetermined solid angle approximately at the radiation point of the X-rays generated by applying a pulsed high voltage to the pair, and has an opening at the conical end; A charged particle deflector is arranged near the central axis of the solid angle of the glazma aperture.
IP that the line-transmitting window is located on the -1 central axis.
j9 plasma X-ray generator. 2) Claim 1, characterized in that the central axis of the solid angle coincides with the axes of the anode and cathode.
The plasma X-ray generator described in Section 1. 3) The plasma X-ray generator according to claim 7 or 2, wherein the charged particle deflecting means is a magnetic field deflection type deflector. 4. The plasma X-ray generator according to claim 3, wherein the magnetic field deflection type deflector is a permanent magnet. 3) The plasma X-ray generation device according to claim 3 or 7, wherein the plasma diaphragm is made of a highly permeable material.
JP681284A 1984-01-18 1984-01-18 Plasma x-ray generator Pending JPS60150547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP681284A JPS60150547A (en) 1984-01-18 1984-01-18 Plasma x-ray generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP681284A JPS60150547A (en) 1984-01-18 1984-01-18 Plasma x-ray generator

Publications (1)

Publication Number Publication Date
JPS60150547A true JPS60150547A (en) 1985-08-08

Family

ID=11648608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP681284A Pending JPS60150547A (en) 1984-01-18 1984-01-18 Plasma x-ray generator

Country Status (1)

Country Link
JP (1) JPS60150547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101052062B1 (en) 2006-12-13 2011-07-26 에이에스엠엘 네델란즈 비.브이. Radiation systems and lithographic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101052062B1 (en) 2006-12-13 2011-07-26 에이에스엠엘 네델란즈 비.브이. Radiation systems and lithographic apparatus

Similar Documents

Publication Publication Date Title
JP2008535193A (en) Apparatus and process for generating, accelerating and propagating electron and plasma beams
EP0261198B1 (en) Plasma-anode electron gun
US4841556A (en) Plasma X-ray source
JPS60150547A (en) Plasma x-ray generator
US4918358A (en) Apparatus using charged-particle beam
US4489251A (en) Microchannel image intensifier tube and image pick-up system comprising a tube of this type
JPH03194841A (en) Electron shower
JPH05152182A (en) Duoplasmatron type ion source utilizing ion optical drawing device
JPH08102278A (en) Device and method for generating ion beam
JP3098360B2 (en) Single / tandem acceleration dual-purpose ion accelerator
JP2615300B2 (en) Accelerator tube
JPS61208799A (en) Fast atomic beam source unit
JPS63133432A (en) Gas discharger
JP2023142088A (en) Vacuum device
JPH03505650A (en) How to operate an image intensifier tube with a channel plate and an image intensifier tube device with a channel plate
JPH01161699A (en) High-speed atomic beam source
JPH01157042A (en) Plasma x-ray generation device
SU995151A1 (en) Cathode-ray tube
JPH01209633A (en) High velocity atomic beam source
JPS63143799A (en) High speed atomic beam source
JPH0869771A (en) Plasma type convergence electron gun
JPH06338279A (en) Electron gun
JPS63102147A (en) X-ray generator
JPS59163741A (en) X-ray generating equipment
JPH06265696A (en) High-speed atomic beam source