JPS60150427A - Engine provided with supercharger - Google Patents

Engine provided with supercharger

Info

Publication number
JPS60150427A
JPS60150427A JP681484A JP681484A JPS60150427A JP S60150427 A JPS60150427 A JP S60150427A JP 681484 A JP681484 A JP 681484A JP 681484 A JP681484 A JP 681484A JP S60150427 A JPS60150427 A JP S60150427A
Authority
JP
Japan
Prior art keywords
rotor
engine
intake
passage
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP681484A
Other languages
Japanese (ja)
Other versions
JPH0442528B2 (en
Inventor
Shigeru Sakurai
茂 櫻井
Fumio Hitase
日當瀬 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP681484A priority Critical patent/JPS60150427A/en
Priority to EP19850100382 priority patent/EP0151407B1/en
Priority to DE8585100382T priority patent/DE3560268D1/en
Publication of JPS60150427A publication Critical patent/JPS60150427A/en
Publication of JPH0442528B2 publication Critical patent/JPH0442528B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/42Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To surely prevent exhaust gas from mixing in intake-air upon high load operation of an engine, by driving a rotor in a pressure-wave supercharger by means of an electrical motor at a rotational speed such that the ratio between the rotational speed of the rotor and the rotational speed of the engine becomes high upon high load operation. CONSTITUTION:When a clutch 27 is in its load condition after an engine 1 is started, a motor 28 is rotated in association with an output from a compensating circuit 31 so that a rotor 15 rotates. Engine intake-air is introduced from an intake-air passage 22 into a gas passage 16 in the rotor 15 through an intake-air introducing port 19, and is discharged into a supercharging passage 9 when the passage 16 is opened. Exhaust gas flows through the gas passage 16 from an exhaust gas introducing port 17, and is discharged from an exhaust gas discharge port 18. With the rotational speed of the engine being maintained constant, the ratio between the motor or rotor rotational speed and the engine rotational speed is raised in accordance with engine load so that it increases as the engine load is increased. Further, upon low load operation of the engine the cluch 27 is disengaged so that the rotor 15 is operated only by exhaust gas.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、過給機付エンジン、殊にエンジン排気油路に
生じる排気圧力により@気を圧縮して燃焼室に導入する
形式の圧力波A鞄機會傳えたエンジンに関する。 (従来技術) エンジン41[気〕…路に生じる押気圧力を利用して吸
気全圧縮し、この圧縮された吸鉋を燃焼室に導入するよ
うにした形式の圧力波過H4tllは、古くからゼ?唱
されているが、排気タービン欠片いたタービ過給機に比
べて低速運転時の過給効呆が高い点で最近また注目され
るようになっている。この形式の過給機は、回転111
1方向に賀i口する互に分〃II−された多数の気体通
路金屑するロータと、該ロータをその回転軸1寸わりに
回転自在に支持するケースとからなり、ケースにはロー
タ端部に対向する位置に排気導入口と排気吐出口、およ
び吸気尋人
(Industrial Application Field) The present invention relates to a supercharged engine, and more particularly to an engine with a pressure wave A bag machine in which air is compressed by the exhaust pressure generated in the engine exhaust oil passage and introduced into the combustion chamber. . (Prior art) The pressure wave H4tll, which uses the pressure generated in the engine 41 [air] path to fully compress the intake air and introduces this compressed suction plane into the combustion chamber, has been around for a long time. Ze? However, recently it has been attracting attention again because it has a higher supercharging effect during low-speed operation than a turbo supercharger with a missing exhaust turbine. This type of supercharger has 111 rotations
It consists of a rotor with a large number of mutually divided gas passages opening in one direction, and a case that rotatably supports the rotor with respect to one inch of its rotating shaft. The exhaust inlet and exhaust outlet are located opposite to each other.

【」と吸気吐出口が燃成され、吸気導入口か
らロータ内の気体通路に導入された吸気は、排気導入口
から導入される排気の圧力により吸気吐出口に向けて押
し出されるように構成されている。このため、排気導入
口と吸気吐出口とはロータを挾んでロータ軸方向に相対
向する位置に形成される。このような形式の圧力波過給
機の一例は、実開昭タター/、27g39号公報に開示
されている。この公開公報に開示された過給卵は、抽気
導入口と排気吐出口とが1川じロータ端部側に設けられ
、吸気導入口と吸気吐出口とが他方のロータ端部側1に
設けられ、1ノ[気流および吸気流の各々がロータ内で
流れ方向を変える。いわゆる逆流形であるが、これらの
セ(体がロータを軸方向に貝通して流れるようにした、
−貞ぴL#も知られており、その構造およびni 11
1 a、雑誌[内燃機関JVo1.15、A/79、/
971.、l、に詳述されている。 この14力波J1″4組機は、判にディーゼルエンジン
に撤すると考えられ、低迷運転時にも〃)来を示すが、
ロータ内で吸気が抽気に接触さぜられるため、吸気と抽
気との部分的な混合音生じることになる。 この混合は、連転領域によってはυト気鼠流効果とみる
こともできるが、υ;速商負荷運転時には、吸気効率の
低下により出力の低下1招く、という間wi全牛する。 (発明の目的) 本発明は、上述したような形式の圧力波過給機において
、高負荷運転時に吸気への排気の重大を防止し、エンジ
ン出力を向上させることができる横糸を杉を供すること
全目的とする。 (発明の構成) 上記目的を達成するため、本発明は次の構成ケ有する。 すなわち、本発明による過給機付エンジンは、圧力波過
給機を倫えており、その圧力波過給機枦は、回転一方向
に角迩す、る互に分離された多数の気体通路全有するロ
ータと、該ロータ紮その回転軸貫わりに回転自在に支持
するケースとからなり、該ケースには、ロータの端部に
対向する位−ニ、エンジン排気口に接続される排気導入
口と排気を大気に排出する(J1気吐出口とがロータ回
転方向に偏位してf構成され、さらにυl気導入口に対
し回転軸方同反対側の位置に、エンジンし一口に接続さ
れる吸気吐出口が、貫た排気吐出口に対し回転晰方向反
灼(1111の缶餡に、大気全吸入する吸気導入口がそ
れぞれ形成されている。本発明においては、過給機のロ
ータを回転駆動するために電動モーターが設けらtl、
この′ル゛動モーターの回転数は、エンジン高負荷運転
時にロータの回転数とエンジン[す1転数との比、すな
わちエンジン回転数に灼するロータ回転数の比が高くな
るように、制御り5齢により制御される。 圧力波過給後においては、ロータの回転に伴なってロー
タ内の気体通路が排気導入口に開口したとき、この気体
通路にυ[気圧力が伝えられ、該気体iTU路のゼト気
辿路(1+11に圧力波な生じ、この圧力波が音速で該
51Tl路内ケ伝描して通路内の吸気を圧締lしながら
他端側に湊する。したがって、排気導入口と吸気吐出口
の位t# i、’++係、ロータ内の気体通路の長さ、
ロータの!01転↓夕などW=当に定めること((より
、気体曲路内を伝播する圧力仮全吸気専人口に伝えるこ
とができ、瓜艙効来が得られる。これに対し、シ(体鹿
路内における排気の流れに圧力波より遅れて;Bl路内
を進むので、排気流が気体通路の1山端に遅する前に該
気体通路が気体吐出口から遮断されればエンジン脚気に
弁1気1J#グとんど渭入しない。 一般には、エンジン1け艶創の関保がら、ロータの回転
?りはエンジン(g1転訂に比例して型減さゼるのが%
通である。しかし、たとえげnF気MtAtが必要とさ
れるエンジン運%:領域で、ロータ回転りとエンジン回
転数の比が小さくなるようにロータ回転ay kib+
+御すると、気体通路が吸気吐出口から遮1fjtされ
るiiCに、排気が気体辿路會負流して吸シに混入し、
杉I気還流効果を住しる。したがって、このような−転
数比r紹持すると、箇負向運転領域で吸気への排気街人
のために十分な出力が僧ら71な(なる。そこで、本発
明では、高月伸r]瑯転知域で、上記回転数比ケ高めて
1lja艷へのvr気混入ケ確寮に防止し、エンジン出
力の1「J1上′に専h’y、すξものである。 (発明の効果) 本発明においては、圧力阪返帽←のロータに石動モータ
ーにより駆動し、該%+kJIモーターの回転基メを、
ロータの回転数とエンノンlil転載との比が高負荷連
戦時にあ1くなるように制御装置により制φ:iしてい
るので、晶負タエ運転時には吸気への11F気の混入k
(k実にlih止することができ、しかもその/こめに
勃にIAl(811な機構ケ静け1ζりする必安が々い
。 また、ロータ會エンノンクランク−11により駆動する
1・」′あいに比し、]〜給壁の取付位腸に制約がなく
、部品配直上の171通件が太きくなる。 (実施例の説明) 基本構成 か7図は本発明ケディーゼルエンジンに過用した例ケ示
すものであり、エンジン1はシリンダ2とg9シリング
2の上端部にJ4’/ (=jけられたシリンダヘッド
3を宿し、シリンダ2内にはピストン4が往ゆ運動自在
に配向されて、シリンダ2内に燃焼室12を形成する。 シリンダヘッド3にVi吸気口5および(〕[気1Gが
Jlt成され、これら吸気口5および4JF第口6には
それぞれ吸気弁7および排気弁8が自cl#されている
。さらに、吸気口5は]杓紹通路9に、排気口6は排気
通路10にそれぞれ接続されている。過給通路9とゼ1
気】ハ(路10との間にはH−力波過鮒8S11が設け
られる。 六P機11は、第2図(a)に示すケース14と、第一
図(blに示すロータ15からなり、ロータ15はケー
ス14内に回転自在に耐′芦されている。輸λ図(bl
に示すように、ロータ15は、軸方向に貝辿する互に分
離さhた多数の気体通路16?!7廟する。ケース14
は、ロータ15の両端に対向する端壁14a、14bを
有し、一方の端壁148には抽気導入口17と排気吐出
口18が形成され、他方の端壁14bKは吸気導入口1
9と吸気吐出口20が形成されている。第、7図に示す
ように、ケース14のす「1導入口17にld排排気絡
路1o接続され、吸気吐出口20には過給通路9が接続
されている。さらに、ケース14の排気吐出口18には
排出連路21が接続され、吸気導入口19には吸気的路
22が接続されている。 ロータ15には駆動軸23が固定され、この駆動@11
23はロータ15の一端から軸方向外方に処びている。 駆動at: 23は、軸受24.25により吸気ハウジ
ング26に1!、!1転支持され、その一端でロータ1
5?!7片持支持する。、1へ動軸23の他端は、笥:
iクラッチ27紮介して% m1モーター28の出力d
11!に結合されている。モーター28の畿1転全制御
するために制御回路29が設けられる。この制御回路2
9け、エンジン回転数センサ30の出カケ入力とし、エ
ンジン回転数に比例する出力全発生する。たとえば蜜1
u11モーター28がパルスモータ−であれば、制御回
路29はエンジン回転数の芹1加に比例してパルス戯が
増加する・ぞルス出力を発生する。制御回路29の出力
は和1正I!Jl路31に入力され、補正回路31の出
力がモーター28の駆Mihに使用される。補正回1路
31は、エンジン制御部材の作IIJliiたとえばア
クセルペダル踏み込み惜センザー32の出力全党け、エ
ンジン負荷Jに応じて制fIIIIlql路29の出力
を補正し、七−ター28の191転数ケ制御する。第3
ト1は、その補正の一例會示すもので、同図の横1iT
llは燃料噴射部(alケ、捷だ維llTl1はロータ
15の回転数(rpm )ケ示し、ある一定のエンジン
回転数のもとで、エンジン負荷に対応する燃相堕射卸Q
顛応じて、モーター28の回転数すなわちロータ15の
回転数とエンジン回転数との比が図に実IwlI8で示
さオ]るように変化させられる。なお、センサー32の
出力をまクラッチ27にも与えられ、低狛荷′i!LI
城でクラッチ27が断たれる。 作 動 エンジン1が始動され、クラッチ27が接U1さiする
負夕r領域では、モーター28Vi袖正1伊路31から
の出力によりp1転させられて、ロータ15を駆動する
、エンジン吸気ae気通路22から吸気導入口19ケ経
てロータ15.内の気体通路16に入り、Rga路16
が吸気吐出口20に開口したときに、過給通路9に吐出
されて吸気口5から燃焼室12に導入される。一方、排
気口6から排出される排気は、お[気通路10%C辿っ
てυ「1導入口17からロータ15内の気体J出路16
に入り、該通路16が排気吐出口18に開口したとき排
出連路21に吐出される。ケース14では、排気導入口
17と吸気吐出口20がili+方向相対向する位置に
配置μさftているので、気体通路16の一端が排気導
入L117に開口したとき、6B通路16内に発生する
圧力波は通路16内を伝播し、該JIη路1路内6内気
を圧部しながら吸気吐出口20にテネし、過給状態で吸
気な通路9に吐出する。 第グ図i、t、ロータ15のi(6路J6内における吸
気と杉[気の流れ全模式的に示すものである。図におい
て、ロータ15はβ6明のイリ2宜上展開して示さね、
通路16けロータ15の回転に伴なって上から下に失印
Aで示す方向にIHj+ (ものとする。st+ ti
図の十端不1近の3+Th路16atま吸気で充満され
た状態で移動して来てふ・す、この][(4路16Bの
位i戸では、通路両側が閉基さhているため、内部の吸
気な:1静止状態である。続く通路16bでは一端が排
気導入口17にυPI口17ており、抽気による圧力波
がしIK33で示すように発生ずる。このとき、排気は
通路16bの一端に34で示すように流入している。ロ
ータ15の回転方向に位相の進んた通路15c、16d
でiJ圧力波が33a、33bでで示す工うに伝播し、
排気の数れも34 a 、 34bで示すように通路に
沿って進んでいるが、この時点では通路の他端は閉じら
れて訃り、該端部付近の吸気は静止している。さらに、
通路16oでは該通路の端部が吸気吐出口20に開口し
ており、この時点では圧力波が吸気吐出口20に達して
おり、吸気は過給状態で通路9に吐出される。続く炉路
16f、16g、16hTa、吸気の吐出が継続して行
なわれ、排気は該]庄路内を吸気の流出方向に流動する
。通路161は、JJ’気導入口17から遮断さJll
、該導入口1711111の端部1’L排気の静止部3
4Cが生じる。通路161i、i、吸気吐出口20から
も遮断されており、眠気および排気tま静止状態になる
。通路16にでは、該通路の一端が1ノF気吐出ml 
18に開口しd〆端部eし硬し気の膨張部35が発少し
、この紛脹部は位相の進みにしたがって図に示すように
通路内で拡がっていく。通路16−eでは他ゾ1^1側
が吸気導入口19に開目し、大気圧の壁気が通路に流入
して、!膨脂した1ノド気を排出路21に押し出′j−
0 P;1q図に示ずU−夕15の一1転0ては、フドj路
16に流入1/S偶ト気が吸気吐出口20に到呼する^
l’l V’−hゑ辿bl?、 16が吸気吐出口20
〃・ら辿、勤rされる。 し7′ζがって、排気tま、吸気との妬゛触によりし1
段気中に7昆入して残留する慟〃1な悴を除いてシュ、
過給消Ik169にか8辞することはンンい。鎮3゛し
I kJ、ロータ15 Ci’)) li;l EIL
、 31(q相5(、を的に低下させ、ロータ回転数と
コーンノン1iil転柔夕との比、すなわちエンジンレ
1転数に対するU−夕1す、Iト、数の比デ減少させた
けあい1示−4゜この状か、T:は、ロータ15の回転
による負CA−>1.j’ Il’l’; 16の進み
に比して摺入34の6tcれが速く、籾へし34は>+
!” Il’l’; 16が吸気吐出口20から迦、H
I3さノLるf、:+ V(−R夛I11出臼20にt
li*L、ス尚給期J路9yt−1Il出される。この
上′)にして、il!′v紹)JP路9に吐出さiLる
υ1シ1の知VJ1 ロータ15の回転数とエンジン1
す1転aノとの比によって変化し、この1ift転数比
l・8tt j’図の′5j!:線aのようVC俊什さ
せると、吸気に混入される釦l気のJdei回ト1ヒト
1すで示すように変化する。したがって、ロータ15の
1■1転仏メの制御により、4非気還流をン1i望する
よりに’+Ii制御することができる。々お、第3財I
Vr、おいて、一点針線Cは枡り還流Pがゼロの紳全示
し、「9邸(Cより下方に位置する小紋すに排気ガス中
に吸気が吹き抜けている状態を示し、ている。寸た、T
h1釦荷運転シ城てhlこの回転lVf比をか3し1の
ように高めて、吸気へのyi気の演入ゲ防止し、品い?
・給効来が得らねるようにする。 々お、但負荷;!1.lb領域では、センサ32からの
信号によりクラッチ27klE+1って、ロータ15を
排気のエネルギのみで駆!kIIすZ、ようにしてもよ
い。 寸だ、上述の実施例は、逆流形であるが、本発明は貫流
形にも問題なく適用できる。
The structure is such that the intake air is combusted at the intake and discharge ports, and the intake air introduced from the intake inlet into the gas passage in the rotor is pushed toward the intake and discharge ports by the pressure of the exhaust gas introduced from the exhaust inlet. ing. For this reason, the exhaust gas inlet and the air intake and discharge ports are formed at positions opposite to each other in the rotor axial direction with the rotor sandwiched therebetween. An example of this type of pressure wave supercharger is disclosed in Japanese Utility Model Application Publication No. 27G39. In the supercharged egg disclosed in this publication, a bleed air inlet and an exhaust outlet are provided on one end of the rotor, and an intake inlet and an intake outlet are provided on the other end of the rotor. The airflow and the intake airflow each change flow direction within the rotor. Although it is a so-called counterflow type, these types (in which the body flows through the rotor in the axial direction,
- Sadapi L# is also known, its structure and ni 11
1 a, Magazine [Internal Combustion Engine JVo1.15, A/79, /
971. , l. This 14 force wave J1'' 4-set machine is thought to be replaced by a diesel engine in the future, and it shows the following even during sluggish operation.
Since the intake air comes into contact with the bleed air within the rotor, a partial mixing sound of the intake air and the bleed air is generated. Depending on the continuous rotation range, this mixing can be seen as a υ-to-air flow effect, but during υ; fast-commercial load operation, the reduction in intake efficiency causes a decrease in output. (Object of the Invention) The present invention is to provide a weft in a pressure wave supercharger of the type described above, which can prevent serious exhaustion into the intake air during high-load operation and improve engine output. For all purposes. (Configuration of the Invention) In order to achieve the above object, the present invention has the following configuration. That is, the supercharged engine according to the present invention is equipped with a pressure wave supercharger, and the pressure wave supercharger has a large number of mutually separated gas passages that extend angularly in one direction of rotation. The rotor is comprised of a rotor and a case that rotatably supports the rotor through its rotational shaft, and the case has an exhaust inlet connected to an engine exhaust port and an exhaust port facing the end of the rotor. is discharged into the atmosphere (the J1 air outlet is offset in the direction of rotor rotation, and the air intake/discharge port connected to the engine is located on the opposite side of the rotational axis to the υl air inlet). The cans of 1111 are each formed with an intake inlet for inhaling the entire atmosphere.In the present invention, the rotor of the supercharger is driven to rotate. An electric motor is provided for the tl,
The rotational speed of this rotating motor is controlled so that the ratio of the rotor rotational speed to the engine rotational speed, that is, the ratio of the rotor rotational speed to the engine rotational speed, is high during high-load engine operation. It is controlled by the fifth instar. After pressure wave supercharging, when the gas passage in the rotor opens to the exhaust gas inlet as the rotor rotates, υ [air pressure is transmitted to this gas passage, and the zeto gas path of the gas iTU path (A pressure wave is generated at 1+11, and this pressure wave propagates inside the 51Tl passage at the speed of sound, compressing the intake air in the passage and reaching the other end. position t# i, '++, length of the gas passage in the rotor,
Rota's! 01 turn ↓ Yu, etc., W = properly determined ((), the pressure propagating in the gas curve can be transmitted to the temporary total intake air force, and the effect of urination can be obtained. The flow of exhaust gas in the passage is delayed from the pressure wave; it advances in the Bl passage, so if the gas passage is cut off from the gas discharge port before the exhaust flow reaches one end of the gas passage, the engine beriberi valve 1 1J# does not fit in. In general, the engine is shiny and shiny, and the rotation of the rotor is the same as the engine (the model is reduced in proportion to the G1 version).
I am a connoisseur. However, for example, in the area where nF air MtAt is required, the rotor rotation ay kib +
When + is controlled, the gas passage is blocked from the intake and discharge ports, and the exhaust gas flows negatively through the gas path and mixes into the intake.
Cedar I live in Qi reflux effect. Therefore, if such a -revolution ratio r is introduced, a sufficient output for the exhaust gas to the intake in the negative direction driving region will be obtained.Therefore, in the present invention, Takatsuki ] In the turbulent range, the above rotational speed ratio is increased to prevent VR air from entering the 1lja vessel, and the engine output is 1'J1 above'. (Invention (Effects of) In the present invention, the rotor of pressure sakagaeshi ← is driven by a rock motor, and the rotation base of the %+kJI motor is
Since the control device controls φ:i so that the ratio between the rotation speed of the rotor and the ennon lil transfer is equal to 1 during high load series, 11F air is mixed into the intake air during crystal negative operation.
(In fact, it is possible to stop the engine, and in addition, the mechanism of 811 is very quiet. In addition, the rotor is driven by an encoder crank-11. Compared to Ai, there is no restriction on the installation position of the supply wall, and the 171 message directly above the parts arrangement becomes thicker. The engine 1 has a cylinder head 3 with a J4'/ (=j) profiled at the upper end of the cylinder 2 and the g9 cylinder 2, and a piston 4 is movable in the cylinder 2. are oriented to form a combustion chamber 12 in the cylinder 2.The cylinder head 3 has a Vi intake port 5 and a The exhaust valve 8 is self-clamped.Furthermore, the intake port 5 is connected to the drain passage 9, and the exhaust port 6 is connected to the exhaust passage 10.
A H-force wave overpass 8S11 is installed between the H-C and H-Route 10. The 6P machine 11 has a case 14 shown in FIG. The rotor 15 is rotatably secured in the case 14.Transport diagram (bl
As shown in FIG. 2, the rotor 15 has a number of gas passages 16 which are separated from each other and extend in the axial direction. ! 7 temples. case 14
has end walls 14a and 14b facing both ends of the rotor 15, one end wall 148 is formed with a bleed air inlet 17 and an exhaust discharge port 18, and the other end wall 14bK is formed with an air intake inlet 1.
9 and an intake/discharge port 20 are formed. As shown in FIG. 7, the first inlet 17 of the case 14 is connected to the LD exhaust/exhaust circuit 1o, and the intake/discharge port 20 is connected to the supercharging passage 9. A discharge passage 21 is connected to the discharge port 18, and an intake passage 22 is connected to the intake inlet 19.A drive shaft 23 is fixed to the rotor 15, and this drive @11
23 is located axially outward from one end of the rotor 15. Drive at: 23 is 1 to the intake housing 26 by bearings 24.25! ,! The rotor 1 is supported at one end.
5? ! 7 Cantilever support. , 1, the other end of the moving shaft 23 is a drawer:
i % m1 motor 28 output d via clutch 27
11! is combined with A control circuit 29 is provided to fully control the rotation of the motor 28. This control circuit 2
9, the output is input to the engine rotation speed sensor 30, and an output proportional to the engine rotation speed is generated. For example, honey 1
If the u11 motor 28 is a pulse motor, the control circuit 29 generates a pulse output whose pulse force increases in proportion to the engine speed. The output of the control circuit 29 is sum 1 positive I! The output of the correction circuit 31 is input to the Jl path 31 and used to drive the motor 28. The correction circuit 1 circuit 31 corrects the output of the control circuit 29 according to the output of the accelerator pedal depression sensor 32 and the engine load J of the engine control member, for example, the output of the accelerator pedal depression sensor 32. ke control. Third
Figure 1 shows an example of the correction.
ll indicates the fuel injection unit (al, 1) Tl1 indicates the rotational speed (rpm) of the rotor 15, and at a certain engine rotational speed, the fuel phase drop injector Q corresponding to the engine load
Accordingly, the rotational speed of the motor 28, that is, the ratio of the rotational speed of the rotor 15 to the engine rotational speed is changed as shown by IwlI8 in the figure. In addition, the output of the sensor 32 is also given to the clutch 27, resulting in a low load 'i! L.I.
Clutch 27 is disconnected in the castle. Operation When the engine 1 is started and the clutch 27 is engaged in the negative speed region, the output from the motor 28Vi, Sodemasa 1Iji 31 causes the engine intake ae air, which drives the rotor 15, to turn P1. From the passage 22 through 19 intake inlets to the rotor 15. enters the gas passage 16 in the Rga passage 16
When it opens into the intake/discharge port 20, it is discharged into the supercharging passage 9 and introduced into the combustion chamber 12 from the intake port 5. On the other hand, the exhaust gas discharged from the exhaust port 6 flows from the air passage 10% C to the gas J outlet 16 in the rotor 15 from the inlet 17
When the passage 16 opens to the exhaust outlet 18, the exhaust gas is discharged into the exhaust passage 21. In the case 14, the exhaust inlet 17 and the intake outlet 20 are arranged at opposite positions in the ili+ direction, so that when one end of the gas passage 16 opens to the exhaust inlet L117, gas is generated in the 6B passage 16. The pressure wave propagates inside the passage 16, and while the inside air in the JIη passage 1 passage 6 is compressed, it is applied to the intake/discharge port 20, and is discharged into the intake passage 9 in a supercharged state. Figures i and t of the rotor 15 (intake and airflow in the 6-way J6) are shown schematically. hey,
As the rotor 15 with 16 passages rotates, IHj+ (assuming st+ ti
The 3+Th path 16at near the end of the figure moves in a state filled with intake air. Therefore, the internal air intake is in a static state.In the following passage 16b, one end is connected to the exhaust gas inlet 17, and a pressure wave due to the bleed air is generated as shown by IK33.At this time, the exhaust gas is in the passage It flows into one end of the rotor 16b as shown at 34.The passages 15c and 16d are advanced in phase in the rotational direction of the rotor 15.
The iJ pressure wave propagates to the channels shown by 33a and 33b,
The exhaust gases are also moving along the passage as shown at 34a and 34b, but at this point the other end of the passage is closed and the intake air near that end is stationary. moreover,
The end of the passage 16o opens to the intake outlet 20, and at this point the pressure wave has reached the intake outlet 20, and the intake air is discharged into the passage 9 in a supercharged state. The suction air continues to be discharged through the following furnace passages 16f, 16g, and 16hTa, and the exhaust gas flows through the furnace passages in the outflow direction of the intake air. The passage 161 is blocked from the JJ' air inlet 17.
, the end 1'L of the inlet 1711111, the stationary part 3 of the exhaust
4C occurs. The passages 161i and 161i are also blocked from the intake and discharge ports 20, resulting in drowsiness and a stationary state of exhaustion. In the passageway 16, one end of the passageway has a discharge of 1 noF air (ml).
18, an expansion part 35 of hard air is generated at the end d, and this expansion part expands within the passage as the phase progresses as shown in the figure. In the passage 16-e, the intake port 19 opens on the other side 1^1, and atmospheric pressure wall air flows into the passage. Push out the swollen air into the exhaust passage 21'j-
0 P; Not shown in figure 1q, when the U-Y 15 turns 0, the 1/S combined air flows into the hood J path 16 and reaches the intake/discharge port 20.
l'l V'-hue trace bl? , 16 is the intake/discharge port 20
〃・ra followed and worked hard. 7'ζTherefore, due to the jealous contact between the exhaust gas and the intake air,
7 pieces enter into the stage qi and remain, excluding 1 piece of water,
I don't want to give up on the supercharged Ik169. Stop 3゛ and I kJ, rotor 15 Ci')) li;l EIL
, 31 (q phase 5(), and the ratio of the rotor rotation speed to the cone non-cone rotation speed, that is, the ratio of the U-turn speed to the engine rotation speed. In this state, T: is negative CA due to the rotation of the rotor 15 -> 1. 34 is>+
! "Il'l'; 16 is from the intake outlet 20, H
I3 SanoLruf, : + V (-R 夛I11 Output 20 t
li*L, Sushang period J road 9yt-1Il is released. On top of this'), il! 'v Introduction) Discharge iL to JP path 9 υ1 si 1 knowledge VJ1 Rotation speed of rotor 15 and engine 1
It changes depending on the ratio of 1 to 1, and this 1ift to 8tt j'figure'5j! : When the VC speed is increased as shown in line a, the Jdei times of the button air mixed into the intake air change as shown above. Therefore, by controlling the rotor 15 in 1×1 rotation, it is possible to control the non-air recirculation by '+Ii' rather than by desiring 4 non-air recirculations. Third property I
Vr, the one-dot needle line C indicates a state where the recirculation P is zero, and indicates a state in which intake air is blown into the exhaust gas in the small pattern located below C. T, T
H1 button load operation is done. Raise this rotation lVf ratio to 3 to 1 to prevent the introduction of air into the intake air and improve quality.
・Make sure that benefits are not obtained. Oh, but load;! 1. In the lb region, the clutch 27klE+1 is activated by the signal from the sensor 32 to drive the rotor 15 only with exhaust energy! It may be done as follows. Although the above-mentioned embodiment is of a reverse flow type, the present invention can also be applied to a once-through type without any problems.

【図面の簡単な説明】[Brief explanation of drawings]

P/図は本発明の一実施例全圧すコ1旬給梗付エンジン
の概略図、W−図(alおよび(bjけ過給椋の+ −
スおよびロータをそれぞれ示す斜視図、頒3し1はロー
タ回転数制御の一例を示す図表、和グ図および第5図は
過給僚の作用に示すロータの川、開−でi、る。 1・・・°エンジン、9・・・通給迎路、10・・・抽
気]出路、11・・・過給枦、14・・ケース、15・
・・ロータ、16・・党・体)Ill路、17・・・1
北91嗜入口、j8・・・伊勢Nl:14![l、19
・・■νり勿Φ込口、20・・1〃う(吐出口、28・
・?lIl上動ター、29・・・■l制御回路。 第4図 第5図 [A
Figure P is a schematic diagram of an engine with a full-pressure turbocharger according to an embodiment of the present invention;
FIG. 3 is a perspective view showing the engine speed and the rotor, and FIG. 3 is a diagram showing an example of rotor rotational speed control. DESCRIPTION OF SYMBOLS 1...°Engine, 9...Air supply and pick-up path, 10...Bleed air] Outlet path, 11...Supercharger, 14...Case, 15.
...Rota, 16...Party/Body) Ill Road, 17...1
North 91 entrance, j8...Ise Nl: 14! [l, 19
・・■νri Φ inlet, 20・・1〃(discharge port, 28・
・? lIl upper movement motor, 29...■l control circuit. Figure 4 Figure 5 [A

Claims (1)

【特許請求の範囲】[Claims] 回転ll1l方向にIt辿する互に分muされた多数の
気体通路をイiするロータと、帥記ロータ會その回転軸
オわりに回転自在に支持するケース七からなり、前記ケ
ースには、111記ロータの端部に対向する位1〜に、
エンジン排気口に接続される活気導入口と胡気を大気に
排出する排気吐出口とがロータ回1転方向に偏位してノ
ド成さfLl さらに前記私気導入口に対し1i41転
軸方向反対仙1の付和に、エンジン吸気口に接続される
吸気吐出口が、また4it記排気吐出口に対し回転軸1
方向反対(IIllの位1wに、大気全吸入する吸気隣
人口がそ′i1ぞれf隘成された形式の圧力t& 、1
774給僚を備えた過給後付エンジンにおいて、111
n己ロータを回転部IILl+’i−るための′龜狽j
1モーターと、エンジン1す1転数に対するn11m1
ロータの(ロ)転数の比をコニンソン、旨」′)J不I
I廼ド一し」在に高めるように前6己箪輩1モークケt
b1.l ffIIIするルリ#装廣とが設けら扛たこ
とを特徴とする混和後付エンジン。
It consists of a rotor that has a large number of mutually divided gas passages that follow it in the direction of rotation, and a case 7 that rotatably supports the rotor assembly in place of its rotation axis, and the case has 111 inscriptions. At the position 1 facing the end of the rotor,
The live air inlet connected to the engine exhaust port and the exhaust outlet that discharges air into the atmosphere are deviated in the direction of one rotation of the rotor, forming a throat. In addition, the intake and discharge ports connected to the engine intake port are connected to the rotating shaft 1 with respect to the 4th exhaust discharge port.
In the opposite direction (IIll place 1w, the inlet neighboring population which inhales all the atmosphere is
In a supercharged retrofit engine with 774 staff, 111
The screw for rotating the rotor into the rotating part IILl+'i-
n11m1 for 1 motor and engine 1 speed
The ratio of the (b) revolutions of the rotor is determined by Koninson.
I'm the only one in the world, so I'm trying to make the most of my six-year-old self.
b1. A mixed retrofitted engine characterized by being equipped with a luff III lulli # mount.
JP681484A 1984-01-18 1984-01-18 Engine provided with supercharger Granted JPS60150427A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP681484A JPS60150427A (en) 1984-01-18 1984-01-18 Engine provided with supercharger
EP19850100382 EP0151407B1 (en) 1984-01-18 1985-01-16 Supercharger control for a supercharged internal combustion engine
DE8585100382T DE3560268D1 (en) 1984-01-18 1985-01-16 Supercharger control for a supercharged internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP681484A JPS60150427A (en) 1984-01-18 1984-01-18 Engine provided with supercharger

Publications (2)

Publication Number Publication Date
JPS60150427A true JPS60150427A (en) 1985-08-08
JPH0442528B2 JPH0442528B2 (en) 1992-07-13

Family

ID=11648667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP681484A Granted JPS60150427A (en) 1984-01-18 1984-01-18 Engine provided with supercharger

Country Status (1)

Country Link
JP (1) JPS60150427A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082341A (en) * 1997-08-19 2000-07-04 Hitachi, Ltd. Supercharger for engine
US7669587B2 (en) * 2006-05-03 2010-03-02 Robert Bosch Gmbh Method of operating an engine with a pressure-wave supercharger
JP2011190802A (en) * 2010-03-11 2011-09-29 Benteler Automobiltechnik Gmbh Pressure wave supercharger
USRE45396E1 (en) 2004-11-12 2015-03-03 Board Of Trustees Of Michigan State University Wave rotor apparatus
US9856791B2 (en) 2011-02-25 2018-01-02 Board Of Trustees Of Michigan State University Wave disc engine apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6082341A (en) * 1997-08-19 2000-07-04 Hitachi, Ltd. Supercharger for engine
USRE45396E1 (en) 2004-11-12 2015-03-03 Board Of Trustees Of Michigan State University Wave rotor apparatus
US7669587B2 (en) * 2006-05-03 2010-03-02 Robert Bosch Gmbh Method of operating an engine with a pressure-wave supercharger
US8136512B2 (en) 2006-05-03 2012-03-20 Robert Bosch Gmbh Method for operating an engine with a pressure-wave supercharger
JP2011190802A (en) * 2010-03-11 2011-09-29 Benteler Automobiltechnik Gmbh Pressure wave supercharger
US9856791B2 (en) 2011-02-25 2018-01-02 Board Of Trustees Of Michigan State University Wave disc engine apparatus

Also Published As

Publication number Publication date
JPH0442528B2 (en) 1992-07-13

Similar Documents

Publication Publication Date Title
JP2003065060A (en) Total pressure exhaust gas recycling duct
JPS63501969A (en) Device in a throttle-controlled internal combustion engine with a supercharger in the form of a screw air compressor
JPS60150427A (en) Engine provided with supercharger
JPH08240156A (en) Exhaust gas recirculation device for engine with supercharger
JP3139183B2 (en) Exhaust recirculation device
JPH03202619A (en) Intake system for multi-valve engine
JPH07279677A (en) Centrifugal supercharger
JP3247225B2 (en) Engine supercharger
JP2517566Y2 (en) Supercharged internal combustion engine
JPS5851221A (en) Supercharging system for engine
KR0121376Y1 (en) Prevention device of positive pressure in an engine
JPS60159339A (en) Engine with supercharger
KR200151137Y1 (en) Intake system for turbo-charger engines
JPH0748984Y2 (en) Engine with turbocharger
JPH071018B2 (en) Exhaust control device for internal combustion engine with mechanical supercharger
JP2001115847A (en) Supercharging system
JPH0550034U (en) Supercharger for internal combustion engine
JPH0536609B2 (en)
JPS60159338A (en) Engine with supercharger
JPH0242168A (en) Intake structure for engine with supercharger
JPS58170827A (en) Supercharging device for internal-combustion engine
JPS63201322A (en) Mechanical supercharging device for engine
JPH05340260A (en) Mechanical supercharging device
JPH02102332A (en) Internal combustion engine for air compressor
JPS6143941Y2 (en)