JPS6015003B2 - Manufacturing method of pyroelectric infrared detection element - Google Patents

Manufacturing method of pyroelectric infrared detection element

Info

Publication number
JPS6015003B2
JPS6015003B2 JP1622078A JP1622078A JPS6015003B2 JP S6015003 B2 JPS6015003 B2 JP S6015003B2 JP 1622078 A JP1622078 A JP 1622078A JP 1622078 A JP1622078 A JP 1622078A JP S6015003 B2 JPS6015003 B2 JP S6015003B2
Authority
JP
Japan
Prior art keywords
infrared detection
detection element
molded plate
curved surface
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1622078A
Other languages
Japanese (ja)
Other versions
JPS54108678A (en
Inventor
日出夫 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1622078A priority Critical patent/JPS6015003B2/en
Publication of JPS54108678A publication Critical patent/JPS54108678A/en
Publication of JPS6015003B2 publication Critical patent/JPS6015003B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 この発明は良好な感度を有する篤雷型赤外線検出素子の
製造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of a lightning-type infrared detection element having good sensitivity.

従来の篤雷型赤外線検出素子を第1図に示す。A conventional lightning-type infrared detection element is shown in FIG.

図において、1は平面形状の赤外線検出素子で、強議電
性セラミックの両平面に電極2,3が形成されたもので
ある。電極3側、つまり受光面倒には黒化膜4が形成さ
れている。素子1はベース5の上に戦置され、導電ペー
ストまたは導電ペーストと樹脂を混合したものなどで固
定され、電極2,3はリード線8,9により外部端子6
,7に電気接続されている。1川ま孔で、素子1からベ
ース5へのヒートシンクを防止する役割を果たしている
In the figure, reference numeral 1 denotes a planar infrared detection element, in which electrodes 2 and 3 are formed on both planes of a strongly electrostatic ceramic. A blackened film 4 is formed on the electrode 3 side, that is, on the light receiving side. Element 1 is placed on base 5 and fixed with conductive paste or a mixture of conductive paste and resin, etc., and electrodes 2 and 3 are connected to external terminals 6 by lead wires 8 and 9.
, 7. The single hole serves to prevent heat sinking from the element 1 to the base 5.

このような構造のものは一般に感度を高めるために、第
2図に示すように集光器の篤v点位置に配置されていた
In order to increase the sensitivity, such a structure is generally placed at the focal point of the condenser, as shown in FIG.

図において、11は容器で、内部には凹面鏡12が形成
されている。13は第1図に示した赤外線検出素子で、
凹面鏡12の焦点位置に配置されている。
In the figure, 11 is a container, and a concave mirror 12 is formed inside. 13 is the infrared detection element shown in FIG.
It is placed at the focal point of the concave mirror 12.

14,15は端子で、素子13を容器11に支持固定し
ている。
Terminals 14 and 15 support and fix the element 13 to the container 11.

16は容器11の入口に形成したウィンドーである。16 is a window formed at the entrance of the container 11.

しかし、従来の赤外線検出素子を集光器に配置した場合
次のような欠点が見られる。
However, when a conventional infrared detection element is placed in a condenser, the following drawbacks are observed.

すなわち、凹面鏡を用いた反射型の赤外線検出装置では
、凹面鏡12の外周部付近からの反射光はかなり斜光と
なり、第1図のように赤外線検出素子が平面形状の受光
面を有するものであれば、素子に当たる赤外線のエネル
ギー密度はかなり小さいものとなり、実質的に感度を高
めることにはならなかった。
That is, in a reflective infrared detection device using a concave mirror, the reflected light from the vicinity of the outer periphery of the concave mirror 12 is quite oblique, and if the infrared detection element has a planar light-receiving surface as shown in FIG. However, the energy density of the infrared rays hitting the element was quite small, and the sensitivity was not substantially increased.

このような欠点を除くには、凹面鏡の曲率半径も大きく
すればよいが、装置全体が大きくなってしまい、家庭用
などに用いる民生用には不向きであった。
In order to eliminate this drawback, the radius of curvature of the concave mirror can be increased, but this increases the size of the entire device, making it unsuitable for consumer use such as home use.

発明者は上記したような問題を検討したところ、受光面
が凸状を有する赤外線検出素子を用いることによって次
のような利点を有することを見し、出した。
The inventor studied the above-mentioned problems and found that the use of an infrared detection element having a convex light-receiving surface has the following advantages.

つまり、上記した赤外線検出素子を集光器の焦点に配置
した場合、受光面側に凸状の湾曲面を有するため、倉烏
点位置に集まってくる反射光をその湾曲面において垂直
に近い角度で受光するようになり、入射エネルギー密度
は従来にくらべて大きくなり、すぐれた感度を有する。
In other words, when the above-mentioned infrared detection element is placed at the focal point of the condenser, since it has a convex curved surface on the light-receiving surface side, the reflected light that gathers at the Kurarasu point is directed at an angle close to perpendicular to the curved surface. The incident energy density is larger than that of conventional devices, and the sensor has excellent sensitivity.

また従来のように感度を高めるため、曲率半径の大きい
凹面鏡を用いるといった必要もなくなり、集光器全体の
形状を小形化できる利点を有する。この発明はかかる観
点よりなされたもので、良好な感度を有する篤電型赤外
線検出素子を簡単に製造できる方法を提供せんとするも
のである。
Furthermore, there is no need to use a concave mirror with a large radius of curvature in order to increase sensitivity as in the conventional method, and there is an advantage that the overall shape of the condenser can be made smaller. The present invention has been made from this point of view, and it is an object of the present invention to provide a method for easily manufacturing an infrared detection element having good sensitivity.

すなわち、この発明の要旨とするところは、湾曲した主
表面を有する焦電型赤外線検出素子を製造するに当たり
、未焼成または焼成済の強議電性セラミック成型板を湾
曲面を有する成型台のその湾曲面上に置き、強議電性セ
ラミック成型板の暁結温度より高く、かつ燐結して得ら
れる成型板が軟化する温度で焼成することを特徴とする
ものである。以下この発明を一実施例に従って詳述する
That is, the gist of the present invention is that, in manufacturing a pyroelectric infrared detection element having a curved main surface, an unfired or fired ferroelectric ceramic molded plate is placed on a molding table having a curved surface. It is characterized in that it is placed on a curved surface and fired at a temperature higher than the dawning temperature of the strongly electrostatic ceramic molded plate and at which the molded plate obtained by phosphorization softens. This invention will be described in detail below according to one embodiment.

あらかじめ調整したPb(Zr、Ti)03系の強黍電
体粉末をバィンダとともに燈拝し、そののち脱水、乾燥
、造粒の各工程を経て、加圧成型、押出成型あるいはド
クターブレード法などによって平面状に成型して未焼成
の強議電性セラミック成型板を作成した。次いで第3図
に示すように、得ようとする篤蚤型赤外線検出素子の湾
曲面に相応する凸状の湾曲面22を有するアルミナ、ジ
ルコニア、ステアタイトなどの磁器よりなる成型台21
の上に、上記したように得られた未焼成の強議電性セラ
ミック成型板23を置きこの成型板が通常焼絹する焼結
温度より高く、かつ焼結して得られる成型板が軟化いま
じめる温度で焼成した。
Pb (Zr, Ti) 03-based strong electric material powder prepared in advance is heated together with a binder, and then subjected to dehydration, drying, and granulation steps, and then molded using pressure molding, extrusion molding, or the doctor blade method. An unfired strongly electrostatic ceramic molded plate was created by molding it into a flat shape. Next, as shown in FIG. 3, a molding table 21 made of porcelain such as alumina, zirconia, steatite, etc. has a convex curved surface 22 corresponding to the curved surface of the hard-type infrared detection element to be obtained.
The unfired strongly electrostatic ceramic molded plate 23 obtained as described above is placed on top of the molded plate at a temperature higher than the sintering temperature at which the molded plate is normally sintered, and the molded plate obtained by sintering becomes soft. Fired at a serious temperature.

この焼成工程によって成型板は軟化してそれ自体の重力
で湾曲し、、湾曲した主表面を有する強議亀性セラミッ
クを得た。こののち強誘電性セラミックの両主表面にC
リAg、Auなどの電極を蒸着、メッキなどの手段で形
成し、さらに60〜100q0の温度の絶縁油中でD.
C弦V/側程度の電圧を印加して分極処理を施した。
Through this firing process, the molded plate was softened and curved by its own gravity, yielding a strong tortoise-like ceramic having a curved main surface. After this, C is applied to both main surfaces of the ferroelectric ceramic.
Electrodes of Ag, Au, etc. are formed by vapor deposition, plating, etc., and then D.
Polarization treatment was performed by applying a voltage approximately on the V/side of the C string.

引き続き分極状態を安定化させるため熱処理を行い、赤
外線吸収効率を高めるために表面に、黒化膜を形成した
。第4図は上記した方法により得られた赤外線検出素子
を用いて組み立てた装置例を示している。
Subsequently, heat treatment was performed to stabilize the polarization state, and a blackened film was formed on the surface to increase infrared absorption efficiency. FIG. 4 shows an example of a device assembled using the infrared detection element obtained by the method described above.

第4図において、31はPb(Ti、Zr)03系磁器
からなる強議電性セラミックで、湾曲した両王表面のう
ち突出している面が受光面になっている。両王表面には
電極32,33がそれぞれ形成されている。34は黒化
膜で、受光面側である電極33の上に形成されている。
In FIG. 4, numeral 31 is a strongly electrostatic ceramic made of Pb(Ti,Zr)03-based porcelain, and the protruding surface of the curved two-dimensional surface is the light-receiving surface. Electrodes 32 and 33 are formed on both surfaces, respectively. 34 is a blackened film, which is formed on the electrode 33 on the light-receiving surface side.

35は強姦電性セラミック31を戦層、固定しているベ
ースで、ベース35の端子36,37には強議電性セラ
ミック31の電極32,33がリード線38,39によ
り電気接続されている。
Reference numeral 35 denotes a base on which the electromagnetic ceramic 31 is fixed, and electrodes 32 and 33 of the electromagnetic ceramic 31 are electrically connected to terminals 36 and 37 of the base 35 by lead wires 38 and 39. .

40‘まベース35に形成した孔で、強議電性セラミッ
ク31からベース35へのヒートシンクを防止している
The hole 40' formed in the base 35 prevents heat sinking from the electrostatic ceramic 31 to the base 35.

上記した実施例では強議電体としてPb(Zr、Ti)
03系磁器について説明したが、このほか母Ti03系
磁器、PbTi03系磁器、LITa03系磁器、SB
N系磁器などの強議電体を用いることができることはも
ちろんである。
In the above embodiment, Pb (Zr, Ti) is used as a strong electrolyte.
Although we have explained the 03 series porcelain, we also have mother Ti03 series porcelain, PbTi03 series porcelain, LITa03 series porcelain, SB
Of course, a strongly electrolytic material such as N-based porcelain can be used.

また未焼成の強叢電性セラミック成型板のほかに、焼成
済の強議電性セラミック成型板を用いてもよい。
Furthermore, in addition to the unfired strong electrostatic ceramic molded plate, a fired strong electrostatic ceramic molded plate may be used.

この場合、焼成した成型板を薄板状に研磨したときに生
じるクラツクは成型台上で焼成するときに取り除くこと
ができるという効果がある。また強議電性セラミック成
型板を成型する成型台には凸状の湾曲面を有するものを
用いたが、凹状の湾曲面を有するものを用いてもよい。
In this case, there is an effect that cracks that occur when the fired molded plate is polished into a thin plate shape can be removed during firing on the molding table. Furthermore, although a molding table with a convex curved surface was used for molding the strongly electrolytic ceramic molded plate, a molding table with a concave curved surface may also be used.

さらに成型台としては上記したほか、強議電性セラミッ
ク成型板と反応しないものであればいかなるものでもよ
い。また湾曲面の湾曲率は用途に応じて決定すればよく
、またその湾曲形状も任意なものとすればよい。
In addition to the above-mentioned molding table, any molding table may be used as long as it does not react with the strongly electrostatic ceramic molded plate. Further, the curvature of the curved surface may be determined depending on the application, and the curved shape may be arbitrary.

たとえば、湾曲面の形状としては椀状の湾曲面がある。
以上のようにこの発明によれば、湾曲面を有する成型台
のその湾曲面に、禾焼成または焼成済の強議霧笛セラミ
ック成型板を置き、強議電性セラミック成型板の暁結温
度より高く、かつ焼結して得られる成型板が軟化いまじ
める温度で焼成するというものであり、強議電性セラミ
ックを研磨して湾曲面を形成する際に生じるセラミック
の割れが生じるといったおそれがなく、きわめて簡単な
方法で一定の曲率を持った篤露型赤外線検出素子を製造
することができるという効果を有している。
For example, the shape of the curved surface includes a bowl-shaped curved surface.
As described above, according to the present invention, a fired or fired foghorn ceramic molding plate is placed on the curved surface of a molding table having a curved surface, and the temperature is higher than the dawning temperature of the strong electromagnetic ceramic molding plate. , and the molded plate obtained by sintering is fired at a temperature so high that it softens, and there is no risk of cracking of the ceramic that occurs when polishing a strongly electrolytic ceramic to form a curved surface. This method has the advantage that a condensation type infrared detecting element having a constant curvature can be manufactured by an extremely simple method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の焦電型赤外線検出素子の断面図、第2図
は第1図の焦電型赤外線検出素子を用いた装置の断面図
、第3図はこの方法の一部を示す説面図、第4図はこの
発明方法により得られた篤亀型赤外線検出素子の断面図
である。 21・…・・成型台、22・・・・・・湾曲面、23・
・・・・・強誘電性セラミック成型板。 ※1図 繁2図 第3図 第4図
Fig. 1 is a sectional view of a conventional pyroelectric infrared detection element, Fig. 2 is a sectional view of a device using the pyroelectric infrared detection element of Fig. 1, and Fig. 3 is an explanation showing part of this method. The plan view and FIG. 4 are cross-sectional views of a tortoise-type infrared detecting element obtained by the method of the present invention. 21... Molding table, 22... Curved surface, 23...
...Ferroelectric ceramic molded plate. *1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 湾曲した主表面を有する焦電型赤外線検出素子を製
造するに当たり、未焼成また焼成済の強誘電性セラミツ
ク成型板を湾曲面を有する成型台のその湾曲面上に置き
、強誘電性セラミツク成型板の焼結温度より高く、かつ
焼結して得られる成型板が軟化しはじめる温度で焼成す
ることを特徴とする焦電型赤外線検出素子の製造方法。
1. When manufacturing a pyroelectric infrared detection element having a curved main surface, an unfired or fired ferroelectric ceramic molded plate is placed on the curved surface of a molding table having a curved surface, and the ferroelectric ceramic molding is performed. A method for manufacturing a pyroelectric infrared detecting element, characterized in that firing is performed at a temperature higher than the sintering temperature of the plate and at which the molded plate obtained by sintering begins to soften.
JP1622078A 1978-02-14 1978-02-14 Manufacturing method of pyroelectric infrared detection element Expired JPS6015003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1622078A JPS6015003B2 (en) 1978-02-14 1978-02-14 Manufacturing method of pyroelectric infrared detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1622078A JPS6015003B2 (en) 1978-02-14 1978-02-14 Manufacturing method of pyroelectric infrared detection element

Publications (2)

Publication Number Publication Date
JPS54108678A JPS54108678A (en) 1979-08-25
JPS6015003B2 true JPS6015003B2 (en) 1985-04-17

Family

ID=11910437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1622078A Expired JPS6015003B2 (en) 1978-02-14 1978-02-14 Manufacturing method of pyroelectric infrared detection element

Country Status (1)

Country Link
JP (1) JPS6015003B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114928U (en) * 1981-01-08 1982-07-16
CN103493231B (en) 2011-02-24 2015-02-25 日本碍子株式会社 Pyroelectric element

Also Published As

Publication number Publication date
JPS54108678A (en) 1979-08-25

Similar Documents

Publication Publication Date Title
US4009516A (en) Pyroelectric detector fabrication
JPS6015003B2 (en) Manufacturing method of pyroelectric infrared detection element
JPS6015004B2 (en) Manufacturing method of pyroelectric infrared detection element
JPH0862038A (en) Infrared detection element and production thereof
JPH0233882A (en) Heater and manufacture thereof
JPS5815314A (en) Support construction for piezoelectric oscillator
US4433320A (en) Dew sensor
JPH0523070U (en) Infrared detector
KR100543125B1 (en) Thermistor device and method for fabricating the same
CN1093320C (en) Piezoelectric element and method of manufacturing the same
JPH06105235B2 (en) Humidity detection element
JPS62119420A (en) Pyroelectric type infrared detection element
JPS6132338Y2 (en)
JPS61100621A (en) Preparation of pyroelectric type infrared sensor
JPH06801Y2 (en) Chip type positive temperature coefficient thermistor
US3671818A (en) Semiconductive ceramic capacitor
JPS6258641B2 (en)
JPS63223531A (en) Infrared ray detector
JPS5852176B2 (en) Pyroelectric detection element
JPS6342519Y2 (en)
TW541413B (en) Two-layer thermo-electric stack sensor device
JPS6012773B2 (en) Manufacturing method for thick film porcelain capacitors
JPS59204727A (en) Infrared ray detector
JPS6011477Y2 (en) Pyroelectric temperature sensing element
JPS6011476Y2 (en) Pyroelectric infrared detection element