JPS60149915A - Measurement of pipeline plane position - Google Patents

Measurement of pipeline plane position

Info

Publication number
JPS60149915A
JPS60149915A JP59006057A JP605784A JPS60149915A JP S60149915 A JPS60149915 A JP S60149915A JP 59006057 A JP59006057 A JP 59006057A JP 605784 A JP605784 A JP 605784A JP S60149915 A JPS60149915 A JP S60149915A
Authority
JP
Japan
Prior art keywords
jack
gyroscope
excavation
excavator
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59006057A
Other languages
Japanese (ja)
Inventor
Tetsushi Sonoda
園田 徹士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Gumi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd filed Critical Hazama Gumi Ltd
Priority to JP59006057A priority Critical patent/JPS60149915A/en
Publication of JPS60149915A publication Critical patent/JPS60149915A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Navigation (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Gyroscopes (AREA)

Abstract

PURPOSE:To save time and labor by sequentially integrating a direction output from a gyroscope provided on a tunnel excavator and a propelling distance output from a jack stroke gauge to measure the current position. CONSTITUTION:A plurality of propelling jack 14 are provided between a shield excavator 12 at the excavating tip and a segment 13 and the shield excavator 12 is propelled with the segment 13 as fulcrum to excavate. The shield excavator 12 is equipped with a gyroscope 16 to detect the direction thereof 12 at the current position and inputs the results into an electronic computer 15 as electrical signal. Jack stroke gauges 18 are mounted on a proper number of the propelling jacks 14 and inputs signals of individual moving distances into a jack control panel 17 to calculate the geometrical mean of values of the individual moving distances from the jack stroke gauges 18. The results are inputted into the electronic computer 5 by an electrical signal as average excavating distance and then, integrated sequentially with the direction output from the gyroscope to measure and determine the current position.

Description

【発明の詳細な説明】 本発明はトンネル掘進工事における埋設管の管路の平面
位置の測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the planar position of a buried pipe in tunnel excavation work.

一般にはトンネル掘削等に利用されるシールド掘進工法
または推進工法において、その掘削位置を正確に測定し
埋設管などの据付を正確に行うことはトンネル工事にお
ける重要な要素である。これには更に作業の自動化のみ
ならず掘進方向の自動制御を達成するためにも重要な問
題である。掘進方向を正しく設定してゆくためには、(
1)正確な掘進計画路線を設定すること、(2)掘進の
実際の掘進方向、掘進位置を正しく確認すること、(3
)との掘進計画路線と実際の掘進方向、掘進位置とから
両者の何らかの偏差をめ、この偏差を利用して掘進のた
めの制御を行っていくこと、が必要である。
Generally, in the shield excavation method or propulsion method used for tunnel excavation, etc., it is an important element in tunnel construction to accurately measure the excavation position and accurately install buried pipes. This is an important issue not only for automating the work but also for achieving automatic control of the excavation direction. In order to set the digging direction correctly, (
1) Setting an accurate excavation plan route, (2) Correctly confirming the actual excavation direction and location, (3)
), it is necessary to determine some deviation between the planned excavation route and the actual excavation direction and excavation position, and to use this deviation to control the excavation.

掘進計画路線に従い掘進位置を測定する方法として従来
例について説明すると、第1図はシールド工法の場合の
測量例を示したものであり、1は立坑であり、坑内に設
けるシールドの平面位置測定には先づ地上の座標基準測
定により立坑1へ導入しこの坑内における基準点TPO
を定ハ 色。、Q、、0□・・・9n−0を測定し、坑内基準点
TPl・TP2・・・を順次設置しTPnに至る0次に
その時点における最終の坑内基準点TPnを利用し、こ
の点に測量機械を据え付け7一ルド掘進機2の推進軸上
に設けられた二定点A、Bまでの距離ノal、ノb工お
よび縦基準芯とTRuA卦よびTPn・Bとの角度θ8
およびθbを測定し、前記!。、ノ1.ノ2・・・’a
l 、iblおよびθ。、θ1.θ2・・・θ8.θb
を幾何学る。
To explain the conventional method of measuring the excavation position according to the excavation plan route, Figure 1 shows an example of surveying in the case of the shield method, where 1 is a vertical shaft, and it is used to measure the planar position of the shield installed in the mine. is first introduced into shaft 1 by coordinate reference measurement on the ground, and the reference point TPO in this mine is determined.
The fixed color. , Q,, 0□...9n-0, and sequentially install underground reference points TPl, TP2... to reach TPn. Next, using the final underground reference point TPn at that point, measure this point. Install the surveying machine at
and θb, and the above! . , No. 1.ノ2...'a
l, ibl and θ. , θ1. θ2...θ8. θb
Learn geometry.

第2図は推進工法の場合の測量例を示したものであり、
この方法の場合は推進管が掘進に従い移動してゆくため
に坑内に基準点を設置することができない。そのために
掘進機械2の位置A−Bは立坑基準点TPO,1ニジそ
の都度測定定点P1.P2+P3・・・Pnをめ最終的
に20点に測量器械を据え付は距離’al lノbt+
角度θ8.θbを測量し掘進機械2の現在位置および掘
進方向をめている。
Figure 2 shows an example of surveying using the propulsion method.
In this method, it is not possible to set a reference point in the mine because the propulsion pipe moves as the tunnel progresses. For this purpose, the position A-B of the excavation machine 2 is set at the shaft reference point TPO, at each measurement fixed point P1. P2+P3...Finally installing surveying instruments at 20 points including Pn is distance 'al l no bt+
Angle θ8. The current position and digging direction of the excavation machine 2 are determined by measuring θb.

しかし、上記の測定方法においては、何れも坑内におい
て測定作業がおこなわれるので作業空間が狭く、また推
進工法においては推進管が移動するために、その都度測
量を繰返さねばならず、何れの方法に依っても測量に時
間と手数を要し、更に測定も誤差の累積などにより不正
確になり易いという欠点を有する測定方法であった。
However, in all of the above measurement methods, the measurement work is carried out underground, so the working space is small, and in the propulsion method, the propulsion pipe moves, so the survey must be repeated each time. However, this measurement method requires time and effort for surveying, and furthermore, the measurement method has the disadvantage that it is likely to be inaccurate due to the accumulation of errors.

本発明に係る測定方法は、上記の坑内における測量作業
の不便さや手数をジャイロスコープおよびストローク計
を使用することKより解消するとともに、その測定精度
をも向上させる目的にて為されたものであり、その方法
はトンネル掘進工事においてトンネル掘進機例えばシー
ルド機、セミシールド機にジャイロスコープを設けると
共に、また上記のトンネル掘進機を掘進するための推進
用ジヤツキにジヤツキストローク計を設け、このジャイ
ロスコープよりの方向出力と、ジヤツキストローク計よ
りの推進距離出力を電算機に入力し、この二つの入力即
ち方向入力と、距離入力を逐次積分することにょ9トン
ネル掘進機の現在位置を測定算出する如く構成せられた
平面位置の測定方法である。
The measurement method according to the present invention has been made with the aim of eliminating the inconvenience and labor involved in surveying work in underground mines by using a gyroscope and a stroke meter, and also improving the measurement accuracy. The method is to provide a gyroscope to a tunnel excavating machine such as a shield machine or a semi-shield machine in tunnel excavation work, and also provide a jack stroke meter to the propulsion jack for digging the tunnel excavation machine. Input the direction output from the machine and the propulsion distance output from the jack stroke meter into a computer, and measure and calculate the current position of the tunnel boring machine by sequentially integrating these two inputs, that is, direction input and distance input. This is a planar position measuring method configured as follows.

以下本測定方法を実施例により説明すると第3図はシー
ルド工法の場合の坑内の縦断面図であり、11は発進立
坑であり、シールド掘進機12はこの発進立坑11より
掘り進められ、かつ掘削が完了した個所には順次セグメ
ント13、が据付けられ裏打ち覆工がなされてトンネル
が完成する。この工法においては掘削先端部のシールド
掘進機12とセグメント13の間には複数台の推進用ジ
ヤツキ14が設けられ、セグメント13を支点としてシ
ールド掘進機12を推進し、掘削が進められる。ここで
このシールド掘進機12にジャイロスコープ16が設置
さ几その時点の位置のシールド掘進機12の方向を検知
し、これを電気信号とし、別に設けらfした電算機15
に入力される。また推進用ジヤツキ14にはその複数個
のうちの適宜の台数にジヤツキストローク計18を取、
付け、この個々の移動距離の信号は先づジヤツキ制御盤
17に入力され、ここでジヤツキストローク計18の個
々の移動距離の値の幾何平均が算出されシールド掘進機
12の平均掘進距離として電気信号により電算機15に
入力される。電算機15においては上記2つの入力信号
を記録するとともにこれを逐次積分することによりシー
ルド掘進機12の現在位置を測定把握する。
This measurement method will be explained below with reference to an example. Fig. 3 is a vertical cross-sectional view of the mine in the case of the shield method, 11 is a starting shaft, the shield excavator 12 is excavated from this starting shaft 11, and The segments 13 are sequentially installed and lined at the locations where the tunnel has been completed, and the tunnel is completed. In this construction method, a plurality of propulsion jacks 14 are provided between the shield excavator 12 and the segment 13 at the tip of the excavation, and the shield excavator 12 is propelled using the segment 13 as a fulcrum to advance the excavation. Here, a gyroscope 16 is installed in this shield tunneling machine 12, which detects the direction of the shield tunneling machine 12 at that point in time, converts this into an electrical signal, and uses a separately installed computer 15.
is input. In addition, a jack stroke meter 18 is attached to an appropriate number of the propulsion jacks 14 among the plurality of jacks.
The signals of the individual moving distances are first inputted to the jack control panel 17, where the geometric mean of the values of the individual moving distances of the jack stroke meter 18 is calculated and calculated as the average digging distance of the shield tunneling machine 12. The signal is input to the computer 15. The computer 15 records the above two input signals and sequentially integrates them to measure and grasp the current position of the shield excavator 12.

第4図は推進工法の場合の坑内の縦断面図であり、21
は発進立坑であり、掘進機22はこの立坑11より掘り
進められ、掘進が完了すればその後部に順次推進用管2
3が挿入せられ、発進立坑内に支点を定めて設けら几た
複数台の元押ジヤツキ24により推進用管23を介して
掘進機22に推力を与え掘削が進めらnる。また掘進機
22と最先端に位置する推進用管23の1iJl!VC
掘進機22の方向制御用ジヤツキ24′が掘進機22の
テール部の円周に沿って複数台設置され、掘進機22の
掘削方向を変更する場合は、その掘削方向に応じた伸び
を各ジヤツキに与えて方向を制御する。ここで掘進機2
2にはジャイロスコープ16が設置されその時点の位置
の掘進機22の方向を検知し、これを電気信号とし、別
に設けられた電算機15に入力される。また推進用ジヤ
ツキは元押ジヤツキ24および方向制御用ジヤツキ24
′の2台にわけらルているが、このうちの元押ジヤツキ
24のうちの1個乃至複数個にストローク計18が取付
けられ、方向制御用ジヤツキはその複数個のうちの適宜
の台数に同様にストローク計18′が設けられ、この個
々のジヤツキの移動距離がジヤツキ制御盤17′に入力
されこのジヤツキストローク計18′の個々の移動距離
の値の幾何平均値をジヤツキ制御盤17′にて計算して
これが電気信号として電算機15に入力さnる0ここで
ジヤツキ制御盤17を経由して入力さ几る元押ジヤツキ
24のストローク計18の値と重畳され、この値が掘進
機22の平均掘進距離となる0電算機15においてはジ
ャイロスコープ16よりの方向信号と平均掘進距離を記
録するとともにこれを逐次積分することにより掘進機2
2の現在位置を測定把握する。
Figure 4 is a longitudinal cross-sectional view of the mine using the propulsion method.
is a starting shaft, and the excavator 22 advances from this shaft 11, and when the excavation is completed, a propulsion pipe 2 is sequentially installed at the rear of the shaft.
3 is inserted, and the excavation proceeds by applying thrust to the excavator 22 via the propulsion pipe 23 by a plurality of pusher jacks 24 whose fulcrums are set in the starting shaft. Also, 1iJl of the excavator 22 and the propulsion pipe 23 located at the tip! VC
When a plurality of direction control jacks 24' of the excavator 22 are installed along the circumference of the tail portion of the excavator 22 and the excavation direction of the excavator 22 is changed, each jack adjusts the elongation according to the excavation direction. to control the direction. Here excavator 2
A gyroscope 16 is installed at 2 to detect the direction of the excavator 22 at the current position, convert this into an electrical signal, and input it to a computer 15 provided separately. In addition, the propulsion jack is the main push jack 24 and the direction control jack 24.
The stroke meter 18 is attached to one or more of the original pusher jacks 24, and the direction control jacks are attached to an appropriate number of the plurality of jacks. Similarly, a stroke meter 18' is provided, and the distance traveled by each jack is inputted into the jack control panel 17', and the geometric mean value of the values of the individual travel distances of this jack stroke meter 18' is determined by the jack control panel 17'. This is calculated and input as an electrical signal to the computer 15. Here, it is superimposed on the value of the stroke meter 18 of the main push jack 24, which is input via the jack control panel 17, and this value is input as an electric signal to the computer 15. The computer 15 records the direction signal from the gyroscope 16 and the average digging distance, and sequentially integrates the signals.
Measure and understand the current position of 2.

−ここで本測定方法の作業フローを第5図について説明
すると、先づ各推進ジヤツキを外勤させ(第5図32)
その測点におけるジャイロスコープ16より、ある定め
られた基準方向と推進装置の軸方向との為す角度が計測
(33)され、この値が電算機15に入力(35)され
る。これと併行してジヤツキストローク計18 、’ 
18’[おいて掘進距離が計測され(34)この距離が
信号として電算機15に入力(35)される0この二つ
の値は、電算機内においてそれ以前に計測記録された値
に逐次加えられ(36J 1サイクルの計測が完了する
。この計測は例えば発進立坑に設けられた計測原点TP
Oを零として順次積分され、掘進に従い上記のサイクル
を繰返しながら計測値は順次電算機15に入力される。
-Here, to explain the work flow of this measurement method with reference to Fig. 5, first, each propulsion jack is moved outside (Fig. 5 32).
The gyroscope 16 at that measurement point measures the angle between a certain reference direction and the axial direction of the propulsion device (33), and this value is input to the computer 15 (35). Along with this, the total jack stroke was 18,'
The excavation distance is measured at 18' (34), and this distance is input as a signal to the computer 15 (35). These two values are sequentially added to the previously measured values in the computer. (36J One cycle of measurement is completed. This measurement is carried out at the measurement origin TP installed in the starting shaft, for example.
The measured values are sequentially integrated with O as zero, and the measured values are sequentially input to the computer 15 while repeating the above cycle as the excavation progresses.

第6図は上記測定方法を図表にて表わしたベクトル図で
あり、ジャイロスコープ16の基準方向を例えば北方向
(図示Nの方向ンとし、微少距離Δ〕□、Δi2.Δi
3・・・だけ掘進する毎に掘進機とのなす角が01.θ
2.θ3・・・のクロく変化するものとすnば、各計測
位置P1 + P2 、P3・・・における夫々の値は
電算機15において、 Σ・・・・・・ 十P、(θ、・Δ)1)十P2(θ2
・Δ)2)十P3(θ3・Δ)3)十・・・・・・の形
にて積分され、従って上式においてΔノを無限に小さく
とることにより掘進機の位置は極めて正確に測定表示す
ることができる。
FIG. 6 is a vector diagram that graphically represents the above measurement method, where the reference direction of the gyroscope 16 is, for example, the north direction (direction N in the figure), and the minute distances Δ]□, Δi2.Δi
Every time you dig by 3..., the angle you make with the excavator becomes 01. θ
2. Assuming that θ3... changes in a clockwise manner, the respective values at each measurement position P1 + P2, P3... are calculated by the computer 15 as follows: Σ... 10P, (θ, ・Δ)1) 10P2(θ2
・Δ) 2) Ten P3 (θ3・Δ) 3) Ten It is integrated in the form of... Therefore, by setting Δ infinitely small in the above equation, the position of the excavator can be measured extremely accurately. can be displayed.

以上の測定゛方法上次の場合に利用することが ・でき
る。即ち平面の計画路線を予め電算機15に入力し、記
憶させておき、次に掘進機の掘進に伴う掘進距離および
基準方向と掘進機軸とのなす角度を順次電算機15に入
力して掘進路線の軌跡を画き、この軌跡と計画路線を比
較することにより掘進誤差を測定することができる。
The above measurement method can be used in the following cases. That is, the planned route on the plane is input into the computer 15 in advance and stored, and then the excavation distance accompanying the excavation of the excavator and the angle between the reference direction and the axis of the excavator are sequentially input into the computer 15 to determine the excavation route. The excavation error can be measured by drawing a trajectory and comparing this trajectory with the planned route.

また計測原点より掘進機までの方向、距離。Also, the direction and distance from the measurement origin to the excavator.

または任意の二点間の方向、距離を随次計算機により計
算し、これを表示することもできる。
Alternatively, the direction and distance between any two points can be calculated using a computer and displayed.

以上の如くにしてこの測定方法はジャイロスコープおよ
びストローク計を使用することにょシ、掘進作業におい
てその都度測量を行なうという面倒なことはなく、その
都度の測定結果がすべて電気信号にかえられ計算機に記
憶されまた表示されるものであり狭隘な坑内においても
何ら問題なく適用できる測定方法であり、測量に要する
時間と手数を節減できるとともに測定精度も向上し、正
確な管路の布設ができるものである。
As described above, this measurement method uses a gyroscope and a stroke meter, so there is no need to take measurements each time during excavation work, and all measurement results are converted into electrical signals and sent to a computer. It is a measurement method that can be memorized and displayed, and can be applied without any problems even in narrow underground mines.It reduces the time and effort required for surveying, improves measurement accuracy, and allows for accurate pipeline installation. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシールド工法の場合の測量例をあられす図面、
第2図は推進工法の場合功測量例をあられす図面、第3
図、第4図は本発明の測定方法を説明する装置図であり
、第3図はゾ!ルド工法の坑内縦断面図、第4図は推進
工法の坑内縦断面図、第5図は測定の作業フロー図、第
6図は測定方法を説明するためのベクトル図表である。 11.21・・・発進立坑 12.22−°°掘進機 
13・・・セグメント 23・・・推進用管14 、2
4 、24’・・・推進用ジヤツキ 15・・・電算機
 16・・・ジャイロスコープ 17゜17′・・・ジ
ヤツキ制御盤 18 、18’・・・ジャツキストロー
ク計 出願人 株式会社間 組 代理人 弁理士 高 雄次m::−、−パ1〔ψ−譚
Figure 1 shows an example of surveying using the shield method.
Figure 2 shows an example of effective surveying for the propulsion method, Figure 3
4 are apparatus diagrams for explaining the measurement method of the present invention, and FIG. FIG. 4 is a vertical cross-sectional view of the tunnel using the Rudo method, FIG. 5 is a measurement work flow diagram, and FIG. 6 is a vector chart for explaining the measurement method. 11.21... Starting shaft 12.22-°° excavator
13... Segment 23... Propulsion tube 14, 2
4, 24'... Propulsion jack 15... Computer 16... Gyroscope 17゜17'... Jacket control panel 18, 18'... Jacket stroke meter Applicant Hazama Co., Ltd. Group Agent People Patent Attorney Yuji Takam::-,-Pa1〔ψ-tan

Claims (1)

【特許請求の範囲】[Claims] トンネル掘進工事において、トンネル掘進機にジャイロ
スコープを設けると共に、上記トンネル掘進機の推進用
ジヤツキにジヤツキストローク計を設けて、ジャイロス
コープよりの方向出力と、ジヤツキストローク計よりの
推進距離出・力を電算機に入力し、該二つの入力を逐次
積分することによりトンネル掘進機の現在位置を測定す
ることを特徴とする管路平面位置の測定方法み
In tunnel excavation work, a gyroscope is installed on the tunnel excavating machine, and a jack stroke meter is installed on the propulsion jack of the tunnel excavating machine, and the direction output from the gyroscope and the propulsion distance output from the jack stroke meter are measured. A method for measuring the plane position of a pipeline, characterized in that the current position of the tunnel boring machine is measured by inputting the force into a computer and successively integrating the two inputs.
JP59006057A 1984-01-17 1984-01-17 Measurement of pipeline plane position Pending JPS60149915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59006057A JPS60149915A (en) 1984-01-17 1984-01-17 Measurement of pipeline plane position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59006057A JPS60149915A (en) 1984-01-17 1984-01-17 Measurement of pipeline plane position

Publications (1)

Publication Number Publication Date
JPS60149915A true JPS60149915A (en) 1985-08-07

Family

ID=11627974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59006057A Pending JPS60149915A (en) 1984-01-17 1984-01-17 Measurement of pipeline plane position

Country Status (1)

Country Link
JP (1) JPS60149915A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631096U (en) * 1986-06-13 1988-01-06
EP0316448A1 (en) * 1986-07-31 1989-05-24 Kabushiki Kaisha Komatsu Seisakusho Control unit for underground excavators
JPH05141186A (en) * 1991-11-20 1993-06-08 Kido Kensetsu Kogyo Kk Position detecting method for preconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418773A (en) * 1977-07-12 1979-02-13 Nippon Telegr & Teleph Corp <Ntt> Detecting method of posture angle and displacements of underground excavating machines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418773A (en) * 1977-07-12 1979-02-13 Nippon Telegr & Teleph Corp <Ntt> Detecting method of posture angle and displacements of underground excavating machines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631096U (en) * 1986-06-13 1988-01-06
EP0316448A1 (en) * 1986-07-31 1989-05-24 Kabushiki Kaisha Komatsu Seisakusho Control unit for underground excavators
JPH05141186A (en) * 1991-11-20 1993-06-08 Kido Kensetsu Kogyo Kk Position detecting method for preconductor

Similar Documents

Publication Publication Date Title
EP0541773B1 (en) Method and apparatus for determining path orientation of a passageway
JPH03260281A (en) Position detector of underground excavator
JP2001091242A (en) Measuring device for propulsion locus and propulsion attitude in propulsion shield tunneling method, measuring method, propulsion locus control device and propulsion locus control method
CN111608664A (en) Automatic guiding method for long-distance curved jacking pipe
US4712624A (en) Rock drill with tunnel profile control system
JP4629895B2 (en) Gyrocompass device
CN113252063A (en) Excavation equipment depth measuring method based on total station
JPS60149915A (en) Measurement of pipeline plane position
US5107938A (en) Apparatus for detecting position of underground excavator
CN113108772A (en) Cantilever excavator measurement system
JPH0336399B2 (en)
JPH10293028A (en) Device for measuring position of underground digging machine
JPS6156755B2 (en)
JPH03107093A (en) Automatic direction control method for shield drilling machine
CN115014304B (en) Station building and station moving method of coal mine underground total station positioning system
CN113863856B (en) Drilling route ground course calculation method of drilling system
JPH0492082A (en) Automatic directional control method of shield excavator
JPH03257320A (en) Controlling/surveying apparatus of propelling for underground joining of underground excavator
JPS6350514B2 (en)
JP2003278484A (en) Method for measuring position of shield machine
JPH0565794A (en) Posture controller for shield tunnel excavator
JPS63305208A (en) Method for searching route shape of embedded pipeline
JP3281524B2 (en) Excavator control method
JPH06137073A (en) Automatic meauring method of shielding machine
JPH072596U (en) Shield machine