JPS6014860A - Inorganic implant material - Google Patents

Inorganic implant material

Info

Publication number
JPS6014860A
JPS6014860A JP58121645A JP12164583A JPS6014860A JP S6014860 A JPS6014860 A JP S6014860A JP 58121645 A JP58121645 A JP 58121645A JP 12164583 A JP12164583 A JP 12164583A JP S6014860 A JPS6014860 A JP S6014860A
Authority
JP
Japan
Prior art keywords
bone
inorganic
implant material
filled
zeta potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58121645A
Other languages
Japanese (ja)
Inventor
丹羽 滋郎
啓泰 竹内
大久保 義孝
幹也 尾野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Mitsubishi Industries Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Mitsubishi Industries Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd, Mitsubishi Industries Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP58121645A priority Critical patent/JPS6014860A/en
Priority to GB08416578A priority patent/GB2142915B/en
Priority to DE19843424292 priority patent/DE3424292A1/en
Priority to CH3212/84A priority patent/CH664280A5/en
Priority to FR848410810A priority patent/FR2548540B1/en
Publication of JPS6014860A publication Critical patent/JPS6014860A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は無機質からなる生体材料、更に詳しくは特に異
物反応が少なく生体適合性にすぐれかつ新生骨生成能が
大きい無機質インブラント材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a biomaterial made of an inorganic substance, and more particularly to an inorganic implant material that is less likely to react with foreign substances, has excellent biocompatibility, and has a high ability to generate new bone.

高度な粉砕骨折や骨msの切除などに伴い、骨に欠損あ
るいは空隙を生じ、当該個所の補綴を必要とするケース
が外科あるいは整形外科の分野においてしばしば遭遇す
る。従来、かかる場合においては、患者本人の腸骨など
から、海綿状の自家骨を採取して、骨欠損個所等にこれ
を充てんし、骨組織の回復治癒を早める手法が採用され
てきているが、損傷個所以外の骨組織を切除する乙とか
ら、患者の苦痛は大きく、また手術に当って多大の労力
を必要としている。さらに、広範な骨欠損部等を充てん
するに十分な量の自家骨を採取できるとは限らず、不足
分については何らかの代用物をもってこれに充当する必
要が生じてくる。自家前以外の骨を充てんする方法とし
ては同種骨移植と異種骨移植がある。同種骨の移植につ
いては、冷凍保存骨、脱灰骨などの採用が研究されてい
るがなお実用の段階に至っておらず、また異種骨である
牛骨の蛋白を除去したキールボーンと称されている材料
を使用する乙となどもあるが、いずれも拒絶反応を伴う
などの問題点があり、骨形成能力が殆どないため、術後
の経過は必ずしも良好とは云えない。故に、骨欠損部お
よび空腔部に充てんした場合、生体適合性に優れ、当該
個所並びにその周辺部におけ石造前作用を促進し、骨組
織損傷個所の構造や機能を修復回復せしめる人工材料の
開発が待望されている。さらにまた、骨折個所の治療に
当り療養期間を短縮する目的で、骨折部分を直接固定す
る内置定法を採用する場合があり、固定に当って金属製
のプレート、釘、ねじなどが使用されているが、かかる
方法によっても、治癒までに6ケ月から1ケ年以上の長
期間を要する場合も多く、シかもなお、骨折個所治癒後
、内固定に用いた材料を手術によって再び体外に取り出
さねばならず、患者の肉体的、精神的、金銭的な負担は
莫大なものがある。
BACKGROUND OF THE INVENTION Cases in which a defect or void is created in a bone due to a highly comminuted fracture or resection of a bone MS, and a prosthesis is required for the location, are often encountered in the field of surgery or orthopedics. Conventionally, in such cases, a method has been adopted in which spongy autologous bone is harvested from the patient's own iliac bone and filled into the bone defect site, etc., to accelerate the recovery and healing of the bone tissue. However, since bone tissue other than the damaged area is removed, the patient suffers a great deal of pain and the surgery requires a great deal of effort. Furthermore, it is not always possible to harvest a sufficient amount of autologous bone to fill a wide range of bone defects, and it becomes necessary to use some kind of substitute to cover the shortage. Methods for filling with bone other than autologous bone include allogeneic bone grafting and xenogeneic bone grafting. Regarding allogeneic bone transplantation, the use of cryopreserved bone, demineralized bone, etc. is being studied, but it has not yet reached the stage of practical use. There are also methods such as using materials that contain the same material, but all of them have problems such as rejection reactions, and they have almost no bone formation ability, so the postoperative course is not necessarily good. Therefore, when filled into bone defects and cavities, artificial materials have excellent biocompatibility, promote pre-stone formation in the affected areas and surrounding areas, and repair and restore the structure and function of damaged bone tissue. Development is eagerly awaited. Furthermore, in order to shorten the recovery period when treating a fracture, internal placement methods are sometimes used to directly fix the fracture, and metal plates, nails, screws, etc. are used for fixation. However, even with such methods, healing often takes a long time, from six months to a year or more, and the material used for internal fixation must be surgically removed from the body after the fracture site has healed. The physical, mental, and financial burden on patients is enormous.

一方、生体の硬組織代替材料として従来より各種金属や
プラスチック材料などが用いられて来たか、これら材料
は生体内のきびしい環境下で溶解や劣化などの変化を生
じ易く、また毒性や異物反応などを伴うことから、生体
との親和性の良好なセラミックス系の材料が注目される
に至っている。
On the other hand, various metals and plastic materials have traditionally been used as substitute materials for the hard tissues of living organisms, but these materials tend to undergo changes such as dissolution and deterioration in the harsh environment of living organisms, and are also susceptible to toxicity and foreign body reactions. As a result, ceramic materials with good compatibility with living organisms have been attracting attention.

最近、アルミナAl2O3の単結晶もしくは多結晶体か
らなる人工骨、人工関節や人工歯根、あるいはリン酸三
カルシウムCa3(PO4) 2やヒドロキシアパタイ
トCa3(PO4) 30Hの焼結体からなる人工歯根
などが提案されている。これらはいずれも生体適合性に
優れているとされ、例えばヒドロオキシアパタイト焼結
体を生体の骨にインブラントすると、異物膜の生成は認
められず、該焼結体と骨組織との直接的な結合を示すと
の結果などが報告されている。
Recently, artificial bones, artificial joints, and artificial tooth roots made of single crystal or polycrystalline alumina Al2O3, and artificial tooth roots made of sintered bodies of tricalcium phosphate Ca3 (PO4) 2 and hydroxyapatite Ca3 (PO4) 30H have been developed. Proposed. All of these are said to have excellent biocompatibility. For example, when a sintered hydroxyapatite body is implanted into the bone of a living body, no foreign substance film is observed, and the sintered body and bone tissue are directly connected. Results have been reported that show strong binding.

しかしながら、どのような材料特性を有するセラミック
ス系インブラント材を用いた場合に特に異物反応が少な
く、生体適合性に優れ、新生骨の生成が早いかについて
は明確でない。
However, it is not clear what kind of material properties a ceramic implant material has that will cause particularly little foreign body reaction, be excellent in biocompatibility, and produce new bone quickly.

従って本発明の一つの目的は特に生体適合性にすぐれ、
しかも異物反応がきわめて少なく、特に短期間に骨組織
を形成する無機質インブラント材を提供することにある
Therefore, one object of the present invention is to provide particularly excellent biocompatibility,
Moreover, it is an object of the present invention to provide an inorganic implant material that causes very little foreign body reaction and forms bone tissue in a particularly short period of time.

本発明の他の目的は充てん部におけ石造前作用を促進し
、骨組織欠損部及び骨組織固定個所周辺部における構造
及び機能を特に速やかに修復及び回復し得る無機質イン
ブラント材を提供することにある。
Another object of the present invention is to provide an inorganic implant material that promotes masonry preparation in the filled part and can particularly quickly repair and restore the structure and function of the bone tissue defect and the surrounding area of the bone tissue fixation site. It is in.

本発明の更に他の目的は新生骨の生成が特に速やかに行
われる無機質インブラント材を提供することにある。
Still another object of the present invention is to provide an inorganic implant material in which new bone is generated particularly quickly.

本発明の上記及びその他の目的は以下の記載から更に明
白となる。
The above and other objects of the present invention will become more apparent from the following description.

本発明によれば、ゼータ電位が負である無機質材料にて
インブラント材を構成することを特徴とする無機質イン
ブラント材が提供される。
According to the present invention, there is provided an inorganic implant material characterized in that the implant material is made of an inorganic material having a negative zeta potential.

以下、本発明につき更に詳細に説明する。The present invention will be explained in more detail below.

本発明でいうゼータ電位とは流動電位法により測定され
るものである。すなわち、被測定試料を十分に粉砕し、
これを測定用セルに隔膜状に充てんし、眩光てん部に窒
素等の不活性ガスを圧力源として液体を強制的に通過さ
せ、この充てん部両端に生じた電位差をめ、上記圧力値
と電位差の値を次式(Hel+mholtz−Smol
uehowskiの式)に代入し得られるものである。
The zeta potential as used in the present invention is measured by a streaming potential method. In other words, the sample to be measured is thoroughly ground,
This is filled into a measuring cell in the form of a diaphragm, and the liquid is forced to pass through the dazzling part using an inert gas such as nitrogen as a pressure source. The value of is expressed by the following formula (Hel+mholtz-Smol
uehowski's equation).

ここで、l:液体の粘性係数[poise] 、λ:液
体の比導電率〔Ω−’cm−’)、ε:液体の空気に対
する誘電率[−)、Ei測測定れた電位差[mV]、P
;ガスの圧力〔圓lI20〕 本発明に用いる無機質材料としては流動電位法によるゼ
ータ電位が負であり、かつ生体に対し毒性を有しないも
のであれば、特に限定されるものではないが、無機質と
してはリン酸カルシウム化合物若しくはリン酸カルシウ
ム系ガラスが生体適合性の面から好ましく、なかでもリ
ン酸三カルシウム、リン酸四カルシウム、ヒドロキシア
パタイト、フッ素アパタイト、リン酸カルシウムを主成
分とするガラスのうちから選ばれtこ1種若しくは2種
以上の混合物を用いることが生体硬組織の無機成分と同
一かもしくは類似しているtこめ、より生体適合性にす
ぐれ、特に好ましい化合物といえる。なかでもヒドロキ
シアパタイトは生体の硬組織構成無機成分であり、これ
らのうちでもさらに好ましい化合物といえる。
Here, l: viscosity coefficient [poise] of the liquid, λ: specific conductivity of the liquid [Ω-'cm-'), ε: dielectric constant of the liquid with respect to air [-), Ei measurement measured potential difference [mV] , P
; Gas pressure [Yen I20] The inorganic material used in the present invention is not particularly limited as long as it has a negative zeta potential determined by the streaming potential method and is not toxic to living organisms. From the viewpoint of biocompatibility, calcium phosphate compounds or calcium phosphate-based glasses are preferred, and among them, glasses whose main components are tricalcium phosphate, tetracalcium phosphate, hydroxyapatite, fluoroapatite, and calcium phosphate are preferred. The use of a species or a mixture of two or more species is particularly preferable because it is the same as or similar to the inorganic components of biological hard tissue, and has better biocompatibility. Among these, hydroxyapatite is an inorganic component constituting the hard tissues of living organisms, and among these compounds, it can be said to be a more preferable compound.

本発明に使用し得る無機質材料としては公知の製造方法
により、合成されたものであっても又、tことえば骨、
リン鉱石等のように天然に存在するものより得られたも
のであってもゼータ電位が負であれば使用できる。
Inorganic materials that can be used in the present invention include those synthesized by known manufacturing methods, such as bones,
Even materials obtained from naturally occurring materials such as phosphate rock can be used as long as the zeta potential is negative.

これらの無機質材料のうち上述の流!f[位法により、
測定用セルに充てんした被測定無機質材料に通す液体を
蒸留水とした場合、ゼータ電位が−005〜−20,0
mVの範囲にあるもの力1、生体適合性によりすぐれ新
生骨の生成も早く好ましいものといえる。特に上記ゼー
タ電位が−02〜−10,0+mVの範囲にあるものが
、特に新生骨の生成が早く特に好ましいものといえる。
Of these inorganic materials, the above-mentioned flow! f [by position,
When the liquid passed through the inorganic material to be measured filled in the measurement cell is distilled water, the zeta potential is -005 to -20,0.
It can be said that a force in the mV range is preferable because it has a force of 1, has excellent biocompatibility, and generates new bone quickly. In particular, those having the above-mentioned zeta potential in the range of -02 to -10.0+ mV are particularly preferable because new bone is generated quickly.

本発明の無機質インブラント材の形状はインブラント材
を構成する無機質を粉末としたときに負のゼータ電位を
有すれば、特に限定されるものではない。例えば、粉末
、顆粒、多孔体、平板、円柱、角柱、円錐台、角錐台、
ファイバー等種々の形状が考えられる。
The shape of the inorganic implant material of the present invention is not particularly limited as long as it has a negative zeta potential when the inorganic material constituting the implant material is made into powder. For example, powder, granules, porous bodies, flat plates, cylinders, prisms, truncated cones, truncated pyramids,
Various shapes such as fibers are possible.

粉末の場合には公知の製造方法により作製された無機質
材料を粉砕し、これをそのまま充てんしてもよいし、生
理食塩水若しくは血液等でスラリー状とし充てんするこ
ともできる。顆粒の場合には無機質材料を十分に粉砕し
、パン造粒等の方法により顆粒を作製でき、これを粉末
と同様、そのまま充てんするか若しくは顆粒を生理食塩
水若しくは血液等で湿らせ充てんする方法も可能である
In the case of powder, an inorganic material produced by a known manufacturing method may be pulverized and filled as is, or it may be filled in a slurry form with physiological saline, blood, etc. In the case of granules, the inorganic material can be sufficiently crushed and granules can be produced by a method such as bread granulation, and the granules can be filled as is in the same way as powder, or the granules can be moistened with physiological saline, blood, etc. and then filled. is also possible.

多孔体は、生体の海綿骨から該海綿骨を焼成することに
より、若しくは有機質多孔体に無機質材料をスラリー状
として付着させ、これを焼成し有機成分を除去する方法
等により作製でき、該形状のものは焼結して作ったち密
なインブラント材にくらべ新生骨が多孔体内部にまで進
入し、インブラント材と生体組織との一体化が早期に行
われろため骨欠損部及び空隙部充てん材として好ましい
形状といえる。
The porous body can be produced from the cancellous bone of a living body by baking the cancellous bone, or by attaching an inorganic material in the form of a slurry to an organic porous body and baking it to remove the organic component. Compared to dense implant materials made by sintering, new bone can penetrate into the porous body, allowing the implant material to integrate with living tissue more quickly, making it a filling material for bone defects and voids. This can be said to be a preferable shape.

平板は無機質材料の粉末を成形し、焼成加工するなどし
て作ることができ、該形状のものは強度が要求される骨
固定用プレート等への応用が可能である。
The flat plate can be made by molding inorganic material powder and firing it, and this shape can be applied to bone fixation plates that require strength.

円柱、角柱、円錐台、角錐台も平板と同様の作製方法で
作ることができ、これらは骨固定用くぎ等に用いること
ができる。
Cylindrical columns, prismatic columns, truncated cones, and truncated pyramids can also be made by the same manufacturing method as the flat plate, and these can be used for bone fixation nails and the like.

本発明による無機質インブラント材は整形外科分野のみ
でなく歯科分野、たとえば粉末、顆粒多孔体といった形
状を有するものは歯槽膿漏や歯槽骨膜庖の治療用等に円
柱、角柱、円錐台、角錐台の形状を有するインブラント
材は歯牙根管光てん用ポイント等に用いる乙とができる
The inorganic implant material according to the present invention is used not only in the orthopedic field but also in the dental field, for example, those having shapes such as powder and porous granules are used for the treatment of alveolar pyorrhea and alveolar periosteal bulge. An implant material having the shape can be used as a point for a tooth root canal, etc.

〔実施例1〕 牛骨を焼成し無機成分のみとしたもの、リン酸三カルシ
ウム、ヒドロキシアパタイト及びリン酸四カルシウム、
酸化チタンの各粉末を流動電位測定装置(ZP−10B
型、高滓製作所社製)にて測定用セルに充てんした被測
定試料に通す液体を蒸留水及び100倍に稀釈した生理
食塩水とし、ゼータ電位を測定した。結果を表1に示す
[Example 1] Calcined beef bone with only inorganic components, tricalcium phosphate, hydroxyapatite and tetracalcium phosphate,
Each titanium oxide powder was measured using a streaming potential measuring device (ZP-10B).
The zeta potential was measured using distilled water and 100 times diluted physiological saline as the liquids passed through the sample to be measured, which was filled in a measuring cell using a sample mold (manufactured by Takasu Seisakusho Co., Ltd.). The results are shown in Table 1.

表1 これら各粉末を家兎の大腿骨に人為的に欠損を作製しく
3m+sφX 4 a+m L )充てんした。その結
果光てん後、1ケ月後でいずれの材料を用いた場合にも
欠損部には新生骨の生成が認められた。なかでもヒドロ
キシアパタイト、牛骨焼成により得た試料を用いた場合
欠損部に生成した新生骨が多く、欠損部は完全に修復さ
れていた。リン酸三カルシウム、リン酸西カルシウムの
場合は欠損部に生成した新生骨がヒドロキシアパタイト
等に次いで多く、酸化チタンは新生骨は認められろもの
の、これらより欠損部の修復の程度が低かった。
Table 1 Each of these powders was filled into the femur of a domestic rabbit to create an artificial defect (3 m+sφX 4 a+m L ). As a result, one month after phototherapy, new bone formation was observed in the defect area using either material. Among these, when samples obtained from hydroxyapatite and calcined beef bones were used, a large amount of new bone was generated in the defect area, and the defect area was completely repaired. In the case of tricalcium phosphate and western calcium phosphate, the amount of new bone generated in the defect area was second to that of hydroxyapatite etc., and with titanium oxide, although new bone was observed, the degree of repair of the defect area was lower than these.

〔実施例2〕 ヒドロキシアパタイトがらなり実施例1と同様の装置に
て、液体を蒸留水として測定したゼータ電位が+02、
−〇〇1、−〇〇5、−02、−30、−10.0、−
200、−30.0mVテアル粉末を用い、コtLをス
ラリー状とし、有機質多孔体に含浸付着させ、次いで焼
成して該有機質多孔体を除去し、ヒドロキシアパタイト
の多孔体を作製した。該多孔体を家兎の大腿骨に人為的
に作製した骨欠損(3胴φX 4 +nm L )に充
てんし、1ケ月後の新生骨生成状態及び生体適合性の観
察を行った。
[Example 2] Hydroxyapatite has a zeta potential of +02 when measured using distilled water as the liquid using the same device as in Example 1.
-〇〇1, -〇〇5, -02, -30, -10.0, -
Using 200, -30.0 mV theal powder, KotL was made into a slurry, impregnated and adhered to an organic porous body, and then fired to remove the organic porous body to produce a hydroxyapatite porous body. The porous material was filled into a bone defect (3 trunks φX 4 +nm L ) artificially created in the femur of a domestic rabbit, and the state of new bone formation and biocompatibility were observed one month later.

この結果、生体適合性についてはゼータ電位が+0.2
+oV及び−30,0mVのものを除き良好であった。
As a result, for biocompatibility, the zeta potential is +0.2
Good results were obtained except for +oV and -30.0 mV.

新生骨生成状態は−005〜−20,0+iVのゼータ
電位を有する粉末を用いた多孔体が良好でなかでも−0
2〜−10,0+aVのゼータ電位を有する粉末を用い
た多孔体が良く、これらは多孔体中心部までほとんど新
生骨でうめつくされていた。
The state of new bone formation is good with a porous material using powder with a zeta potential of -005 to -20,0+iV, especially -0
Porous bodies using powder having a zeta potential of 2 to -10.0+ aV were good, and these porous bodies were almost completely filled with new bone up to the center.

〔実施例3〕 犬を用いその歯牙根管に人為的に0.8++++nφ、
深さ3+n+aの孔をあけ、ヒドロキシアパタイトから
なる円柱(09關φX10++++nL)(ゼータ電位
−3,4+aV。
[Example 3] Using a dog, artificially injecting 0.8++++nφ into the root canal of the tooth.
A hole with a depth of 3+n+a was drilled and a cylinder made of hydroxyapatite (09mmφX10++++nL) (zeta potential -3,4+aV).

液体:蒸留水)を充てんした。一方、同じ犬の頚骨に5
+++m角高さ3IIII11で骨を切り出し、骸骨を
同上のヒドロキシアパタイトからなり、2Iw+11角
高さ5閏の角錐台で固定をこころみた。
Liquid: Distilled water). On the other hand, on the same dog's jugular bone, 5
A bone was cut out with +++m square and height of 3III11, and the skeleton was made of the same hydroxyapatite as above, and an attempt was made to fix it with a truncated pyramid of 2Iw + 11 square and 5 leaps in height.

インブラント後、1ケ月後にインブラント部位を取り出
しインブラント材周囲の組織の観察を行った。この結果
両者とも生体組織とインブラント材の間は新生骨でうめ
つくされており、異物反応と見られる所見はなく、生体
適合性はきわめて良好であった。
One month after implantation, the implant site was removed and the tissue surrounding the implant material was observed. As a result, in both cases, the space between the living tissue and the implant material was filled with new bone, there was no finding that appeared to be a foreign body reaction, and the biocompatibility was extremely good.

手続補正書(自発) 1 事件の表示 昭和58年特許願第121645号 2 発明の名称 無機質インブラント材 3 補正をする者 事件との関係 特許出願人 三菱鉱業セメント栢ミ弐会社 4代理人 〒105 東京都港区虎ノ門1丁目1番20号5補正の
対象 明細書の「発明の詳細な説明」の項 6 補正の内容 別紙の通り 本願明細書中、下記の個所を訂正する。
Procedural amendment (voluntary) 1 Indication of the case Patent Application No. 121645 filed in 1982 2 Name of the invention Inorganic implant material 3 Person making the amendment Relationship to the case Patent applicant Mitsubishi Mining Cement Kayami 2 Company 4 Agent Address: 105 No. 1-20 Toranomon, Minato-ku, Tokyo 5 Section 6 "Detailed Description of the Invention" of the specification subject to the amendment Contents of the amendment As shown in the attached sheet, the following parts of the specification of the present application are corrected.

Claims (1)

【特許請求の範囲】[Claims] ゼータ電位が負である無機質材料にてインブラント材を
構成することを特徴とする無機質インブラント材。
An inorganic implant material comprising an inorganic material having a negative zeta potential.
JP58121645A 1983-07-06 1983-07-06 Inorganic implant material Pending JPS6014860A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58121645A JPS6014860A (en) 1983-07-06 1983-07-06 Inorganic implant material
GB08416578A GB2142915B (en) 1983-07-06 1984-06-29 Inorganic implant material
DE19843424292 DE3424292A1 (en) 1983-07-06 1984-07-02 INORGANIC IMPLANT MATERIAL
CH3212/84A CH664280A5 (en) 1983-07-06 1984-07-04 INORGANIC IMPLANT MATERIAL AND METHOD FOR THE PRODUCTION THEREOF.
FR848410810A FR2548540B1 (en) 1983-07-06 1984-07-06 INORGANIC IMPLANT MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58121645A JPS6014860A (en) 1983-07-06 1983-07-06 Inorganic implant material

Publications (1)

Publication Number Publication Date
JPS6014860A true JPS6014860A (en) 1985-01-25

Family

ID=14816381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58121645A Pending JPS6014860A (en) 1983-07-06 1983-07-06 Inorganic implant material

Country Status (5)

Country Link
JP (1) JPS6014860A (en)
CH (1) CH664280A5 (en)
DE (1) DE3424292A1 (en)
FR (1) FR2548540B1 (en)
GB (1) GB2142915B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259675A (en) * 1985-05-15 1986-11-17 三菱マテリアル株式会社 Bone lost part and cavity part filling material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021285A (en) * 1988-01-11 1990-01-05 Asahi Optical Co Ltd Fixable dental and medical granular bone filler, fixing method thereof and bone prosthetic material
EP0410010B1 (en) * 1989-07-22 1993-10-27 Johannes Friedrich Prof. Dr. Osborn Osteotropic implant material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122544A (en) * 1979-03-15 1980-09-20 Seikagaku Kogyo Co Ltd Preparation of bone for transplantation
JPS56143156A (en) * 1980-04-09 1981-11-07 Mitsubishi Mining & Cement Co Filler material of bone deficit part and gap part

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2364206C3 (en) * 1972-12-27 1981-09-03 Oji Paper Co., Ltd. A method of making ceramic articles using a paper machine type sheet machine
US3981736A (en) * 1973-05-23 1976-09-21 Ernst Leitz G.M.B.H. Biocompatible glass ceramic material
JPS5264199A (en) * 1975-11-21 1977-05-27 Tokyo Ika Shika Daigakuchiyou Artificial bone and dental root with sintered apatite and method of producing same
DE2840064C2 (en) * 1978-09-14 1989-09-21 Hans Dr.med. Dr.med.dent. 8000 München Scheicher Process for the production of bone contact layers
US4308064A (en) * 1978-10-19 1981-12-29 Ngk Spark Plugs Co., Ltd. Phosphate of calcium ceramics
JPS5645814A (en) * 1979-09-25 1981-04-25 Kureha Chem Ind Co Ltd Hydroxyapatite, its ceramic material and its manufacture
JPS5654841A (en) * 1979-10-08 1981-05-15 Mitsubishi Mining & Cement Co Bone broken portion and filler for void portion and method of treating bone of animal using said filler
JPS56166843A (en) * 1980-05-28 1981-12-22 Mitsubishi Mining & Cement Co Filler for bone broken section and void section
JPS5777038A (en) * 1980-10-28 1982-05-14 Asahi Glass Co Ltd Manufacture of crystallized glass from phosphate glass
GB2099702B (en) * 1981-06-04 1984-08-08 Standard Telephones Cables Ltd Water-soluble prosthesis
US4503157A (en) * 1982-09-25 1985-03-05 Ina Seito Co., Ltd. Sintered apatite bodies and composites thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122544A (en) * 1979-03-15 1980-09-20 Seikagaku Kogyo Co Ltd Preparation of bone for transplantation
JPS56143156A (en) * 1980-04-09 1981-11-07 Mitsubishi Mining & Cement Co Filler material of bone deficit part and gap part

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259675A (en) * 1985-05-15 1986-11-17 三菱マテリアル株式会社 Bone lost part and cavity part filling material
JPH0533062B2 (en) * 1985-05-15 1993-05-18 Mitsubishi Materials Corp

Also Published As

Publication number Publication date
FR2548540A1 (en) 1985-01-11
GB2142915A (en) 1985-01-30
GB8416578D0 (en) 1984-08-01
DE3424292A1 (en) 1985-01-17
GB2142915B (en) 1987-04-15
CH664280A5 (en) 1988-02-29
DE3424292C2 (en) 1989-06-08
FR2548540B1 (en) 1993-08-06

Similar Documents

Publication Publication Date Title
de Groot Ceramics of calcium phosphates: preparation and properties
Ooms et al. Trabecular bone response to injectable calcium phosphate (Ca‐P) cement
Jarcho Calcium phosphate ceramics as hard tissue prosthetics
Uchida et al. The use of ceramics for bone replacement. A comparative study of three different porous ceramics
Katthagen Bone regeneration with bone substitutes: an animal study
Moore et al. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long‐bone diaphyseal defects
Kuemmerle et al. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty–an experimental study in sheep
Costantino et al. Synthetic bone graft substitutes
EP0936929B1 (en) Method of preparing a poorly crystalline calcium phosphate and methods of its use
US4917702A (en) Bone replacement material on the basis of carbonate and alkali containing calciumphosphate apatites
US7517539B1 (en) Method of preparing a poorly crystalline calcium phosphate and methods of its use
Yamamuro et al. Replacement of the lumbar vertebrae of sheep with ceramic prostheses
Tsai et al. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits
Draenert et al. Osseointegration of hydroxyapatite and remodeling‐resorption of tricalciumphosphate ceramics
US11638777B2 (en) Compositions and methods for adhesion to surfaces
Katthagen et al. Experimental animal investigation of bone regeneration with collagen-apatite
Kurashina et al. Experimental cranioplasty and skeletal augmentation using an α-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement: a preliminary short-term experiment in rabbits
Chen et al. Structure, properties and animal study of a calcium phosphate/calcium sulfate composite cement
US7658940B2 (en) Calcium phosphate cements comprising autologous bone
JPH0233388B2 (en)
Meyer et al. Histological osseointegration of Tutobone®: first results in human
Huggins et al. Biologic behavior of hydroxyapatite used in facial augmentation
Hubbard PHYSIOLOGICAL CALCIUM-PHOSPHATES AS ORTHOPEDIC BIOMATERIALS.
Gutierres et al. Bone ingrowth in macroporous Bonelike® for orthopaedic applications
RU2071354C1 (en) Implant