JPS6014790B2 - Method and device for monitoring and controlling high-temperature gasification process - Google Patents

Method and device for monitoring and controlling high-temperature gasification process

Info

Publication number
JPS6014790B2
JPS6014790B2 JP54124290A JP12429079A JPS6014790B2 JP S6014790 B2 JPS6014790 B2 JP S6014790B2 JP 54124290 A JP54124290 A JP 54124290A JP 12429079 A JP12429079 A JP 12429079A JP S6014790 B2 JPS6014790 B2 JP S6014790B2
Authority
JP
Japan
Prior art keywords
temperature
water
tube
reaction chamber
thermocouples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54124290A
Other languages
Japanese (ja)
Other versions
JPS5647490A (en
Inventor
パイゼ・ヘルム−ト
ハインリツヒ・ボルフガング
ゲ−レル・ピ−タ−
ベルゲル・フリ−ドリツヒ
ル−カス・クラウス
シングニツツ・マンフレ−ト
ケ−ニツヒ・デイ−タア
ヤガロウ・アレクサンダ−
フエドトフ・ワシリ−
ガヴリリン・ウラジミ−ル
グドウモフ・ア−ネスト
シマノフ・ウラジミ−ル
アクマトフ・イ−ガル
マジユロフ・ニコライ
アウラ−モフ・エウゲニ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BURENSHUTOFU INST FURAIBERUKU
GOSUDARUSUTOBENII NAUCHINO ISUREDOBATERUSUKII II PUROEKUTONII INST AZOTONOI PUROMIMIRENNOSUTEI II PURODOKUTOFU ORUGANICHESUKOGO SHINCHIZA
Original Assignee
BURENSHUTOFU INST FURAIBERUKU
GOSUDARUSUTOBENII NAUCHINO ISUREDOBATERUSUKII II PUROEKUTONII INST AZOTONOI PUROMIMIRENNOSUTEI II PURODOKUTOFU ORUGANICHESUKOGO SHINCHIZA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BURENSHUTOFU INST FURAIBERUKU, GOSUDARUSUTOBENII NAUCHINO ISUREDOBATERUSUKII II PUROEKUTONII INST AZOTONOI PUROMIMIRENNOSUTEI II PURODOKUTOFU ORUGANICHESUKOGO SHINCHIZA filed Critical BURENSHUTOFU INST FURAIBERUKU
Priority to JP54124290A priority Critical patent/JPS6014790B2/en
Publication of JPS5647490A publication Critical patent/JPS5647490A/en
Publication of JPS6014790B2 publication Critical patent/JPS6014790B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は灰分含有の液状又は粉塵状固体燃料のとくに高
圧下での部分酸化の際の温度操作及び反応経過の監視の
ための方法と装置とに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and a device for temperature control and monitoring of reaction progress during the partial oxidation of ash-containing liquid or dusty solid fuels, in particular under high pressure.

CO−及び日2−含有のガスの製造技術においては工業
用酸素又は遊離酸素含有ガス化剤を用いる火炎反応での
ガス状、液体又は固体粉塵燃料の部分酸化が導入された
。高度の固有効率及び十分な処理量を保証するためその
場合1200乃至1500qCの温度が必要であり火炎
自体中ではごうに高い温度が現われる。灰分含有の燃料
すなわちとくに粉塵状燃料が用いられるときは、それで
灰分が溶融流動状態で発生する。部分酸化用反応器の運
転操作及び技術上安全保証のためには反応室内で支配的
である温度の知識が極めて重要である。
In the production technology of CO- and CO-containing gases, partial oxidation of gaseous, liquid or solid dust fuels in flame reactions using industrial oxygen or free oxygen-containing gasifiers has been introduced. In order to guarantee a high specific efficiency and a sufficient throughput, temperatures of 1200 to 1500 qC are required in this case, much higher temperatures occurring in the flame itself. When ash-containing fuels, especially dusty fuels, are used, the ash is then generated in a molten fluid state. For the operation and technical safety of partial oxidation reactors, knowledge of the temperature prevailing in the reaction chamber is extremely important.

そのようにこの温度は遊離酸素対燃料の比率についての
また反応室内の火炎の存在についての指標である。反応
室内の火炎がたとえば燃料欠乏のために意図的でなく消
えると、反応室に后続している粗ガス冷却精製装置に遊
離酸素が侵入するため大きな爆発の煤が生じる。そのほ
か灰分含有の燃料を用いる場合は、灰分の申し分のない
溶融流動の保証のために必要なほどに反応室温度が高い
よう取計らねばならない。さもなければスラグの凝固に
よるスラグ出口の又は全反応器の“結氷”の倶がある。
反応室内の温度測定はとくに部分反応が高圧下でたとえ
ば2乃至4MPa(メガパスカル:IMPaが約1ぴ気
圧に相当する)で行なわれるとき困難である。
As such, this temperature is an indicator of the free oxygen to fuel ratio and of the presence of a flame within the reaction chamber. If the flame in the reaction chamber is unintentionally extinguished, for example due to fuel starvation, a large explosion of soot can occur due to the ingress of free oxygen into the crude gas cooling purification equipment which follows the reaction chamber. In addition, if ash-containing fuels are used, it must be ensured that the reaction chamber temperature is as high as necessary to ensure satisfactory melt flow of the ash. Otherwise, there may be "icing up" of the slag outlet or of the entire reactor due to solidification of the slag.
Measuring the temperature in the reaction chamber is particularly difficult when partial reactions are carried out under high pressures, for example 2 to 4 MPa (megapascals: IMPa corresponds to about 1 p atm).

ガス状及び液状の燃料を使用する目的の装置のためには
これらの難点に拘わらず使用可能の温度測定装置が開発
されている。いまいま温度測定は緊急措置システム及び
プロセス制御の重要な要素である。これに対して灰分含
有燃料使用の反応器内の温度測定のための満足な解決法
は従釆知られていない。
Despite these drawbacks, temperature measuring devices have been developed for devices intended to use gaseous and liquid fuels. Temperature measurement is now an important element of emergency response systems and process control. In contrast, no satisfactory solution for temperature measurement in reactors using ash-containing fuels is known.

熱電対保護管用に利用できる材料は溶融流動性灰分によ
って溶かされ又は溶融流動性灰分の鯵透によってその不
可避の交番熱負荷に対する抵抗性が著しく悪影響を受け
る。それで何れの場合も熱電対を用いる反応室内温度測
定は比較的短かし、時間の間可能である。しかし熱電対
の達成可能な持続時間は、運転圧力の高い装置では熱電
対の交換が装置の運転停止と不可分であるので、経済的
継続運転のためには全く不十分である。温度測定のため
光学的放射線測定法を用いようとするときは、反応室壁
の必要の覗き穴のスラグ閉塞及び光学的窓の汚れと曇り
の危険があり同じく十分な持続時間が達成されないこと
になる。灰分含有燃料とくに粉塵状固体燃料の部分酸化
のためには反応室が冷却用遮蔽たとえば冷煤を通す管壁
構造のものによって限定されている反応器が公知である
The materials available for thermocouple protection tubes are melted by the molten flowable ash, or their resistance to the inevitable alternating heat loads is significantly adversely affected by the penetration of the molten flowable ash. In both cases, therefore, reaction chamber temperature measurements using thermocouples are possible for relatively short periods of time. However, the achievable lifetime of thermocouples is quite insufficient for economical continuous operation, since in systems with high operating pressures the replacement of the thermocouple is inseparable from the shutdown of the system. When attempting to use optical radiometry for temperature measurement, there is a risk of slag clogging of the necessary sight holes in the reaction chamber walls and of fouling and fogging of the optical windows, which also result in insufficient duration being achieved. Become. For the partial oxidation of ash-containing fuels, especially dusty solid fuels, reactors are known in which the reaction chamber is delimited by a cooling shield, such as a tube wall structure through which cold soot passes.

通常スタッドを植えた管からなる管壁は反応室に向けた
側に薄い耐火性潟固材の層が施こしてある。この損固材
の上には運転中に冷却と反応室からの熱伝達との平衡に
応じて凝固スラグの薄層及び流下する溶融スラグの膜が
生じる。
The tube wall, which usually consists of a studded tube, is covered with a thin layer of refractory lagoon on the side facing the reaction chamber. A thin layer of solidified slag and a film of flowing molten slag form on this solidified material during operation, depending on the balance between cooling and heat transfer from the reaction chamber.

高圧運転用反応器では本来の反応室を限定する管壁構造
が外側耐圧容器内に収容してある。冷蝶として高圧水を
用い、高圧水流量乃至入口温度を調整してその都度の圧
力で沸点に到達しないようにする技術的解決法は公知で
ある。本発明の目的は反応室が冷却用遮蔽で囲んである
反応器内における望ましくは高圧下での灰分含有のとく
に粉塵状固体の燃料の部分酸化の際の温度操作及び反応
進行の監視及び制御の方法及び装置である。
In reactors for high-pressure operation, the tube wall structure that defines the actual reaction chamber is housed in an outer pressure vessel. Technological solutions are known in which high-pressure water is used as a cold filter and the high-pressure water flow or inlet temperature is adjusted so that the boiling point is not reached at the respective pressure. The object of the invention is to provide a method for controlling temperature and monitoring and controlling the reaction progress during the partial oxidation of ash-containing, especially dusty, solid fuels, preferably under high pressure, in a reactor whose reaction chamber is surrounded by a cooling shield. A method and apparatus.

本発明には灰分含有の液状又は粉塵状固体の燃料の部分
酸化のための反応器の反応室内で支配的温度及び反応進
行を監視し、得られた測定値をプロセス制御に利用し、
十分に長い測定装置持続時間を保証するのに用いられる
方法及び装置を開発するという課題が根拠となっている
The invention involves monitoring the prevailing temperature and the reaction progress in the reaction chamber of a reactor for the partial oxidation of ash-containing liquid or dusty solid fuels and using the measurements obtained for process control;
The problem is to develop methods and devices that can be used to guarantee a sufficiently long measuring device duration.

本発明は反応室が冷煤を通す冷却用遮蔽によって囲まれ
ている反応器に向けられている。本発明によりこの課題
は、反応室を囲んでいる冷却用遮蔽又はその一部から単
位時間ごとに流れ出る熱量を測定し、この単位時間ごと
の熱量を反応室の又はその冷却用遮蔽部分に関連してい
る反応室部分の平均温度の尺度として用い及び/又は単
位時間に反応器に送入される遊離酸素と燃料との量の比
率に影響を及ぼすことによりプロセスの制御とくに温度
の制御に及び/又は緊急措置システムの起動に利用する
ことによって解決される。
The present invention is directed to a reactor in which the reaction chamber is surrounded by a cooling shield that passes cold soot. According to the invention, this task is achieved by measuring the amount of heat flowing out per unit time from the cooling shield surrounding the reaction chamber or from a part thereof, and by comparing this amount of heat per unit time with respect to the cooling shield or part of the cooling shield surrounding the reaction chamber. control of the process, in particular of the temperature, by influencing the ratio of the amounts of free oxygen and fuel fed into the reactor per unit time and/or as a measure of the average temperature of the reaction chamber sections that are Or it can be solved by using it to activate the emergency measures system.

とくに本発明は反応室を囲んでいる冷却用遮蔽が1本又
は教本の平行の管からなる管壁構造で形成され、これに
袷煤として水望ましくは高圧水を送りこみ、水の最高温
度は管内で支配的な圧力の下での沸点より低く保たれる
反応器で用いられる。この場合その管又は管のうちの1
本に単位時間に送りこまれる水量を公知の方法で測定し
なちびに冷却管内の水温を冷却管全長にわたって配分さ
れたいくつかの少なくとも2個所の側温点において測定
する。そこで単位時間に送りこまれる水量と高圧水の温
度差との積をこれら側温点間にある反応室部分の平均温
度の尺度として利用し及び/又はプロセス制御に及び/
又は緊急情層システムの起動に用いられる。本発明の装
置が反応室内で支配的な温度の変動に反応する時間は意
外に短か〈、実質上灰分のないガス状又は液状の燃料で
運転する同様な反応器内の熱電対装置のものと同等の範
囲内にある。
In particular, in the present invention, the cooling shield surrounding the reaction chamber is formed of a tube wall structure consisting of one or parallel tubes, into which water, preferably high-pressure water, is fed as soot, and the maximum temperature of the water is Used in reactors where the boiling point is kept below the pressure prevailing in the tube. In this case the tube or one of the tubes
The amount of water fed into the cooling pipe per unit time is measured by a known method, and the water temperature in the cooling pipe is measured at at least two side temperature points distributed over the entire length of the cooling pipe. Therefore, the product of the amount of water fed per unit time and the temperature difference of high-pressure water is used as a measure of the average temperature of the reaction chamber portion between these side temperature points and/or for process control and/or
Or used to activate the emergency intelligence system. The time for the device of the invention to respond to the temperature fluctuations prevailing in the reaction chamber is surprisingly short, compared to that of thermocouple devices in similar reactors operating on substantially ash-free gaseous or liquid fuels. is within the same range.

得られる信号が技術的に重要な燃料灰分融点より高い反
応温度範囲において著しく広がっており従って反応操作
の変動に極めて敏感に反応することは本発明の方法の別
の利点である。本発明の測定法は反応室温度の絶対値に
ついての言銘を直接もたらすものではないが燃料灰分の
溶融挙動が一定の場合はなお信号と当該反応室部分で支
配的な平均温度との間に十分な相関関係がある。
It is another advantage of the process according to the invention that the signal obtained is significantly broadened in the reaction temperature range above the technologically important fuel ash melting point and is therefore very sensitive to variations in the reaction operation. Although the measuring method of the present invention does not directly yield a statement about the absolute value of the reaction chamber temperature, if the melting behavior of the fuel ash is constant, there is still a difference between the signal and the average temperature prevailing in the reaction chamber section. There is sufficient correlation.

燃料灰分の融点が変化すると運転操作上重要な・燃料灰
分融点より高い反応室温度範囲において得られる信号の
特定のレベルに関連した反応室絶対温度が燃料灰分融点
の変化と同じ方向にまたそれとほぼ同じ程度に移動する
When the melting point of the fuel ash changes, it is important for operation that the absolute temperature of the reaction chamber associated with a particular level of signal obtained in the reaction chamber temperature range above the melting point of the fuel ash is in the same direction as the change in the melting point of the fuel ash and approximately the same as that of the change in the melting point of the fuel ash. move to the same extent.

この挙動はたとえば灰分融点上昇の場合冷却用遮蔽に附
着しているスラグ塊が厚くなり同じ熱量が反応室温度の
上昇后に初めて冷煤に与えられるようになることによっ
て生じる。これは欠点ではない。申し分のない運転のた
めに許容できる反応室最低温度は通常溶融スラグの凝固
温度によって定まる。融点が上昇すると対応しただけ反
応室温度も上げねばならない。しかし双方の場合とも本
発明によって得られる信号は同じである。それで燃料灰
分の溶融挙動が変動する場合も直接にプロセス制御とく
に反応室温度管理に決定的な影響を及ぼす酸素−燃料比
率の調整に利用できる。反応室温度の直接測定を介して
のプロセス制御の場合は灰分溶融挙動の変化の際の凝固
スラグによる反応器の“結氷”を避けるために附加的に
灰分溶融挙動の不断の検査管理が必要になる。本発明で
は対応して形成する場合反応室全体にあてはまる反応室
温度の平均値のみでなく、冷却用遮蔽のさまざまな部分
で伝達される熱珪葦を個別に測定して反応室のいくつか
の部分の温度も把握できることは本発明の特別の利点で
ある。
This behavior occurs, for example, because in the case of an increase in the ash melting point, the slag mass adhering to the cooling shield becomes thicker and the same amount of heat is only applied to the cold soot after the reaction chamber temperature has increased. This is not a drawback. The minimum reaction chamber temperature that is acceptable for satisfactory operation is usually determined by the solidification temperature of the molten slag. As the melting point increases, the reaction chamber temperature must be increased accordingly. However, the signal obtained by the invention is the same in both cases. Therefore, fluctuations in the melting behavior of the fuel ash can be directly utilized for adjusting the oxygen-fuel ratio, which has a decisive influence on process control, especially on reaction chamber temperature control. In the case of process control via direct measurement of the reaction chamber temperature, constant inspection control of the ash melting behavior is additionally required to avoid "icing up" of the reactor due to solidified slag in the event of changes in the ash melting behavior. Become. In the present invention, we measure not only the average value of the reaction chamber temperature, which applies to the entire reaction chamber, but also the heat transferred in different parts of the cooling shield, in the case of a corresponding design, to several parts of the reaction chamber. It is a particular advantage of the invention that the temperature of the part can also be known.

本発明は反応室が1本又は教本の平行の管からなる管壁
構造の形の冷却用遮蔽によって囲まれておりこの冷却用
遮蔽は水望ましくは高圧水で運転し、最高水温は沸点未
満に保たれる反応器と絹合せて優先的に用いられる。
The invention provides that the reaction chamber is surrounded by a cooling shield in the form of a tube wall structure consisting of one or more textbook parallel tubes, which cooling shield is operated with water, preferably with high pressure water, and the maximum water temperature is below the boiling point. It is preferentially used in conjunction with a reactor that is maintained.

この型の反応器に適した本発明の実施形式は下講の特徴
によってすぐれている。
The mode of implementation of the invention suitable for this type of reactor is distinguished by the features described below.

多重コイルに巻いてある平行の管のうち少なくとも1本
には単位時間に流過する高圧水量を測定するための流量
計が装備してある。
At least one of the parallel tubes wound around multiple coils is equipped with a flow meter for measuring the amount of high-pressure water flowing past per unit time.

手がよく届く個所に・通常は反応器ハウジング外には適
宜な公知の耐圧気密のブッシングを介してさまざまな長
さの熱電対望ましくは細い外套つき熱電対の形のものが
当該の管に挿入してあって、熱電圧を生じる接合点が反
応器内部の冷却用遮蔽を形成している管部分中にあるよ
うにしてあり、熱電対の長さは接合点が当該部分の全長
にわたって配分されるように定めてある。本発明により
該熱電対は入口側、出口側又は両側から当該管中に挿入
しておくことができる。熱電対を可擬性の線又は素とと
もに一つの東にまとめ、線又は素は管の全長にわたって
おり管の壁を貫いている耐圧気密ブツシングを開いた后
に、反応器全体を開く必要ないこ熱電対東の迅速な交換
のための引綱として機能し得るものは有利な実施形式と
判明した。熱電対は公知のしかたで相互に連結してその
都度発生する電圧がそれぞれ二つの預り温点望ましくは
隣接の二つの預り温点間の高圧水温度差の尺度であるよ
うにしてある。
In easily accessible locations, usually outside the reactor housing, thermocouples of various lengths, preferably in the form of thin jacketed thermocouples, are inserted into the tubes in question through suitable pressure-tight, pressure-tight bushings known in the art. so that the junctions producing the thermovoltage are in the section of the tube forming the cooling shield inside the reactor, and the length of the thermocouple is such that the junctions are distributed over the entire length of the section. It is determined that According to the invention, the thermocouple can be inserted into the tube from the inlet side, the outlet side or both sides. The thermocouples are grouped together with the fusible wire or element in one direction, and the wire or element runs the entire length of the tube and after opening the pressure-tight bushing that penetrates the tube wall, there is no need to open the entire reactor. It has been found to be an advantageous implementation to be able to act as a towbar for rapid exchange of thermocouples. The thermocouples are interconnected in a known manner so that the voltage generated in each case is a measure of the temperature difference in the high-pressure water between two hot spots, preferably two adjacent hot spots.

温度差信号は適切なしかたで流量計の信号と組合せられ
て、流量と温度差との積に比例する信号が得られるよう
にしてある。
The temperature difference signal is combined in a suitable manner with the flow meter signal to obtain a signal proportional to the product of flow rate and temperature difference.

少なくとも一つの警部分の統一のある信号が表示装置及
び/又は酸素−燃料比率調整のための制御システム及び
又は緊急措置システムに連結してある。本発明を図面に
より下記実施例について説明する。
At least one uniform signal is connected to a display device and/or a control system for oxygen-fuel ratio adjustment and/or an emergency action system. The present invention will be explained below with reference to the drawings.

実施例 1 圧力4MPaにおいて工業用酸素を用いる徴粉褐炭部分
酸化装置の反応器は第1図のとおりいくつもの円筒形に
巻いた蛇管2を上下に配置したものを収容している外側
耐圧容器1からなり、第2図に示すとおり管の反応器中
心線に向けられた側には耐火性鳩固材が施こしてある。
Example 1 The reactor of a fine lignite partial oxidation device using industrial oxygen at a pressure of 4 MPa has an outer pressure-resistant container 1 containing a number of cylindrical coiled flexible tubes 2 arranged vertically as shown in Fig. 1. As shown in FIG. 2, the side of the tube facing the reactor centerline is coated with a refractory material.

管表面の鋼製スタッド4が鳩岡村を支える。鳩固材を施
こされた蛇管は本来の反応室5を囲み、その内で高温に
おいてバーナ6から送入される反応成分・徴粉褐炭、工
業用酸素及び(少量の)水蒸気の化学変化が行なわれる
。燃料灰分は反応室内で溶融流動性となる。流動性灰分
の一部は反応室の被覆蛇管で形成された壁面でで凝固し
てスラグ殻7を作り、他の一部はこの殻7上に溶融スラ
グ膜8を作りこれが流下して生成する粗ガスとともに反
応器から出口開孔9を経て后碗の冷却−及び分離装置に
達する。蛇管には冷却のための水を送りこみ、その量は
最高水温が管内で支配的な圧力における沸点より低いよ
うに調整する。第1図には1本の蛇管用として表わして
あるが一流量計10を用いて単位時間に流過する水量を
測定する。同時に当該の蛇管の入口11及び出口12に
これらの個所での水温測定のための熱電対13,14が
取付けてある。両熱電対は両側定点間の温度差に相当す
る唯一の信号が送り出されるように相互に連結してある
。測定値転換装置15内で論理ブロックを用いて流量測
定及び温度測定の信号が結合されて単位時間の流量と温
度差との積に比例する信号が生じる。この信号は当該の
蛇管のあたりの反応室内平均温度の尺度として記録計1
6に表示し言己録する。信号はさらに制御器17に送
られこれが酸素送入管にある制御要素の役をする弁18
を介して単位時間の酸素量対単位時間の徴粉炭量の比率
を修正し一方予め定められた徴粉炭流量は定量装置19
によって不変に保たれる。最后に測定値変換装置15の
信号は自動緊急功換システム(緊急措置システム)20
に送られ、上限値を超えまた下限値を下回る場合これが
装置の停止及び危険でない状態への移行を実施する。
Steel studs 4 on the pipe surface support the Hatooka village. A corrugated pipe with hardwood surrounds the original reaction chamber 5, in which the chemical changes of the reaction components, powdered lignite, industrial oxygen and (a small amount) water vapor fed from the burner 6 occur at high temperatures. It is done. The fuel ash becomes molten and fluid within the reaction chamber. A part of the fluid ash solidifies on the wall formed by the covered corrugated tube of the reaction chamber to form a slag shell 7, and the other part forms a molten slag film 8 on this shell 7, which flows down and is generated. The crude gas passes from the reactor via the outlet opening 9 to the cooling and separation device of the back bowl. Water is fed into the corrugated tube for cooling, the amount of which is adjusted so that the maximum water temperature is below the boiling point at the prevailing pressure in the tube. In FIG. 1, a flow meter 10 is shown for one flexible pipe, but the amount of water flowing through the pipe per unit time is measured. At the same time, thermocouples 13 and 14 are attached to the inlet 11 and outlet 12 of the corrugated pipe for measuring the water temperature at these points. Both thermocouples are interconnected in such a way that only one signal is emitted, which corresponds to the temperature difference between fixed points on both sides. The flow measurement and temperature measurement signals are combined in the measurement value conversion device 15 using logic blocks to produce a signal proportional to the product of the flow rate and the temperature difference per unit time. This signal is used as a measure of the average temperature in the reaction chamber around the corresponding tube.
6 and record the statement. The signal is further sent to a controller 17 which in turn controls a valve 18 serving as a control element in the oxygen inlet line.
The ratio of the amount of oxygen per unit time to the amount of pulverized coal per unit time is corrected through the metering device 19, while the predetermined pulverized coal flow rate is
is kept unchanged by Finally, the signal of the measured value converter 15 is transferred to an automatic emergency response system (emergency measures system) 20.
If the upper limit value is exceeded and the lower limit value is exceeded, this will cause the device to shut down and transition to a non-hazardous state.

その際他の切換処理とならんでとくに急速閉止弁21に
よって遅滞なく反応器への酸素送入が閉じられる。この
例で扱かわれている反応器については灰分融点1250
qoの徴粉褐炭使用の際に測定値変換装置15によって
作られた信号と当惑独白管のあたりの反応室内平均温度
との間に第3図曲線で示す関係が得られた。
In addition to other switching procedures, the oxygen supply to the reactor is then closed without delay, in particular by means of the quick-shutoff valve 21. For the reactor used in this example, the ash melting point is 1250
When using lignite with a qo characteristic, a relationship was obtained between the signal produced by the measured value converter 15 and the average temperature in the reaction chamber around the perplexing tube, as shown in the curve shown in FIG.

装置のスラグ排出に関して申し分のない運転はこの個所
の反応室温度145ぴCで達成される。これは第3図に
よると20%の信号に相当する。これより融点が200
qo高い徴粉褐炭を用いる場合は第3図曲線bで示した
特性が縛られた。この曲線は実質上20ぴ○だけ右に移
動している。この炭を用い申し分のない運転は同じく2
0%の信号ですなわち冷却用遮蔽の蛇管への比熱伝達が
等しい場合に達成される。実施例 2 第4図に示した高圧水冷却式反応室の別の実施形式では
教本の平行に水を送りこまれる管22が円筒形多条コイ
ルとして巻いてあり外側耐圧容器1内に収容されており
、その反応器中心線に向けられた側面に耐火性鳩固材が
施こしてあり反応室5の被包を形成している。
Satisfactory operation of the apparatus with respect to slag discharge is achieved at a reaction chamber temperature of 145 pico C. at this point. This corresponds to a 20% signal according to FIG. From this, the melting point is 200
When using high qo powdery lignite, the characteristics shown by curve b in Figure 3 were restricted. This curve has effectively shifted to the right by 20 pi○. The perfect operation using this charcoal is also 2
This is achieved with a signal of 0%, ie when the specific heat transfer to the coils of the cooling shield is equal. Example 2 In another embodiment of the high-pressure water-cooled reaction chamber shown in FIG. The reactor chamber 5 is covered with a refractory dome material on its side facing the reactor center line, forming an envelope for the reaction chamber 5.

個々の管の上下両端は技管23を介して耐圧気密に耐圧
容器1の底及び蓋を貫いて外へ導かれ、当該管の入口1
1及び出口12を形成している。第4図では1本の管に
ついて示してあるが、入口11に高圧水流量計が取付け
てある。
The upper and lower ends of each tube are led out through the bottom and lid of the pressure container 1 in a pressure-tight and airtight manner via a technical tube 23, and the inlet 1 of the tube is
1 and an outlet 12. Although one pipe is shown in FIG. 4, a high pressure water flow meter is attached to the inlet 11.

枝管23のすぐ近くの水入口の屈曲部で耐圧気密のプツ
シング24を介してさまざまな長さの細い5本の外套つ
き熱電対が管内に挿入してある。これらの熱電対の高温
の接合点26は当該管の反応器内部の全長にわたって等
間隔に配分してある。それぞれ隣酸の2個の熱電対の熱
電圧の差は測定値変換装置15に継がれる。その他の装
置は実施例第1のものと一致している。同じことが反応
室内の温度と単位時間の高圧水量及び温度差の積にあた
る測定値転換装置15で得られた信号の相対値との間の
関係にもあてはまる。さらに第5図の示すとおり、外套
つき熱電対は細い鋼索27とともに帯金31により一つ
の東にまとめてある。
At the water inlet bend in the immediate vicinity of the branch pipe 23, five thin jacketed thermocouples of various lengths are inserted into the pipe via pressure-tight and airtight pushing 24. The hot junctions 26 of these thermocouples are evenly distributed over the length of the reactor interior of the tube. The difference in thermovoltage of the two thermocouples, each of phosphoric acid, is passed on to a measured value converter 15. Other equipment is the same as that of the first embodiment. The same applies to the relationship between the temperature in the reaction chamber and the relative value of the signal obtained by the measurement value conversion device 15, which is the product of the high-pressure water volume per unit time and the temperature difference. Further, as shown in FIG. 5, the jacketed thermocouples and the thin steel cables 27 are grouped together in one east by a strap 31.

鋼素は管の全長にわたって導かれ管22の上端の・耐圧
容器1外の枝管28中の手の届き易い個所で保持具29
に固定してある。保持具つきの枝管28は蓋3川こよっ
て閉じられている。約1帆の細い外套つき熱電対と鋼素
とを東にしたことによって高圧水により管内に惹起こさ
れる負荷に対して十分な本装置の機械的安定性が達成さ
れる。熱電対構造の耐久性は満足なものである。同時に
鋼素は熱電対東の取付乃至交換の際の補助手段として役
立つ。
The steel material is guided along the entire length of the tube and held at an easily accessible point in the upper end of the tube 22 and in the branch tube 28 outside the pressure vessel 1 with a holder 29.
It is fixed at The branch pipe 28 with the holder is closed by the lid 3. By placing the thermocouple with a narrow jacket of about 1 sail and the steel element on the east side, sufficient mechanical stability of the device is achieved against the loads induced in the pipe by high pressure water. The durability of the thermocouple structure is satisfactory. At the same time, the steel material serves as an aid when installing or replacing the thermocouple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷却用遮蔽が教本の平行に接続された上下に配
置された蛇管からなる反応器の測定装置の図解、第2図
は管墜の撮固材及びスラグによる被覆、第3図は反応室
の温度と単位時間の高圧水量及び測定長にわたっての高
圧水温度差の積についての相対値との関係、第4図は冷
却用遮蔽が教本の平行管の多条コイルの形をしている反
応器の測定装置の図解、第5図は第4図の熱電対構造の
詳細を示す。 1・・・外側耐圧容器、2・・・蛇管、3・・・鶏固村
、4・・・鋼製スタツド、5・・・反応室、6・・・バ
ーナ、7・・・スラッグ殻、8…溶融スラツグ膜、9…
出口関孔、10…流量計、11・・・入口、12・・・
出口、13・・・入口熱電対、14・・・出口熱電対、
15・・・測定値転換装置、16・・・記録計、17・
・・制御器、18・・・弁、19・・・徴粉炭定量装置
、20・・・緊急措置システム、21・・・急速閉止弁
、22…管、23・・・枝管、24…耐圧気密ブッシン
グ、25・・・外套つき熱電対、26…高温側援合点、
27・・・鋼素、28・・・枝管、29・・・保持具、
30・・・蓋、31…帯金。 第1図第2図 第3図 第4図 第5図
Figure 1 is a diagram of a measuring device for a reactor consisting of vertically arranged corrugated tubes with cooling shields connected in parallel to the textbook, Figure 2 is a tube cover covered with a recording material and slag, and Figure 3 is The relationship between the temperature of the reaction chamber and the relative value of the product of the high-pressure water volume per unit time and the high-pressure water temperature difference over the measuring length, Figure 4 shows that the cooling shield is in the form of a multi-strand coil of parallel tubes in the textbook. FIG. 5 shows details of the thermocouple structure of FIG. 4. DESCRIPTION OF SYMBOLS 1... Outer pressure-resistant container, 2... Serpentine pipe, 3... Torigomura, 4... Steel stud, 5... Reaction chamber, 6... Burner, 7... Slag shell, 8... Molten slag film, 9...
Outlet checkpoint, 10...flow meter, 11...inlet, 12...
Outlet, 13... Inlet thermocouple, 14... Outlet thermocouple,
15... Measured value conversion device, 16... Recorder, 17.
...Controller, 18...Valve, 19...Pulverized coal quantitative device, 20...Emergency measure system, 21...Quick shut-off valve, 22...Pipe, 23...Branch pipe, 24...Pressure resistance Airtight bushing, 25... thermocouple with jacket, 26... high temperature side support point,
27... Steel material, 28... Branch pipe, 29... Holder,
30...Lid, 31...Obi. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 灰分含有の燃料の部分燃焼のための反応器でその反
応室が1本又は数本の平行の管からなる管壁構造の冷却
遮蔽によって囲まれており、この遮蔽は水望ましくは高
圧水を用いて運転され、最高水温が沸点より低く保たれ
るものの内の反応進行を監視・制御する方法において、
冷却遮蔽の少くとも1本の管に単位時間に送入される水
量を適切な方法で測定し、水温は遮蔽の1本の管の全長
にわたった配分されたいくつかの少なくとも2個所の測
温点において測定し、単位時間に送入された水量と該管
の2個所・望ましくは隣接の2個所の測温点で測定した
水温の差との積を計算し、この算出された積を該管の当
該測温点間の部分に関連の反応室部分の平均温度につい
ての尺度として及び/又はプロセス制御のためとくに反
応器に単位時間中に送入される遊離酸素及び燃料の量に
影響を及ぼすことによる反応室内の温度の制御のために
及び又は緊急措置システム起動のために利用することを
特徴とする方法。 2 反応室が1本又は数本の平行の管からなる管壁構造
の形の冷却遮蔽によって囲まれており、この遮蔽は水・
望ましくは高圧水を用いて運転され・最高水温が沸点よ
り低く保たれる反応器の内の反応進行を監視、制御する
方法を実施するための装置において、管壁の管は単条又
は多条のコイルに巻いてあり、その管又は平行に設けら
れた管(複数)のうちの少なくとも1本には単位時間に
菅をを流過する水量のための測定装置が設けてあり、よ
く手の届く個所に・通常は反応器ハウジング外部に原理
上公知の耐圧気密のブツシングを介してさまざまな長さ
の細い熱電対望ましくは細い外套つき熱電対の形のもの
が当該の管中に挿入してあり、熱電対の長さは熱電対を
生じる接合点が当該管の反応器内にある区間全体にわた
って配分されているように定めてあり、水量測定装置及
び少なくとも2個の長さの異なる熱電対の出力信号導線
は測定値転換装置たとえば論理ブロツクの組合に接続し
てあり后者は入力信号を結合して単位時間の流過水量と
その都度の1対の熱電対の熱電圧の差との積に比例する
一つ又はいくつかの出力信号が生じるようにするもので
あり、該測定値転換装置の出力信号導線は表示装置及び
/又はプロセス制御システム及び/又は緊急措置システ
ムに連結してあることを特徴とする装置。 3 熱電対は可撓性の線又は索とともに一つの束にまと
めてあり、后者は管内の水流中にあり、その可撓性の線
又は索は管の全長にわたっており、手のよく届く個所・
通常は反応器ハウジング外部に、望ましくは当該管の屈
曲部、入口及び出口の蓋で閉じられる枝管内に固定して
あることを特徴とする特許請求の範囲第2項記載の装置
[Claims] 1. A reactor for the partial combustion of ash-containing fuels, the reaction chamber of which is surrounded by a cooling shield of tube wall structure consisting of one or several parallel tubes, the shield comprising: In a method for monitoring and controlling the reaction progress in water, preferably operated using high-pressure water and in which the maximum water temperature is kept below the boiling point,
The amount of water injected per unit time into at least one tube of the cooling shield is measured by a suitable method, and the water temperature is measured at several at least two points distributed over the length of one tube of the shield. Calculate the product of the amount of water measured at a temperature point and sent in per unit time and the difference in water temperature measured at two temperature measurement points in the pipe, preferably two adjacent temperature points, and calculate this calculated product. as a measure of the average temperature of the reaction chamber section associated with the section of the tube between the temperature points and/or for process control, in particular influencing the amount of free oxygen and fuel fed into the reactor during a unit time; A method characterized in that it is used for controlling the temperature in a reaction chamber by exerting a 2. The reaction chamber is surrounded by a cooling shield in the form of a tube wall structure consisting of one or several parallel tubes, which shield is
In an apparatus for carrying out a method for monitoring and controlling the reaction progress in a reactor which is preferably operated using high-pressure water and whose maximum water temperature is kept below the boiling point, the tubes in the tube wall may be single or multi-threaded. The tube, or at least one of the parallel tubes, is equipped with a measuring device for the amount of water passing through the tube per unit time. At the point of access, usually outside the reactor housing, thin thermocouples of various lengths, preferably in the form of thin jacketed thermocouples, are inserted into the tubes in question via pressure-tight bushings known in principle. , the length of the thermocouples is such that the junction points producing the thermocouples are distributed over the entire length of the tube in the reactor, and the water measuring device and at least two thermocouples of different lengths are provided. The output signal conductor of is connected to a measured value conversion device, for example a combination of logic blocks, which then combines the input signals and calculates the difference between the amount of water flowing through unit time and the difference in thermal voltage of the respective pair of thermocouples. one or several output signals proportional to the product, the output signal conductors of the measured value conversion device being connected to a display device and/or a process control system and/or an emergency measures system. A device characterized by: 3. The thermocouples are bundled together with flexible wires or cables, the latter being in the water flow in the pipe, and the flexible wires or cables running the length of the pipe and in easily accessible locations.・
3. Device according to claim 2, characterized in that it is normally fixed outside the reactor housing, preferably in a branch pipe which is closed by a bend, an inlet and an outlet cap of the pipe.
JP54124290A 1979-09-28 1979-09-28 Method and device for monitoring and controlling high-temperature gasification process Expired JPS6014790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54124290A JPS6014790B2 (en) 1979-09-28 1979-09-28 Method and device for monitoring and controlling high-temperature gasification process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54124290A JPS6014790B2 (en) 1979-09-28 1979-09-28 Method and device for monitoring and controlling high-temperature gasification process

Publications (2)

Publication Number Publication Date
JPS5647490A JPS5647490A (en) 1981-04-30
JPS6014790B2 true JPS6014790B2 (en) 1985-04-16

Family

ID=14881673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54124290A Expired JPS6014790B2 (en) 1979-09-28 1979-09-28 Method and device for monitoring and controlling high-temperature gasification process

Country Status (1)

Country Link
JP (1) JPS6014790B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464007A (en) * 1977-10-11 1979-05-23 Demag Ag Container for metal melting furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464007A (en) * 1977-10-11 1979-05-23 Demag Ag Container for metal melting furnace

Also Published As

Publication number Publication date
JPS5647490A (en) 1981-04-30

Similar Documents

Publication Publication Date Title
US4776705A (en) Thermocouple for use in a hostile environment
US5005986A (en) Slag resistant thermocouple sheath
GB2093588A (en) Apparatus for measuring temperature in a pressurized reactor
US3705108A (en) Synthesis gas generation
US5281243A (en) Temperature monitoring burner means and method
US8765018B2 (en) Method for controlling a reforming reaction by measurement of the temperature of the reforming tubes and functional parameter modification
SE429898B (en) WASTE TO PREVENT PACKAGING BY REDUCTION IN FLOAT BED OF FINDED METAL OXIDE CONTENT
JPS5844717B2 (en) Reactor for gas production by partial oxidation
US2963353A (en) Temperature measurement in reactors operating under high temperature and pressure
JPS6014790B2 (en) Method and device for monitoring and controlling high-temperature gasification process
JPS61500806A (en) Constant temperature calorific value measuring device
US5554202A (en) Gasifier monitoring apparatus
US20240207811A1 (en) Method for Carrying Out a Chemical Reaction and Reactor Arrangement
US4099554A (en) Control system to regulate the wall temperature of a pressure vessel
JPH02120203A (en) Medium heating-type reformer
US2393362A (en) Gas analysis and control
JP2003057119A (en) Gasification furnace provided with temperature measuring device
CN102305675A (en) Indirect temperature measuring device in entrained flow gasifying furnace
Feldkirchner et al. Reaction of coal with steam-hydrogen mixtures at high temperatures and pressures
JPH07103383B2 (en) Pulverized coal gasification method
JP4016299B2 (en) Furnace temperature measuring device
RU2274805C1 (en) System for control of temperature of boiler furnace shields
JPH0560515B2 (en)
EP1469291B1 (en) Method of measuring high temperature and instrument therefore
JPH0721551Y2 (en) Furnace temperature measuring device