JPS5844717B2 - Reactor for gas production by partial oxidation - Google Patents

Reactor for gas production by partial oxidation

Info

Publication number
JPS5844717B2
JPS5844717B2 JP12428979A JP12428979A JPS5844717B2 JP S5844717 B2 JPS5844717 B2 JP S5844717B2 JP 12428979 A JP12428979 A JP 12428979A JP 12428979 A JP12428979 A JP 12428979A JP S5844717 B2 JPS5844717 B2 JP S5844717B2
Authority
JP
Japan
Prior art keywords
housing
tube
refractory material
reactor
tube wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12428979A
Other languages
Japanese (ja)
Other versions
JPS5647489A (en
Inventor
アクマトフ・イーガル
アヴラーモフ・エヴゲニー
ガヴリリン・ウラジミール
グドウモフ・アーネスト
ケーニツヒ・デイータア
ゲーレル・ピーター
シマノフ・ウラジミール
シングニツツ・マンフレート
ハインリツヒ・ボルフガング
パイゼ・ヘルムート
フエドトフ・ワシリー
ベルゲル・フリードリツヒ
マジユロフ・ニコライ
ヤガロウ・アレクサンダー
ルーカス・クラウス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BURENSHUTOFU INST FURAIBERUKU
GOSUDARUSUTOBENII NAUCHINO ISUREDOBATERUSUKII II PUROEKUTONII INST AZOTONOI PUROMIMIRENNOSUTEI II PURODOKUTOFU ORUGANICHESUKOGO SHINCHIZA
Original Assignee
BURENSHUTOFU INST FURAIBERUKU
GOSUDARUSUTOBENII NAUCHINO ISUREDOBATERUSUKII II PUROEKUTONII INST AZOTONOI PUROMIMIRENNOSUTEI II PURODOKUTOFU ORUGANICHESUKOGO SHINCHIZA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BURENSHUTOFU INST FURAIBERUKU, GOSUDARUSUTOBENII NAUCHINO ISUREDOBATERUSUKII II PUROEKUTONII INST AZOTONOI PUROMIMIRENNOSUTEI II PURODOKUTOFU ORUGANICHESUKOGO SHINCHIZA filed Critical BURENSHUTOFU INST FURAIBERUKU
Priority to JP12428979A priority Critical patent/JPS5844717B2/en
Publication of JPS5647489A publication Critical patent/JPS5647489A/en
Publication of JPS5844717B2 publication Critical patent/JPS5844717B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は高温高圧において遊離酸素含有のガス化剤を用
い粉塵状又は液状のとくに灰分含有の燃料の部分酸化に
よりC〇−及びH,−含有ガスを製造するための反応器
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing CO- and H,--containing gas by partial oxidation of dusty or liquid fuel, especially ash-containing fuel, using a free oxygen-containing gasifying agent at high temperature and pressure. Regarding reactors.

粉塵状又は液状の燃料から部分酸化によりガスを製造す
る際、燃料は酸素含有のガス化剤と火炎反応で反応する
When gas is produced from dust or liquid fuel by partial oxidation, the fuel reacts with an oxygen-containing gasification agent in a flame reaction.

その際燃料とガスの用途とに応じて1200乃至160
0℃の反応終末温度が現われ、火炎自体は2000℃を
越える温度に達する。
1200 to 160 depending on the fuel and gas usage.
A reaction end temperature of 0° C. appears, and the flame itself reaches a temperature of over 2000° C.

灰分含有の燃料を用いると部分酸化過程の無機質残渣が
溶融状態で現われる。
When using ash-containing fuels, inorganic residues from the partial oxidation process appear in a molten state.

火炎反応は耐火性の通常は回転対称形の反応室内で進行
し、公知となった諸方法はバーナの配置及び生成した高
温の粗ガス及びスラグの排出法が相違している。
The flame reaction takes place in a refractory, usually rotationally symmetrical reaction chamber, and the known methods differ in the arrangement of the burners and in the method of discharging the hot crude gases and slag produced.

上述の種類のガス製造過程はしばしば高圧下たとえば3
MPaで行なわれる。
Gas production processes of the type mentioned above are often carried out under high pressure, e.g.
It is carried out at MPa.

この種の高圧プロセス用反応器はたとえば輪郭が水冷式
の管からなる壁によって形成された本来の反応室を収容
している外側耐圧容器からなる。
Reactors for high-pressure processes of this type consist, for example, of an outer pressure vessel containing the actual reaction chamber, which is formed by walls consisting of water-cooled tubes in profile.

この管壁には火炎に面した側に耐火性材料を突き固めた
圧縮材たとえば炭化珪素を基質としたシリコーン層が設
けである。
On the side facing the flame, the tube wall is provided with a compressed material, such as a layer of silicone based on silicon carbide, compacted with a refractory material.

圧縮耐火材と管との耐着はたとえば直径10mm高さ1
0關のスタッドで管の表面に溶接してあり圧縮耐火材層
中に突入しているものによって達成される。
For example, the adhesion resistance between the compressed refractory material and the pipe is 10 mm in diameter and 1 in height.
This is achieved by a 0.5mm stud welded to the surface of the tube and extending into the compressed refractory layer.

圧縮耐火材層の厚さは表面温度が部分酸化過程で発生す
るスラグの凝固点より低くなるように定める。
The thickness of the compressed refractory layer is determined so that the surface temperature is lower than the freezing point of slag generated during the partial oxidation process.

反応器運転中にはそれゆえ圧縮耐火材表面に別の凝固ス
ラグの層が形成されこれが柔軟域を経て終には流出する
溶融スラグフィルムに移行する。
During reactor operation, therefore, another layer of solidified slag forms on the surface of the compressed refractory material, which passes through the soft zone and eventually into a molten slag film which flows out.

管壁の冷却は沸点未満の温度の高圧水、又は沸騰水を用
いて行なわれる。
Cooling of the tube wall is carried out using high pressure water at a temperature below the boiling point or boiling water.

管壁は輻射及び対流によって外側耐圧容器を確実に過熱
から守らねばならない。
The tube wall must reliably protect the outer pressure vessel from overheating by radiation and convection.

管壁と外側耐圧容器との間にはそれゆえしばしば耐火材
の断熱層が設けである。
An insulating layer of refractory material is therefore often provided between the tube wall and the outer pressure vessel.

煉瓦積及び膨張の目地により、不可避の亀裂によりまた
耐火材の気孔性によりこの断熱層には場所的に特定でき
ないかなりのガス透過性がある。
Due to the brickwork and expansion joints, due to the inevitable cracks and due to the porosity of the refractory material, there is a considerable gas permeability in this insulation layer which is not localized.

通常のとおりほぼ大気圧で反応器に着火し高温状態で使
用圧力一杯に昇圧すると、急速な圧力上昇の際に耐圧容
器が局部的に過熱するほど大きな迷走をするガス路が現
われることがある。
When a reactor is normally ignited at approximately atmospheric pressure and the pressure is increased to full operating pressure at high temperatures, a large stray gas path may appear that causes the pressure vessel to locally overheat during the rapid pressure rise.

同様な危険は高性能により又は部分的なスラグ化により
反応室内部に又は粗目出口管路に大きな差圧が現われる
ときにも予期すべきである。
A similar risk should be expected when large pressure differences appear inside the reaction chamber or in the coarse outlet line due to high performance or partial slagging.

通常は確かに冷却民管壁は露点より高い温度で運転する
が、耐圧容器の温度はこの温度より低い。
It is true that normally the walls of the refrigerated pipes operate at a temperature above the dew point, but the temperature of the pressure vessel is below this temperature.

断熱層のガス透過性が耐圧容器面での水蒸気凝縮を可能
にし腐食を助ける。
The gas permeability of the insulation layer allows water vapor to condense on the pressure vessel surfaces, aiding corrosion.

煉瓦張乃至煉瓦張の特定の目地を不活性ガスで掃気する
ことが提案された。
It has been proposed to purge brickwork or specific joints of brickwork with inert gas.

少なくとも長期にわたっては場所の特定できない煉瓦張
ガス透過性が大量の掃気ガスを用いる場合でさえこの種
の措置の効果を最小に限定する。
The brick-lined gas permeability, which is not localized, at least in the long term, limits the effectiveness of this type of measure to a minimum even when large amounts of scavenging gas are used.

冷却管壁構造の反応器の実施形式で個々の並夕1ルてい
る管を管の全長にわたって溶接したリブで連結したもの
が公知である。
A known embodiment of a reactor with a cooling tube wall structure is one in which individual tubes arranged in rows are connected by welded ribs along the entire length of the tubes.

こうして管壁は気密になる。反応室と管壁及び耐圧容器
の間の空間との間の圧力平衡のため必要な連通は一つ又
は僅かな部側可能の開孔に限らへ不活性ガス掃気によっ
て有効に処理できる。
The tube wall is thus airtight. The communication necessary for pressure equalization between the reaction chamber and the space between the tube wall and the pressure vessel can be effectively provided by inert gas purging to one or only a few possible openings.

このような解決法は極めて堅固な管壁構造に導き、その
別の利点はより単純な保持部構造とより容易な組立とに
ある。
Such a solution leads to a very rigid tube wall structure, another advantage of which is a simpler retainer structure and easier assembly.

しかし管壁の剛性には下記の本質的な欠点がつきまとっ
ている。
However, the rigidity of the tube wall suffers from the following essential drawbacks.

起動及び停止操作の際及び負荷変動の際に圧縮耐火材及
び凝固したスラグか膨張・収縮することは避けられない
Expansion and contraction of the compressed refractory material and solidified slag is inevitable during start-up and shutdown operations and during load fluctuations.

堅固な溶接の管壁構造はこ石らの長さの変動に追随でき
ずしばしば管壁から圧縮耐火材が剥落することになる。
The rigid welded pipe wall structure cannot keep up with changes in the length of the stones, and the compressed refractory material often falls off from the pipe wall.

管壁の露出した部分の数倍も高い熱負荷は局部過熱の危
険に導くことがある。
Heat loads that are several times higher on exposed parts of the tube wall can lead to the risk of local overheating.

本発明の目的は粉塵状又は液状の灰分含有燃料の高圧下
での部分酸化によるガス製造用反応器でその耐圧容器が
確実に過熱及び粗ガスの作用に対して遮蔽されておりか
つ長時間連続運転を可能にするものである。
The object of the present invention is to provide a reactor for the production of gas by partial oxidation under high pressure of dusty or liquid ash-containing fuel, the pressure vessel of which is reliably shielded against overheating and the action of crude gases, and which is continuous for long periods of time. It enables driving.

本発明には、粉塵状又は液状の燃料の高圧下部分酸化に
よるガス製造用反応器でその反応室が水冷式の・反応室
側に圧縮耐火材を施こした管壁構造によって形成さ札そ
の外側耐圧容器が確実にかつあらゆる運転位相において
過熱及び粗ガス雰囲気の作用に対して守られており、そ
の内部構造物とくに管壁構造が組立及び分解が簡単であ
り、とくに反応室の圧縮耐火材内張の持続性に関して長
時間連続運転を保証するものを提案するという課題が根
拠となっている。
The present invention relates to a reactor for gas production by partial oxidation of dust or liquid fuel under high pressure, the reaction chamber of which is water-cooled, and a tube wall structure with compressed refractory material applied to the reaction chamber side. The outer pressure vessel is reliably protected against overheating and the effects of the crude gas atmosphere in all operating phases, its internal structure, especially the tube wall structure, is easy to assemble and disassemble, especially the compressed refractory material in the reaction chamber. Regarding the sustainability of the lining, the problem is to propose one that guarantees long-term continuous operation.

本発明による解決法は下記の特徴によってすぐれている
: 反応室を構成する・その反応室側に向けられた側にスタ
ッドを植え・圧縮耐火材を施こした管壁は通常1乃至5
crnの距離で気密のハウジングによって囲まれており
、管壁の個々の管とハウジングとの間の中間空間は同じ
く圧縮耐火材を充填しである。
The solution according to the invention is distinguished by the following features: Constructing the reaction chamber; Planting studs on its side facing the reaction chamber; Tube walls covered with compressed refractory material, usually 1 to 5
It is surrounded by a gas-tight housing at a distance crn, and the intermediate spaces between the individual tubes of the tube wall and the housing are also filled with compressed refractory material.

ハウジンクめ内面にはリブが固定してありこれらがこの
内面をいくつかの区劃に分割し圧縮耐火材中に突出して
いる。
Ribs are fixed to the inner surface of the housing and divide this inner surface into sections that protrude into the compressed refractory material.

これらのリブは運転中には不可避の亀裂発生に拘わらず
圧縮耐火材とハウジング内面との間でハウジング壁にそ
った高温ガスの大面積の迷走する流れを回避する目的の
ものである。
These ribs are intended to avoid large areas of stray flow of hot gases along the housing wall between the compressed refractory material and the housing interior surface, despite the inevitable cracking that occurs during operation.

本発明によりこれらのリブはこれらと管壁の管との間に
堅固な結合を生じることなしにある長さの管壁を固定す
るのに役立てることもできる。
According to the invention, these ribs can also serve to secure a length of the tube wall without creating a rigid connection between them and the tube of the tube wall.

このハウジングは外側耐圧容器内に収容しである。The housing is contained within an outer pressure vessel.

外側耐圧容器の外套とハウジングとの間の空間は一つ又
はいくつかの開孔によってハウジング内部の反応室と連
結しである。
The space between the envelope of the outer pressure vessel and the housing is connected to the reaction chamber inside the housing by one or several apertures.

外側耐圧容器にはこの耐圧容器とハウジングとの間の空
間を掃気するための不活性ガスの入口(枝管)が一つ又
はいくつか設けである。
The outer pressure vessel is provided with one or several inert gas inlets (branch pipes) for scavenging the space between the pressure vessel and the housing.

竪形円筒形反応室を備えておりその端面にはバーナ乃至
粗ガス−及びスラグ出口を取付けるための軸方向開孔が
設けである反応器の本発明による望ましい実施形式では
、管壁の円筒形部分は単−又は多重のコイルに巻いた1
本又は数本の平行の管からなり、管の冷媒用人ロー及び
出口端はハウジングを貫きまた公知の構造の取外しが容
易な耐圧気密のブッシングを介して外側耐圧容器を貫い
て導かれている。
In a preferred embodiment of the reactor according to the invention, which has a vertical cylindrical reaction chamber, the end face of which is provided with axial openings for installing the burner or crude gas and slag outlets, a cylindrical shape of the tube wall is used. The part is wound in a single or multiple coils.
It consists of one or more parallel tubes, with the refrigerant flow and outlet ends of the tubes passing through the housing and leading through the outer pressure vessel through easily removable pressure-tight bushings of known construction.

これらの管のコイル中心線側の面にはスタッドが植えで
ある。
Studs are planted on the sides of these tubes facing the coil centerline.

本発明により管のコイルを囲んでいるハウジングの内面
には少なくとも一つの水平面に1本又は数本のリブが固
定してあり隣接している二つの管コイルの間の空間に突
出している。
According to the invention, one or more ribs are fixed on the inner surface of the housing surrounding the tube coils in at least one horizontal plane and project into the space between two adjacent tube coils.

本発明によるとリブの長さはコイルの全長に相当する。According to the invention, the length of the rib corresponds to the total length of the coil.

複数のリブの末端は軸に平行の別のリブによって結合し
てあり后者の外縁は管コイルの外側輪郭に合せである。
The ends of the plurality of ribs are joined by another rib parallel to the axis, the rear outer edge of which conforms to the outer contour of the tube coil.

すなわちコイルの条数に応じて1個又は数個の半円形切
欠が施こしてあり、その半径及び間隔は管半径及びコイ
ルの管間隔に合せである。
That is, one or several semicircular notches are made depending on the number of coils, and the radius and interval of the semicircular notches are matched to the tube radius and the tube spacing of the coils.

管コイルとハウジング内面との間の空間及び公知のとお
り管壁の反応室の輪郭を形成する・スタッドの植えであ
る側は圧縮耐火材が施こしである。
The space between the tube coil and the inner surface of the housing and, as is known, the side of the tube wall on which the studs forming the contour of the reaction chamber are planted is made of compressed refractory material.

本発明により、圧縮耐火材を施こした管壁はハウジング
と望ましくはハウジングと管の入口−乃至出口端との溶
接によりまた形状結合により構造単位を形成し、全体と
して外側耐圧容器内にもたらし組立て乃至外側耐圧容器
を貫く管端のための耐圧気密ブッシングを取外した后に
容器から取出すことができる。
According to the invention, the tube wall provided with compressed refractory material forms a structural unit with the housing, preferably by welding the housing and the inlet-to-outlet end of the tube, and also by form-fitting, and is brought as a whole into the outer pressure vessel and assembled. It can be removed from the container after removing the pressure-tight bushing for the tube end passing through the outer pressure container.

本発明による解決法では、ハウジング内部の反心室と外
側耐圧容器・ハウジング間の中間空間との連結開孔の大
きさが適切であると不活性掃気ガスの量を、最小の掃気
ガス所要量で粗ガスのこの中間空間に進入するのを防ぐ
ように、調整することができる。
In the solution according to the invention, the amount of inert scavenging gas can be controlled with the minimum amount of scavenging gas required if the size of the connecting opening between the counterventricular chamber inside the housing and the intermediate space between the outer pressure vessel and the housing is appropriately sized. Adjustments can be made to prevent crude gas from entering this intermediate space.

唯起動中の反応室内圧力上昇位相においては、該中間空
間の自由容積の大きさと反応室内の昇圧の勾配とに応じ
て不活性ガス量を再調整して中間空間からハウジング内
部への不活性ガスの溢流速度がつねに0より太きいよう
にすべきである。
During the phase of pressure increase in the reaction chamber during startup, the amount of inert gas is readjusted according to the size of the free volume of the intermediate space and the gradient of pressure increase in the reaction chamber, and the amount of inert gas is pumped from the intermediate space to the inside of the housing. The overflow velocity of should always be greater than 0.

本発明の解決法では個々の管乃至管コイル間の堅固な結
合を取止めたことによって管壁の十分な弾力的変形性が
保持されており、個々の管が運転状態において凝固した
スラグの層で被われた圧縮耐火材層の熱膨張・収縮に追
随でき圧縮耐火材剥落の危険が著しく低減されることに
なる。
In the solution according to the invention, sufficient elastic deformability of the tube wall is maintained by eliminating the rigid connection between the individual tubes or tube coils, so that the individual tubes are covered with a layer of solidified slag in operating conditions. It can follow the thermal expansion and contraction of the covered compressed refractory material layer, and the risk of the compressed refractory material falling off is significantly reduced.

そのほか本発明の解決法は外側耐圧容器内壁面の特定の
掃気を可能にし粗ガスによる耐圧容器壁の熱−及び腐食
作用が回避できることになる。
In addition, the solution according to the invention allows a specific scavenging of the inner walls of the outer pressure vessel, so that thermal and corrosive effects on the walls of the pressure vessel due to crude gases are avoided.

本発明を図面により実施例について説明する。Embodiments of the present invention will be described with reference to the drawings.

圧力3.0MPa用に設計された・工業用酸素を用い部
分酸化による灰分約10%の微粉褐炭のガス化用の反応
器(第1図)には円筒形の反応室があり、その端面には
バーナ乃至粗ガス出口を取付けるための軸方向の開孔が
設けてあり、また耐圧容器体3とフランジづけする蓋2
とからなる外側耐圧容器1がある。
The reactor (Figure 1) designed for a pressure of 3.0 MPa for the gasification of pulverized lignite with an ash content of approximately 10% by partial oxidation using industrial oxygen has a cylindrical reaction chamber, and a is provided with an axial opening for attaching the burner or crude gas outlet, and has a lid 2 flanged to the pressure vessel body 3.
There is an outer pressure-resistant container 1 consisting of.

反応器の内部には本来の反応室4がありその内では最高
温度約1400℃、上記の圧力で工業用酸素と微粉褐炭
とが火炎となって相互に反応してC〇−及びH2含有の
ガスとなる。
Inside the reactor is the original reaction chamber 4, in which industrial oxygen and pulverized lignite react with each other in the form of a flame at a maximum temperature of about 1400°C and the above pressure, producing C〇- and H2-containing carbon. It becomes gas.

反応成分の送入はバーナ取付部5で着火と反応室内の温
度抑症との装置も備えているものを介して行なわれる。
The reaction components are fed in via a burner attachment 5 which is also provided with devices for ignition and temperature suppression in the reaction chamber.

生成した粗ガスは約1400℃で溶融スラグとともに排
出−乃び冷却装置6に入り、これを通って反応室を出て
、スラグを分離した后に両肩の処理に送られる。
The crude gas produced enters the discharge and cooling device 6 together with the molten slag at approximately 1400 DEG C., through which it leaves the reaction chamber and, after separating the slag, is sent to the treatment of both shoulders.

反応室は4本の管で形成された四条管コイル7によって
囲まれている。
The reaction chamber is surrounded by a four-tube coil 7 formed of four tubes.

判り易くするため第1図にはこのコイルの一条のみを示
してあり、第2図は4本の管で形成されたこのコイルの
一部を透視図で示す。
For clarity, only one strand of this coil is shown in FIG. 1, and FIG. 2 shows a portion of this coil formed of four tubes in a perspective view.

コイルの管は第3図に詳細に示すとおり反応室に向けら
れた側に溶接したスタッド23が設けである。
The tube of the coil is provided with a welded stud 23 on the side facing the reaction chamber, as shown in detail in FIG.

管のコイル7は外側耐圧容器の外套に比べて比較的薄い
鋼板で作られた気密のハウジング8で囲んである。
The coil of tubing 7 is surrounded by an airtight housing 8 made of sheet steel which is relatively thin compared to the jacket of the outer pressure vessel.

コイルを形成している管の外側とハウジングとの距離は
約2crI′Lである。
The distance between the outside of the tube forming the coil and the housing is approximately 2 crI'L.

ハウジングと管コイルとは架台9の上にのっておりこれ
が負荷を耐圧容器1の底に伝える。
The housing and the tube coil rest on a pedestal 9 which transfers the load to the bottom of the pressure vessel 1.

組立の便宜のためハウジングには起重機で吊るための吊
環10が設けである。
For convenience of assembly, the housing is provided with a hanging ring 10 for hanging with a hoist.

ハウジング8と外側耐圧容器1の外套との間の中間空間
11はバーナ取付部5とハウジング上部開孔との間の環
状間隙12を介して反応室4と連結しである。
An intermediate space 11 between the housing 8 and the jacket of the outer pressure vessel 1 is connected to the reaction chamber 4 via an annular gap 12 between the burner mounting 5 and the housing upper opening.

別の連結は運転中とにかく大幅にスラグで塞がれた・ハ
ウジング8の下部開孔と粗ガスの排出・冷却装置6との
間の下部環状間隙13によって存立している。
A further connection exists through the lower annular gap 13 between the lower opening of the housing 8 and the crude gas discharge/cooling device 6, which is anyway largely plugged with slag during operation.

枝管毀によって環状開孔12,13を通って反応室に移
る窒素で中間空間11を掃気する可能性が与えられる。
The branch pipe opening provides the possibility of purging the intermediate space 11 with nitrogen passing through the annular openings 12, 13 into the reaction chamber.

管コイル7を形成する管の上下両端15は容易に取外し
可能の溶接ブッシング14を介して耐圧容器3の底乃至
その蓋2を貫いて外部へ導いてあり一部1図には示して
いないが一冷却水送入・排出管と連結しである。
The upper and lower ends 15 of the tube forming the tube coil 7 are led to the outside through easily removable welded bushings 14 through the bottom of the pressure vessel 3 or its lid 2, although some parts are not shown in Figure 1. 1. Connected to the cooling water inlet and outlet pipes.

冷却管内の水圧は4.0MPaであり反応室内の圧力よ
り高い。
The water pressure inside the cooling pipe is 4.0 MPa, which is higher than the pressure inside the reaction chamber.

送入されろ水の温度は160℃であり、約150℃の粗
ガスの露点より低い。
The temperature of the incoming filtrate is 160°C, which is below the dew point of the crude gas, which is about 150°C.

ハウジング8の内側には上下に分散していくつかの管コ
イル7と同じピッチで螺旋状に作られたリブ16が設け
てあり、コイルの隣接の管の間の空間にほぼ管中心線の
あたりまで突出している。
Inside the housing 8, ribs 16 are provided which are distributed vertically and are spirally formed at the same pitch as some of the tube coils 7, and are provided in the space between adjacent tubes of the coils, approximately around the center line of the tubes. It stands out even.

リブ16の長さはコイルの全長に相当する。The length of the rib 16 corresponds to the entire length of the coil.

各リブ16の垂直に上下に並〆でいる末端は第3図に示
すとおり垂直に取付けた別のリブ17によって連結して
あり后者の外縁には半月形の切欠10が設けてありそれ
らの半径及び間隔は4本の管からなるコイル7の管の半
径及び間隔に相当する。
The ends of each rib 16, which are arranged vertically one above the other, are connected by another rib 17 mounted vertically, as shown in FIG. The radius and spacing correspond to the radius and spacing of the tubes of the coil 7 consisting of four tubes.

従って垂直のリブ17は櫛状にコイル7に係合する。The vertical ribs 17 thus engage the coil 7 in a comb-like manner.

管のコイル7は炭化珪素を基質とする圧縮耐火材19中
に埋込んであり、后者は管コイル7とノ\ウジング8の
壁との間の中間空間24を充填もし、反応室4に向けら
れた管表面を被いもするものである。
The tube coil 7 is embedded in a compressed refractory material 19 based on silicon carbide, which also fills the intermediate space 24 between the tube coil 7 and the wall of the nozzle 8 and fills the reaction chamber 4. It also covers the directed tube surface.

その際管を内側に向けて被う層の厚さ約20mmは圧縮
耐火材19の表面温度が溶融スラグの約1100℃の凝
固温度より低いように選ばれる。
The thickness of the layer covering the tube on the inside, approximately 20 mm, is selected in such a way that the surface temperature of the compacted refractory material 19 is below the solidification temperature of the molten slag, which is approximately 1100 DEG C.

溶融スラグが壁に衝突する際に耐火性圧縮耐火材19上
で凝固スラグ層20が形成されこれが結局第3図に示す
とおり液状になって流れ去るスラグ・フィルム21に移
行する。
As the molten slag impinges on the wall, a solidified slag layer 20 is formed on the refractory compressed refractory material 19 which eventually transforms into a slag film 21 which liquefies and flows away as shown in FIG.

固体及び液状のスラグ層の厚さに関しては運転中に平衡
状態が現われる。
During operation, an equilibrium occurs with respect to the thickness of the solid and liquid slag layers.

それは一方では温度・熱伝達条件及び反応室4の火炎反
応の効率によって、他方では圧縮耐火材19及び冷却管
の冷却強度及び熱伝導によって左右される。
It depends, on the one hand, on the temperature and heat transfer conditions and the efficiency of the flame reaction in the reaction chamber 4, and on the other hand, on the cooling intensity and heat conduction of the compressed refractory material 19 and the cooling pipes.

圧縮耐火材19と凝固スラグ層20とは比較的強い堅固
な結合を形成し、とくに起貴片及び停止操作過程でなら
びに運転状態の変化の際熱膨張下収縮をうけんしかし選
ばれた解決法では管コイル7の十分に高い可撓性が与え
られており、コイルは圧縮耐火材及びスラグの熱挙動に
追随できるようにしである。
The compressed refractory material 19 and the solidified slag layer 20 form a relatively strong and rigid bond and are subject to contraction under thermal expansion, especially during the lifting and shutting process and during changes in operating conditions. A sufficiently high flexibility of the tube coil 7 is provided so that the coil can follow the thermal behavior of the compressed refractory material and the slag.

こうして圧縮耐火材の剥離の危険が大幅に低減される。The risk of spalling of the compressed refractory material is thus significantly reduced.

これに反して運転中に圧縮耐火材19及びハウジング8
の壁の間に亀裂が生じるのは不可避である。
On the contrary, during operation the compressed refractory material 19 and the housing 8
It is inevitable that cracks will form between the walls.

しかし圧縮耐火材9中に突出しているリブ16及び垂直
のリブ17は高温のガスが圧縮耐火材19の背后で広い
範囲に流れるのを妨げハウジング8の過熱が生じないよ
うにする。
However, the protruding ribs 16 and the vertical ribs 17 in the compressed refractory material 9 prevent the hot gases from flowing over a large area behind the compressed refractory material 19, so that overheating of the housing 8 does not occur.

むしろハウジング8は管コイル7中の冷却水平均温度(
約100℃)にほぼ一致する温度に合致する。
Rather, the housing 8 is the average temperature of the cooling water in the tube coil 7 (
(approximately 100° C.).

よって水蒸気の凝縮が回避される。外側耐圧容器1とハ
ウジング8との間の中間空間11に枝管22を経て送入
される窒素は正常運転においては環状間隙1及び下部環
状間隙13での速度が約0.2m/Sとなるように定め
る。
Condensation of water vapor is thus avoided. During normal operation, the nitrogen fed into the intermediate space 11 between the outer pressure vessel 1 and the housing 8 via the branch pipe 22 has a velocity of approximately 0.2 m/s in the annular gap 1 and the lower annular gap 13. It is determined as follows.

唯反心室4内の圧力をあげる運転位相においては大気圧
換算の窒素流量をの値より若干高い値に増加する。
In the operation phase in which the pressure inside the ventricle 4 is increased, the nitrogen flow rate converted to atmospheric pressure is increased to a value slightly higher than the value of .

ただし■怖、は中間空間11の容積、△P/△Lは単位
時間あたりの昇圧、Poは常圧である。
However, ■ is the volume of the intermediate space 11, △P/△L is the pressure increase per unit time, and Po is the normal pressure.

外側耐圧容器1の外套の内側では窒素雰囲気が支配的で
あり粗ガスからの水蒸気凝縮が回避される。
Inside the jacket of the outer pressure vessel 1, a nitrogen atmosphere predominates and water vapor condensation from the crude gas is avoided.

外側耐圧容器1の温度を作業員の労苦を排除する値に限
定するためになおその内面に第1図には示していない薄
い断熱層が設けである。
In order to limit the temperature of the outer pressure vessel 1 to a value that eliminates the labor of the workers, a thin heat insulating layer (not shown in FIG. 1) is provided on its inner surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高圧下での粉塵状燃料の部分酸化用反応器の図
解。 第2図は四条の管コイルの部分、第3図は第1図のAB
方向に見たハウジング管コイルならびに搗固材被覆及び
スラグ層の細部断面図を示す。 1・・・外側耐圧容器、2・・・耐圧容器蓋、3・・・
耐圧容器体、4・・・反応室、5・・・バーナ取付部、
6・・・排出・冷却装置、7・・・管コイル、8・・・
ハウジングミ9・・・架台、10・・・吊環、11・・
・中間空間、12・・・環状間隙、13・・・下部環状
間隙、14・・・貫通ブッシング、15・・・管コイル
両端、16・・・リブ、17・・・垂直リブ、18・・
・半円形切欠、19・・・圧縮耐火材、20・・・凝固
スラグ層、21・・・流動スラグ膜、22・・・不活性
ガス送入枝管、23・・・スタッド、24・・・中間空
間。
Figure 1 is a diagram of a reactor for partial oxidation of dusty fuel under high pressure. Figure 2 shows the section of the four-striped tube coil, Figure 3 shows AB of Figure 1.
2 shows a detailed sectional view of the housing tube coil as well as of the compacting material coating and slag layer, viewed in the direction; FIG. 1...Outer pressure-resistant container, 2...Pressure-resistant container lid, 3...
Pressure-resistant container body, 4... reaction chamber, 5... burner mounting part,
6... Discharge/cooling device, 7... Tube coil, 8...
Housing Mi 9... Frame, 10... Hanging ring, 11...
- Intermediate space, 12... Annular gap, 13... Lower annular gap, 14... Penetration bushing, 15... Both ends of tube coil, 16... Rib, 17... Vertical rib, 18...
- Semicircular notch, 19... Compressed refractory material, 20... Solidified slag layer, 21... Fluid slag film, 22... Inert gas feed branch pipe, 23... Stud, 24...・Intermediate space.

Claims (1)

【特許請求の範囲】 1 高圧下で粉塵上及び/又は液状の灰分含有燃料の部
分酸化反応器で、その反応室が圧縮耐火材で被覆した流
過冷却管壁からなり、管壁の個々の管は相対的に弾力的
に可動であるものにおいて、管壁は僅かな距離で気密の
ハウジング8に囲まれており、後者はこれまた外側耐圧
容器1内に収容してあり、ハウジング8と管壁の管との
間に生じた中間空間24は圧縮耐火材19を充填してあ
り、ハウジング8内面にはリブ16が固定してあってこ
の内面をいくつかの区劃に分割し中間空間24に充填し
である圧縮耐火材19中に突出しており、ハウジング8
内の反応室4は外側耐圧容器1とハウジング8との間の
中間空間11と一つ又はいくつかの開孔によって連結し
ており、該中間空間11には少なくとも1本の不活性掃
気ガス送入用枝管22が設けであることを特徴とする反
応器。 2 管壁の円筒形の部分は単一の又は多重のコイルの形
をしていることを特徴とする特許請求の範囲第1項記載
の反応器。 3 ハウジング8の内面には一つの又はいくつかの水平
面で螺旋形で管壁の管コイル7と同じピッチで一つ又は
いくつかのリブ16が固定してあって隣接している二つ
の管コイルの間の中間空間24中に突出していることを
特徴とする特許請求の範囲第1項又は第2項記載の反応
器。 41本のリブ16の長さはコイルの全長に相当し、その
両端はハウジング8に固定しである軸に平行の別のリブ
17によって連結してあり、后者の外縁には一つ又はい
くつかの半円形の切欠かありその半径及び間隔は管壁の
部分に適合させであることを特徴とする特許請求の範囲
第3項記載の反応器。 5 圧縮耐火材19を施こした管壁及びハウジング8は
構造単位として外側耐圧容器1内に取付可能に接合しで
あることを特徴とする特許請求の範囲第1項乃至第4項
のいずれか1項に記載の反応器。
[Scope of Claims] 1. A reactor for the partial oxidation of dusty and/or liquid ash-containing fuels under high pressure, the reaction chamber of which consists of a flow subcooled tube wall coated with a compressed refractory material, in which each of the tube walls In those cases in which the tube is relatively elastically movable, the tube wall is surrounded at a small distance by a gas-tight housing 8, which is also housed in the outer pressure-tight enclosure 1, and which connects the housing 8 and the tube. The intermediate space 24 created between the wall and the tube is filled with a compressed refractory material 19, and ribs 16 are fixed to the inner surface of the housing 8, dividing this inner surface into several sections to form the intermediate space 24. It protrudes into the compressed refractory material 19 filled with the housing 8.
The inner reaction chamber 4 is connected by one or several openings to an intermediate space 11 between the outer pressure vessel 1 and the housing 8, into which at least one inert scavenging gas line is connected. A reactor characterized in that an inlet branch pipe 22 is provided. 2. Reactor according to claim 1, characterized in that the cylindrical part of the tube wall is in the form of a single or multiple coils. 3. On the inner surface of the housing 8, one or several ribs 16 are fixed in a spiral shape in one or several horizontal planes and at the same pitch as the tube coils 7 on the tube wall, so that two adjacent tube coils can be connected to each other. 3. The reactor according to claim 1, wherein the reactor projects into the intermediate space 24 between the reactors. The length of the 41 ribs 16 corresponds to the entire length of the coil, and both ends of the ribs 16 are fixed to the housing 8 and connected by another rib 17 parallel to the axis. 4. A reactor according to claim 3, characterized in that there is a semicircular notch whose radius and spacing are adapted to the portion of the tube wall. 5. Any one of claims 1 to 4, characterized in that the tube wall on which the compressed refractory material 19 is applied and the housing 8 are joined together so that they can be installed in the outer pressure vessel 1 as a structural unit. Reactor according to item 1.
JP12428979A 1979-09-28 1979-09-28 Reactor for gas production by partial oxidation Expired JPS5844717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12428979A JPS5844717B2 (en) 1979-09-28 1979-09-28 Reactor for gas production by partial oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12428979A JPS5844717B2 (en) 1979-09-28 1979-09-28 Reactor for gas production by partial oxidation

Publications (2)

Publication Number Publication Date
JPS5647489A JPS5647489A (en) 1981-04-30
JPS5844717B2 true JPS5844717B2 (en) 1983-10-05

Family

ID=14881646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12428979A Expired JPS5844717B2 (en) 1979-09-28 1979-09-28 Reactor for gas production by partial oxidation

Country Status (1)

Country Link
JP (1) JPS5844717B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204686A (en) * 1983-05-10 1984-11-20 Babcock Hitachi Kk Coal gasification furnace
JPH0823028B2 (en) * 1985-03-13 1996-03-06 三菱重工業株式会社 Coal gasifier
JPH0635588B2 (en) * 1985-03-25 1994-05-11 三菱重工業株式会社 Coal gasifier
JPS61218690A (en) * 1985-03-25 1986-09-29 Mitsubishi Heavy Ind Ltd Coal gasifier
JPH0635587B2 (en) * 1985-03-25 1994-05-11 三菱重工業株式会社 Coal gasifier
JPH0631347B2 (en) * 1985-03-26 1994-04-27 三菱重工業株式会社 Coal gasifier
JPS61221293A (en) * 1985-03-26 1986-10-01 Mitsubishi Heavy Ind Ltd Coal gasifying apparatus
JPS61228093A (en) * 1985-04-01 1986-10-11 Mitsubishi Heavy Ind Ltd Fuel gasification apparatus
JPH0635589B2 (en) * 1985-04-17 1994-05-11 三菱重工業株式会社 Pressurized gasifier
JPS61243893A (en) * 1985-04-22 1986-10-30 Mitsubishi Heavy Ind Ltd Slag discharging apparatus for gasifying oven
JPH0449165Y2 (en) * 1985-04-23 1992-11-19
JPS61181679U (en) * 1985-05-04 1986-11-12
CN102851080B (en) * 2011-06-30 2015-08-26 通用电气公司 Integrated gasification combined cycle power generation system and gasifying reactor and method

Also Published As

Publication number Publication date
JPS5647489A (en) 1981-04-30

Similar Documents

Publication Publication Date Title
US4343626A (en) Reactor for producing a carbon monoxide and hydrogen containing gas
KR101160505B1 (en) Apparatus for gasifying a fuel
JPS5844717B2 (en) Reactor for gas production by partial oxidation
EP1939271B1 (en) Dump cooled gasifier
RU2499815C2 (en) Burner attachment device with cooling system for burner plant in gas generator with flow gasification
CA2619437C (en) Gasifier liner
RU2358831C2 (en) Heated flute for molten metal
SU839442A3 (en) Device for gasifying powdered fuel
US4113441A (en) Steam reforming reactor
WO1998050606A1 (en) Vertical furnace for the treatment of semiconductor substrates
US8673231B2 (en) Exchanger-reactor with bayonet tubes and chimneys suspended from the upper dome of the reactor
US4188915A (en) Water-cooled, high-temperature gasifier
US4098324A (en) Water-cooled, high-temperature gasifier and method for its operation
JP2964353B2 (en) Gasifier and throat assembly for combustion chamber thereof
KR20090098810A (en) Gasification reactor
CN214950753U (en) High-temperature fluid conveying pipeline with pipeline shell composed of heat exchange equipment and applicable heat exchange equipment
CN108699456A (en) Gasification system and technique
US2701755A (en) Valve
US20220205734A1 (en) High-temperature fluid transporting pipeline with pipeline casing formed by heat exchange apparatus, suitable heat exchange apparatus and heat exchange method
JPH01315490A (en) Apparatus for gasifying carbonaceous fuel mixture
AU673273B2 (en) Tubular heater for preparing carbon monoxide-containing gas mixtures
CS273309B2 (en) Slagging gasifying generator
HU181856B (en) Water gas reactors
PL204050B1 (en) Refractory protected, replaceable insert for a gasifier
CN108138059A (en) For the cooling device of the burner of gasification reactor