JPS60147558A - Altitude compensation device for internal-combustion engine - Google Patents

Altitude compensation device for internal-combustion engine

Info

Publication number
JPS60147558A
JPS60147558A JP361084A JP361084A JPS60147558A JP S60147558 A JPS60147558 A JP S60147558A JP 361084 A JP361084 A JP 361084A JP 361084 A JP361084 A JP 361084A JP S60147558 A JPS60147558 A JP S60147558A
Authority
JP
Japan
Prior art keywords
air
passage
valve
fuel
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP361084A
Other languages
Japanese (ja)
Inventor
Hidemi Onaka
大仲 英巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP361084A priority Critical patent/JPS60147558A/en
Publication of JPS60147558A publication Critical patent/JPS60147558A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M3/00Idling devices for carburettors
    • F02M3/08Other details of idling devices
    • F02M3/09Valves responsive to engine conditions, e.g. manifold vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M7/00Carburettors with means for influencing, e.g. enriching or keeping constant, fuel/air ratio of charge under varying conditions
    • F02M7/23Fuel aerating devices
    • F02M7/24Controlling flow of aerating air
    • F02M7/28Controlling flow of aerating air dependent on temperature or pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Abstract

PURPOSE:To permit to hold the mixture of carburettor in a high land in the optimum air-fuel ratio in any operating zone by a method wherein an altitude compensating air path is provided with a bypass path and the bypass path is provided with a vacuum control valve, opening and closing in accordance with the vacuum in the bypass path. CONSTITUTION:When atmospheric pressure is reduced in the high land, the bellows 3 of the altitude compensating valve 11 is expanded to close an releasing port 14. Accordingly, a diaphragm chamber 17 is kept in a high vacuum, as a result, a diaphragm 15 and a valve 18 are lifted up against a spring 16 and atmosphere from a filter 12 is introduced into the altitude compensating air paths 8, 10. According to the introduction, air is introduced into the fuel of fuel paths 5, 6 and the air-fuel ratio is thinned. In this case, a high vacuum is introduced into the diaphragm chamber 27 when the opening degree of a throttle valve 3 is low, for example, and the valve 29 is lowered against the spring 26 to close an atmosphere supplying path 22b. According to this method, the excessively thin air-fuel ratio in case the amount of suction air is small, for example, may be prevented and the optimum air-fuel ratio may be secured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、内燃機関の気化器混合気の濃度を高度補償す
る高度補償装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an altitude compensation device for altitude compensating the concentration of a carburetor mixture of an internal combustion engine.

従来技術 内燃+ffl閏において、その混合気は、高度が増すに
したがって気圧が小さくなり空気密度が小さくなる為、
濃くなる。これを補償する装置として、従来から高度が
増すと気化器の燃料通路に大気を導入し、燃料吐出量を
減少させる高度補償装置が知られている。
In the conventional technology internal combustion + ffl leap, the air pressure of the air-fuel mixture decreases as the altitude increases, and the air density decreases.
It gets darker. As a device for compensating for this, an altitude compensating device is conventionally known that introduces atmospheric air into the fuel passage of the carburetor to reduce the amount of fuel discharged as the altitude increases.

しかしながら、この場合、気化器のスロー系燃料が混合
気の空燃比に大きく影響を与える領域においては、大気
導入通路の絞り径を同−絞り径で空気を導入した場合で
あっても、アイドル時の様な吸入空気量の小さい域の方
が燃料叶出量の減少効果が大きい傾向にある。そのため
、比較的空気量の多い域で適正な空燃比になる様にスロ
ー系への空気導入絞り径を設定すると、空気量の小さい
域では空気導入量が過大となって空燃比が過薄となり、
アイドル不安定等の運転性の悪化を招くおそれがあった
。逆に空気量の小さい域で適正な空燃比になる様に設定
すると、比較的空気量の多い域では空気導入量が不足し
て空燃比が過濃となり、排気中の一酸化炭素や炭化水素
等の排出物が増加づると共に運転性も悪くなるおそれが
あるという問題があった。
However, in this case, in a region where the slow fuel of the carburetor has a large effect on the air-fuel ratio of the mixture, even if air is introduced with the same orifice diameter in the atmosphere introduction passage, at idle The effect of reducing the amount of fuel output tends to be greater in the region where the amount of intake air is small, such as . Therefore, if the diameter of the air introduction orifice to the slow system is set so that an appropriate air-fuel ratio is achieved in a region where the amount of air is relatively large, the amount of air introduced will be excessive and the air-fuel ratio will become too lean in a region where the amount of air is small. ,
This may lead to deterioration in drivability such as unstable idling. Conversely, if you set the air-fuel ratio to be appropriate in a region where the amount of air is small, in regions where the amount of air is relatively large, the amount of air introduced will be insufficient and the air-fuel ratio will become overly rich, causing carbon monoxide and hydrocarbons in the exhaust gas to There has been a problem in that as the amount of emissions increases, the drivability may also deteriorate.

発明の目的 本発明は、上記のような問題を解消するために、高地に
おける気化器混合気をどの運転域でも適正な空燃比に保
ち、良好な運転性を確保するとともに排気中の不良成分
を低減することを目的とする。
Purpose of the Invention In order to solve the above-mentioned problems, the present invention maintains the carburetor mixture at an appropriate air-fuel ratio in any operating range at high altitudes, ensures good drivability, and eliminates defective components in the exhaust gas. The aim is to reduce

発明の構成 この目的を達成するために、本発明の内燃機関の高度補
償装置においては、気圧が小さくなれば気化器の燃料通
路に大気を供給する高度補償バルブから気化器のスロー
系燃料通路に通じる従来の高度補償用空気通路に、バイ
パス通路が設けられ、このバイパス通路に、吸気通路の
スロットルバルブ位置に設けられた負圧取出口に負圧通
路によって接続されその負圧に応じてバイパス通路を開
閉する負圧制御弁が設けられている。
Structure of the Invention In order to achieve this object, in the altitude compensating device for an internal combustion engine of the present invention, when the atmospheric pressure becomes small, the altitude compensating valve that supplies atmospheric air to the fuel passage of the carburetor flows into the slow system fuel passage of the carburetor. A bypass passage is provided in the conventional altitude compensation air passage, which is connected to a negative pressure outlet provided at the throttle valve position of the intake passage by a negative pressure passage. A negative pressure control valve is provided to open and close the valve.

発明の作用 このような高度補償HEにおいては、スロー系燃料通路
に通じる高度補償用空気通路の絞り径は、機関の吸入空
気量が小さい場合に適正な空燃比になるように設定され
、バイパス通路の絞り径は、前記高度補償用空気通路と
バイパス通路の両方から大気が送られたときに、機関の
吸入空気量が大きい場合に適?EイT空燃比となるよう
に設定される。そして、このバイパス通路からの空気を
高度補償用空気通路からの空気に加えるかどうかは、バ
イパス通路を負圧制御弁によって開閉することによって
制御される。負圧制御弁は、スロットルバルブ位置の負
圧によって制御され、スロットルバルブが低開度で高負
圧の場合にはバイパス通路が閉じるように、スロットル
バルブの開度が大となって低負圧あるいは大気圧に近く
なった場合にはバイパス通路が開くように、制御される
。その結果、スロー系燃料通路への大気の導入量は、ス
ロットルバルブの開度すなわち機関の運転状態に応じて
大小に制御され、アイドル時のような吸入空気量の小さ
い域では小とされ、吸入空気量の大きい域では大とされ
て、混合気はそれぞれ適正な空燃1ヒに制御される。
Effect of the Invention In such an altitude compensation HE, the throttle diameter of the altitude compensation air passage leading to the slow system fuel passage is set so that an appropriate air-fuel ratio is achieved when the intake air amount of the engine is small. Is the orifice diameter suitable for when the intake air amount of the engine is large when air is sent from both the altitude compensation air passage and the bypass passage? The air-fuel ratio is set to ET. Whether or not the air from the bypass passage is added to the air from the altitude compensation air passage is controlled by opening and closing the bypass passage using a negative pressure control valve. The negative pressure control valve is controlled by the negative pressure at the throttle valve position, and when the throttle valve is opened at a low opening and high negative pressure, the bypass passage is closed, and the opening of the throttle valve is increased to reduce the negative pressure. Alternatively, the bypass passage is controlled to open when the pressure becomes close to atmospheric pressure. As a result, the amount of atmospheric air introduced into the slow system fuel passage is controlled to be large or small depending on the opening of the throttle valve, that is, the operating state of the engine. In areas where the amount of air is large, the amount of air is increased, and the air-fuel mixture is controlled to an appropriate air-fuel ratio.

発明の効果 したがって、本発明によれば、気化器混合気の)開度を
高度補償するに際し、吸入空気量の異なるどの運転域に
おいても機関の運転状態に応じて適正な空燃比に保つこ
とができ、高地でも全領域で良好な運転状態を確保する
ことができるとともに排気中の不良成分の低減をはかる
ことができるという効果が1qられる。
Effects of the Invention Therefore, according to the present invention, when highly compensating the opening degree of the carburetor air-fuel mixture, it is possible to maintain an appropriate air-fuel ratio according to the operating state of the engine in any operating range where the amount of intake air differs. This has the effect of ensuring good operating conditions in all regions even at high altitudes and reducing the amount of harmful components in the exhaust gas.

実施例 以下に本発明の内燃機関の高度補償装置の望ましい実施
例を図面を参照して説明する。
Embodiments Below, preferred embodiments of the altitude compensating device for an internal combustion engine of the present invention will be described with reference to the drawings.

図は、本発明の一実施例に係る内燃機関の高度補償装置
を示しており、図中1は気化器、2は吸気通路を示して
いる。吸気通路2にはスロットルバルブ3が設けられて
いる。気化器1には、フロート室4が備えられており、
フロート室4から吸気通路2には、燃料を導くメーン燃
料通路5およびスロー系燃料通路6が形成されている。
The figure shows an altitude compensator for an internal combustion engine according to an embodiment of the present invention, in which numeral 1 indicates a carburetor and numeral 2 indicates an intake passage. A throttle valve 3 is provided in the intake passage 2. The vaporizer 1 is equipped with a float chamber 4,
A main fuel passage 5 and a slow system fuel passage 6 for guiding fuel from the float chamber 4 to the intake passage 2 are formed.

メーン燃料通路5は絞り7を有する高度補償用空気通路
8を介して、スロー系燃料通路6は絞り9を有する高度
補償用空気通路1oを介して、それぞれ高度補償バルブ
11に連通している。
The main fuel passage 5 communicates with the altitude compensation valve 11 via an altitude compensation air passage 8 having a throttle 7, and the slow system fuel passage 6 communicates with an altitude compensation air passage 1o having a throttle 9.

高度補償バルブ11は、大気を線通して導入する大気フ
ィルタ12、気圧に応じて伸縮するベローズ13、ベロ
ーズ13の作動により開閉される開放口14、開放口1
4が形成されておりダイヤフラム15、スプリング16
が備えられたダイヤフラム室17、および高度補償用空
気通路8.10への大気の連通を開閉する弁18から構
成されている。ダイヤフラム室17は、通路19を介し
て吸気通路2のス1]ツトルバルブ3下流側に連通され
ている。通路19には、絞り20と逆止弁21が設けら
れている。
The altitude compensation valve 11 includes an atmospheric filter 12 that introduces atmospheric air through a line, a bellows 13 that expands and contracts according to atmospheric pressure, an opening 14 that opens and closes when the bellows 13 operates, and an opening 1.
4 is formed, a diaphragm 15, a spring 16
It consists of a diaphragm chamber 17 equipped with a diaphragm chamber 17, and a valve 18 that opens and closes communication of the atmosphere to the altitude compensation air passage 8.10. The diaphragm chamber 17 is communicated with the intake passage 2 downstream of the throttle valve 3 via a passage 19. The passage 19 is provided with a throttle 20 and a check valve 21.

高度補償用空気通路10には、バイパス通路22が設け
られており、バイパス通路22の途中には負圧制御弁2
3が設けられている。高度補償用空気通路10から負圧
制御弁23までの通路22aは、絞り9の上流側から高
度補償用空気通路10内の大気を負圧制御弁23に導く
大気導入通路として構成され、負圧制御弁23から高度
補償用空気通路10までの通路22bは、負圧制御弁2
3から高度補償用空気通路10内の絞り9の下流側へ大
気を導く大気供給通路として構成されている。大気供給
通路22bには絞り24が設けられている。
A bypass passage 22 is provided in the altitude compensation air passage 10, and a negative pressure control valve 2 is installed in the middle of the bypass passage 22.
3 is provided. The passage 22a from the altitude compensation air passage 10 to the negative pressure control valve 23 is configured as an atmosphere introduction passage that guides the atmosphere in the altitude compensation air passage 10 from the upstream side of the throttle 9 to the negative pressure control valve 23. The passage 22b from the control valve 23 to the altitude compensation air passage 10 is connected to the negative pressure control valve 2.
3 to the downstream side of the throttle 9 in the altitude compensation air passage 10. A throttle 24 is provided in the atmosphere supply passage 22b.

負圧制御弁23は、ダイヤフラム25、スプリング26
を有するダイヤフラム室27と、ダイヤフラム25に連
結されブツシュ28に摺動自在に嵌合され大気供給通路
22bを開閉する弁29から構成されている。ダイヤフ
ラム室27は、負圧通路30、吸気通路2のスロットル
パル13位置、より詳しくはスロットルバルブ3の直下
流側に開口された負圧取出口31を介して、吸気通路2
に連通している。
The negative pressure control valve 23 includes a diaphragm 25 and a spring 26.
The valve 29 is connected to the diaphragm 25 and slidably fitted into the bush 28 to open and close the atmospheric supply passage 22b. The diaphragm chamber 27 is connected to the intake passage 2 through a negative pressure passage 30 and a negative pressure outlet 31 opened directly downstream of the throttle valve 3 at the position of the throttle pulse 13 in the intake passage 2.
is connected to.

上記のように構成された高度補償装置の作用について以
下に述べる。
The operation of the altitude compensation device configured as described above will be described below.

まず、平地状態では、大気は通常の気圧であるので、高
度補償バルブ11のへローズ13は図、示。如く縮ん、
俣態4.あり、開放D14(よ問いた状態にある。ダイ
ヤフラム室17には、吸気通路2の負圧が通路19を介
して導かれるが、絞り20があるため、かつ開放口14
の開放により大気と連通されているため、ダイヤフラム
室17はほぼ大気圧となる。そのため、スプリング16
の力でダイヤフラム15が押され、弁18が押されて高
度補償用空気通路8.10の入口を閉塞し、高度補償用
空気通路8.10への大気の供給が遮断される。その結
果、負圧制御弁23の作動にかかわらず、燃料通路5.
6には大気は供給されず、所定の燃料がそのまま吸気通
路2に供給される。
First, in a flat state, the atmosphere has normal atmospheric pressure, so the height compensation valve 11 has a hollow 13 as shown in the figure. Shrink as if
Mata state 4. The negative pressure of the intake passage 2 is guided to the diaphragm chamber 17 via the passage 19, but since there is a restriction 20, and the opening D14 is in the open state.
Since the diaphragm chamber 17 is communicated with the atmosphere by opening, the pressure in the diaphragm chamber 17 is approximately atmospheric. Therefore, the spring 16
The force pushes the diaphragm 15, and the valve 18 closes the inlet of the altitude compensation air passage 8.10, cutting off the supply of atmospheric air to the altitude compensation air passage 8.10. As a result, regardless of the operation of the negative pressure control valve 23, the fuel passage 5.
6 is not supplied with atmospheric air, and a predetermined fuel is supplied to the intake passage 2 as it is.

つぎに高地状態では、気圧が低下するので高度補償バル
ブ11のベローズ13が伸び開放口14が閉じられる。
Next, at high altitudes, the air pressure decreases, so the bellows 13 of the altitude compensation valve 11 extends and the opening 14 is closed.

そのため、通路19を介してダイヤラム室17に導かれ
る負圧が逆止弁21によって封じ込められ、ダイヤフラ
ム室17は高負圧に保持される。その結果、スプリング
16に打ち勝ってダイヤフラム15が引き上げられ、弁
18が引き上げられて、高度補償用空気通路8.10に
大気フィルタ12からの大気が導入される。この大気導
入により、燃料−通路5.6の燃料中に空気が導入され
て燃料供給昂が抑えられ、空燃比が適正に薄くされる。
Therefore, the negative pressure introduced into the diaphragm chamber 17 through the passage 19 is sealed off by the check valve 21, and the diaphragm chamber 17 is maintained at a high negative pressure. As a result, the spring 16 is overcome and the diaphragm 15 is pulled up, the valve 18 is pulled up, and atmospheric air from the atmospheric filter 12 is introduced into the altitude compensation air passage 8.10. By introducing the atmosphere, air is introduced into the fuel in the fuel passage 5.6, suppressing the fuel supply pressure and appropriately thinning the air-fuel ratio.

この大気導入のうち、スロー系燃料通路6への大気の導
入量は、負圧制御弁23によって、1幾関の運転状態に
応じて制御される。
Of this atmospheric air introduction, the amount of atmospheric air introduced into the slow system fuel passage 6 is controlled by the negative pressure control valve 23 according to one or more operating conditions.

すなわち、負圧取出口31の位置における吸気通路2内
の負圧は、アイドル状態のようなスロットルバルブ3が
低開度の運転域においては高負圧となり、スロットルバ
ルブ3が開かれるとほぼ大気圧となる。そのため、スロ
ットルバルブ3が低1tt1度のときには、高負圧が負
圧制御弁23のダイヤフラム室27に導入され、スプリ
ング26に抗して弁29が下がり、大気供給通路22b
が閉じられて、バイパス通路22からスロー系燃料通路
6への大気の導入が遮断される。したがって、その状態
ではスロー系燃料通路6へは高度補償用空気通路10の
絞り9を通された大気のみが導入され、大気導入量が小
に抑えられる。この絞り9の断面積は、アイドル状態の
ように機関の吸入空気量が小さい場合に、その供給空気
量によってスロー系燃料の量が適正に抑えられるように
設定されるので、従来のような吸入空気量が小さい場合
の空燃比の過薄が防止されて、適正な空燃比が確保され
る。
That is, the negative pressure in the intake passage 2 at the position of the negative pressure outlet 31 becomes high negative pressure in an operating range where the throttle valve 3 is opened at a low degree, such as in an idling state, and becomes almost large when the throttle valve 3 is opened. becomes atmospheric pressure. Therefore, when the throttle valve 3 is at a low 1tt1 degree, high negative pressure is introduced into the diaphragm chamber 27 of the negative pressure control valve 23, the valve 29 is lowered against the spring 26, and the atmospheric supply passage 22b is lowered.
is closed, and the introduction of the atmosphere from the bypass passage 22 to the slow system fuel passage 6 is blocked. Therefore, in this state, only the air that has passed through the throttle 9 of the altitude compensation air passage 10 is introduced into the slow system fuel passage 6, and the amount of air introduced is kept small. The cross-sectional area of the throttle 9 is set so that when the intake air amount of the engine is small, such as when the engine is in an idling state, the amount of slow system fuel can be appropriately suppressed by the amount of supplied air. This prevents the air-fuel ratio from becoming too thin when the amount of air is small, and ensures a proper air-fuel ratio.

逆に、スロットルバルブ3が開かれると、ダイヤフラム
室27はほぼ大気圧となり、スプリング26の力でダイ
ヤフラム25、弁29が押し上げられ、大気導入通路2
2aと大気供給通路22bが連通されてバイパス通路2
2が聞かれる。バイパス通路22が開くと、絞り9で規
定された大気導入量に追加して、バイパス通路22から
絞り24によって規定される大気が導入され、スロー系
燃料通路6への大気導入量が増大される。その結果、絞
り9を吸入空気量が小さい場合に合わせて設定していた
としても、バイパス通路22からの大気追加によって、
吸入空気吊が多い場合に対しても適正な空燃比になるよ
うに大気導入され、スロー系燃料通路6の燃料供給量が
適正に調整される。
Conversely, when the throttle valve 3 is opened, the diaphragm chamber 27 becomes almost atmospheric pressure, and the force of the spring 26 pushes up the diaphragm 25 and the valve 29, and the atmosphere introduction passage 2
2a and the atmosphere supply passage 22b are communicated with each other to form the bypass passage 2.
2 will be asked. When the bypass passage 22 opens, in addition to the amount of air introduced by the throttle 9, the atmosphere defined by the throttle 24 is introduced from the bypass passage 22, increasing the amount of air introduced into the slow system fuel passage 6. . As a result, even if the throttle 9 is set according to the case where the amount of intake air is small, due to the addition of atmospheric air from the bypass passage 22,
Even when there is a large amount of intake air, atmospheric air is introduced so that an appropriate air-fuel ratio is achieved, and the amount of fuel supplied to the slow system fuel passage 6 is appropriately adjusted.

したがって、本実施例によれば、機関の運転状態をスロ
ットルバルブ3の開度による吸気通路2の負圧によって
検知し、運転状態に応じてスロー系燃料通路6への高度
補償用大気導入歯を制御するようにしたので、吸入空気
量の異なるどの運転域においても適正な空燃比を確保す
ることができるという効果が得られる。その結果、高地
状態でも全運転域で良好な運転性を確保することができ
るとともに、排気中の一酸化炭素や炭化水素などの不良
排出物の低減をはかることができる。
Therefore, according to this embodiment, the operating state of the engine is detected by the negative pressure in the intake passage 2 based on the opening degree of the throttle valve 3, and the air introduction gear for altitude compensation to the slow system fuel passage 6 is adjusted depending on the operating state. Since the control is carried out, it is possible to obtain the effect that an appropriate air-fuel ratio can be ensured in any operating range where the amount of intake air differs. As a result, it is possible to ensure good drivability in all driving ranges even at high altitudes, and to reduce harmful emissions such as carbon monoxide and hydrocarbons in the exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例に係る内燃機関の高度補償@置の
概略構成図である。 1・・・・・・気化器 2・・・・・・吸気通路 3・・・・・・スロットルバルブ 5・・・・・・メーン燃料通路 6・・・・・・スロー系燃料通路 7.9・・・・・・絞り 8.10・・・・・・高度補償用空気通路11・・・・
・・高度補償バルブ 17・・・・・・ダイヤフラム 18・・・・・・弁 20・・・・・・絞り 21・・・・・・逆止弁 22・・・・・・バイパス通路 22a・・・・・・大気導入通路 22b・・・・・・大気供給通路 23・・・・・・負圧制御弁 24・・・・・・絞り 27・・・・・・ダイヤフラム 29・・・・・・弁 30・・・・・・負圧通路 31・・・・・・負圧取出口
The figure is a schematic configuration diagram of an altitude compensation @ position of an internal combustion engine according to an embodiment of the present invention. 1... Carburetor 2... Intake passage 3... Throttle valve 5... Main fuel passage 6... Slow system fuel passage 7. 9... Throttle 8.10... Altitude compensation air passage 11...
... Altitude compensation valve 17 ... Diaphragm 18 ... Valve 20 ... Throttle 21 ... Check valve 22 ... Bypass passage 22a. ... Atmospheric introduction passage 22b... Atmospheric supply passage 23... Negative pressure control valve 24... Restriction 27... Diaphragm 29... ... Valve 30 ... Negative pressure passage 31 ... Negative pressure outlet

Claims (1)

【特許請求の範囲】[Claims] (1) 気圧が小さくなれば気化器の燃料通路に大気を
供給する高度補償バルブから気化器のスロー系燃r1通
路に通じる高度補償用空気通路に、バイパス通路を設け
るとともに、該バイパス通路に、吸気通路のスロットル
バルブ位置に設けられた負圧取出口に接続され該負圧に
応じて前記バイパス通路を開閉する負圧制御弁を設けた
ことを特徴とする内燃機関の高度補償装置。
(1) A bypass passage is provided in the altitude compensation air passage leading from the altitude compensation valve that supplies atmospheric air to the fuel passage of the carburetor to the slow system fuel r1 passage of the carburetor when the atmospheric pressure becomes low, and in the bypass passage, An altitude compensator for an internal combustion engine, comprising a negative pressure control valve connected to a negative pressure outlet provided at a throttle valve position of an intake passage and opening and closing the bypass passage in accordance with the negative pressure.
JP361084A 1984-01-13 1984-01-13 Altitude compensation device for internal-combustion engine Pending JPS60147558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP361084A JPS60147558A (en) 1984-01-13 1984-01-13 Altitude compensation device for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP361084A JPS60147558A (en) 1984-01-13 1984-01-13 Altitude compensation device for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS60147558A true JPS60147558A (en) 1985-08-03

Family

ID=11562254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP361084A Pending JPS60147558A (en) 1984-01-13 1984-01-13 Altitude compensation device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60147558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919451A (en) * 1987-08-05 1990-04-24 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Automatic seat belt device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919451A (en) * 1987-08-05 1990-04-24 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Automatic seat belt device

Similar Documents

Publication Publication Date Title
US4180035A (en) Internal combustion engine with an exhaust gas recirculation system
CA1130670A (en) Exhaust gas recirculation control system
US4171688A (en) Intake control apparatus
JPH06249087A (en) Vaporized fuel controller
JPS60147558A (en) Altitude compensation device for internal-combustion engine
JPS6232323B2 (en)
JPS60147559A (en) Altitude compensating device for internal-combustion engine
JPS599074Y2 (en) Pressure-responsive devices in internal combustion engines
JPH0329569Y2 (en)
JPS6339404Y2 (en)
JPS6020577B2 (en) Intake system for multi-cylinder internal combustion engine
JPS6136768Y2 (en)
JPS5898649A (en) Mixture ratio adjusting device for carburetor
JPS6011667A (en) Oxygen rich air feeder
JPH0330618Y2 (en)
JPS6032370Y2 (en) Exhaust recirculation control device
JPH0128295Y2 (en)
JPH0245497Y2 (en)
JPS6221985B2 (en)
JPS6014910Y2 (en) engine carburetor
JPS6214366Y2 (en)
JPS6339413Y2 (en)
JPS6341566Y2 (en)
JPS646338B2 (en)
JPS6041217B2 (en) Enrichment device for internal combustion engine carburetor