JPS60146215A - Optical branch coupler - Google Patents
Optical branch couplerInfo
- Publication number
- JPS60146215A JPS60146215A JP185084A JP185084A JPS60146215A JP S60146215 A JPS60146215 A JP S60146215A JP 185084 A JP185084 A JP 185084A JP 185084 A JP185084 A JP 185084A JP S60146215 A JPS60146215 A JP S60146215A
- Authority
- JP
- Japan
- Prior art keywords
- light
- polarized light
- optical
- optical fiber
- faraday element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、例えば光フアイバ伝送における光データバ
スの光の塩9出し、あるいは結合に使用する光分岐結合
器に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical branching/coupling device used, for example, for extracting or coupling light of an optical data bus in optical fiber transmission.
第1図は従来の光分岐結合器の一例を示す斜視図であシ
、図において+11 、 (2) 、 (3)は第1、
第2、第3の光ファイバ、(4) 、 (s) 、 (
6)は第1、第2、第3の屈折率分布型レンズ、(7)
は偏光ビームスプ1.・ツタ、(7a)は偏光ビームス
プリッタ(7)の誘電体多層膜、(8)は4分の1波長
板、(9)は反射鏡である。FIG. 1 is a perspective view showing an example of a conventional optical branching coupler. In the figure, +11, (2), and (3) are the first,
Second and third optical fibers, (4), (s), (
6) are first, second, and third gradient index lenses; (7)
is the polarized beam split 1. - Ivy, (7a) is a dielectric multilayer film of a polarizing beam splitter (7), (8) is a quarter wavelength plate, and (9) is a reflecting mirror.
次に動作について説明する。Next, the operation will be explained.
光ファイバ(1)から出射した光は屈折率分布型レンズ
(1)によってほぼ平行光線に変換された後、プリズム
型偏光ビームスプリッタ(7)に入射され、P偏光(入
射光面に平行な光)とS偏光(入射光面に垂直な光)に
分離され、S偏光は偏光ビームスプリッタ(7)の誘電
体多層膜面(7a)で反射され、向きを90度変え、屈
折率分布型レンズ(5)に集光され、光ファイバ(2)
に結合伝搬される。一方、P偏光は偏光ビームスプリッ
タ(7)を透過し、P偏光の電界方向と結晶光軸(8a
)が45度の角度をなすように配置された4分の1波長
板(8)を通9、円偏光に変換される。次に反射鏡(9
)の反射膜(9a)にIシ反射され、再び4分の1波長
板(8)t−通9、直線偏光になるとともに、この光は
2分の1波長板i#Iiつだと等価の影響をうけること
となる。したがって、出射直線偏光は入射直線偏光に対
して、光の電界方向が垂直になシ、偏光ビームスプリッ
タ(7)のS偏光に相当することになシ、誘電体多層膜
面(7a)で反射され、屈折率分布型レンズ(6)に集
光され、光ファイバ(3)に結合伝搬される。光ファイ
バ(1)からの出射光が偏っていなければ、光ファイバ
(2) 、 (3)にはそれぞれ50%ずつ光が結合さ
れることになる。The light emitted from the optical fiber (1) is converted into almost parallel light by the gradient index lens (1), and then enters the prism-type polarizing beam splitter (7), which converts the light into P-polarized light (light parallel to the incident light plane). ) and S-polarized light (light perpendicular to the incident light plane), and the S-polarized light is reflected by the dielectric multilayer film surface (7a) of the polarizing beam splitter (7), changes its direction by 90 degrees, and passes through the gradient index lens. (5) is focused on the optical fiber (2)
is jointly propagated to On the other hand, the P-polarized light is transmitted through the polarization beam splitter (7), and the electric field direction of the P-polarized light and the crystal optical axis (8a
) passes through a quarter-wave plate (8) arranged at an angle of 45 degrees and is converted into circularly polarized light. Next, the reflector (9
) is reflected by the reflective film (9a) of the quarter-wave plate (8) and becomes linearly polarized light again, and this light is equivalent to one half-wave plate (i#Ii). will be affected by. Therefore, the electric field direction of the emitted linearly polarized light is perpendicular to the incident linearly polarized light, and it corresponds to the S-polarized light of the polarizing beam splitter (7), and is reflected by the dielectric multilayer film surface (7a). The light is focused on a gradient index lens (6), and coupled and propagated to an optical fiber (3). If the light emitted from the optical fiber (1) is not polarized, 50% of the light will be coupled into each of the optical fibers (2) and (3).
光ファイバ(2)から出射した光は、屈折率分布型レン
ズ(5)によってほぼ平行光線に変換された後、偏光ビ
ームスプリッタ(力に入射され、P偏光とS偏光に分離
され、P偏光は透過し、屈折率分布型レンズ(6)によ
シ集光され光ファイバ(3)に結合伝搬される。S偏光
は誘電体多層膜面(7a)で反射され、屈折率分布型レ
ンズ(41によシ集光され光ファイバ+11に結合伝搬
される。The light emitted from the optical fiber (2) is converted into nearly parallel light by the gradient index lens (5), and then input to the polarizing beam splitter (force), where it is separated into P-polarized light and S-polarized light, and the P-polarized light is The S-polarized light is transmitted through the gradient index lens (6), and coupled and propagated to the optical fiber (3).The S-polarized light is reflected by the dielectric multilayer film surface (7a), The light is focused and coupled and propagated to the optical fiber +11.
また、光ファイバ(3)から出射した光は屈折率分布型
レンズ(6)によってほぼ平行光線に変換された後、偏
光ビームスプリッタ(7)に入射され、P偏光とS偏光
に分離され、P偏光は透過し、屈折率分布型レンズ(5
)によシ集光され光ファイバ(2)に結合′曇搬される
。一方、S偏光は誘電体多層膜面(7a)で、反射され
、4分の1波長板(8)と反射鏡(9)によって電界方
向が90度変換されて再び偏光ビームスプリッタ(7)
に入射されるが、この光は、偏光ビームスプリッタ(7
)ではP偏光に相当するので、偏光ビームスプリッタ(
7)をう過し、屈折率分布型レンズ(4)により集光さ
れ光ファイバ(1)に結合伝搬される。Furthermore, the light emitted from the optical fiber (3) is converted into a nearly parallel beam by the gradient index lens (6), and then enters the polarizing beam splitter (7), where it is separated into P-polarized light and S-polarized light. Polarized light is transmitted through a gradient index lens (5
) is focused and coupled to an optical fiber (2). On the other hand, the S-polarized light is reflected by the dielectric multilayer film surface (7a), the electric field direction is converted by 90 degrees by the quarter-wave plate (8) and the reflecting mirror (9), and the polarizing beam splitter (7) returns to the polarizing beam splitter (7).
This light is incident on the polarizing beam splitter (7
) corresponds to P-polarized light, so a polarizing beam splitter (
7), is focused by a gradient index lens (4), and is coupled and propagated to an optical fiber (1).
以上のように動作して、光ファイバtt1 、 (2>
、 (31の3端子間相互の結合関係が得られ、光T
型分岐結合器として機能する。By operating as described above, the optical fiber tt1, (2>
, (31 mutual coupling relationships between the three terminals are obtained, and the optical T
Functions as a type branch coupler.
しかし、4分の1波長板(8)に、例えば光ファイバ(
1)からP偏光を入射させた場合に1光フアイバ(3)
に結合される光量Tは波長λに依存する。第2図は4分
の1波長板(8)を経由して1つの光ファイバに結合さ
れる光量Tと波長λの関係を示すグラフ図であり、縦軸
は光量T1横軸は波長λを示す。However, for example, an optical fiber (
When P-polarized light is input from 1), one optical fiber (3)
The amount of light T coupled to depends on the wavelength λ. Figure 2 is a graph showing the relationship between the amount of light T coupled into one optical fiber via the quarter-wave plate (8) and the wavelength λ, where the vertical axis is the amount of light T and the horizontal axis is the wavelength λ. show.
Aは、4分の1波長板(8)の位相差を(2m+1)−
に相当する厚さとした場合、m = 0の場合を示す。A is the phase difference of the quarter-wave plate (8) (2m+1)-
When the thickness corresponds to , the case where m = 0 is shown.
寸だ、B Fim = 2の場合を示す。The case where B Fim = 2 is shown.
したがって、4分の1波長板(8)は、使用する光の波
長に応じてその長さを精密に合わせる必妾がある。特に
高次の4分の1波長板に対しては厳密きが要求されると
いう問題があった。Therefore, the length of the quarter-wave plate (8) must be precisely adjusted according to the wavelength of the light used. Particularly, there is a problem in that high-order quarter-wave plates require strict precision.
また、4分の1波長板(8)の結晶光軸(8a)の向き
は、偏光ビームスプリッタ(7)の偏光方向に対して、
45度に精度よく調整しなければならないという問題が
あった。Further, the direction of the crystal optical axis (8a) of the quarter-wave plate (8) is as follows with respect to the polarization direction of the polarizing beam splitter (7).
There was a problem in that it had to be precisely adjusted to 45 degrees.
この発明は上記のような従来のものの欠点を除去するた
めになされたもので、配置に際してはその結晶光軸(8
a)の向きを、偏光ビームスプリッタ(7)の偏光方向
に対して精度よく調整しなければならず、また使用する
光の波長に対して厚さを調整しなければならない4分の
1波長板を使用する心機がなく、かつ、使用する光の波
長が変っても、容易に調整できる光分岐結合5を提供す
ることを目的としている。This invention was made to eliminate the drawbacks of the conventional ones as described above, and when arranging the crystal, the optical axis (8
The direction of a) must be precisely adjusted with respect to the polarization direction of the polarizing beam splitter (7), and the thickness must be adjusted according to the wavelength of the light used. It is an object of the present invention to provide an optical branching/coupling 5 that does not require a central device and can be easily adjusted even if the wavelength of the light used changes.
以下、この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.
第3図はこの発明の一実施例を示す斜視図であり、図に
おいて(11、(2) 、 (31、(4) 、 (5
) 、 (6) 、 (7) 。FIG. 3 is a perspective view showing an embodiment of the present invention, and in the figure (11, (2), (31, (4), (5
), (6), (7).
(7a) 、 (9) 、 (9m)はm1図の同一符
号と同一または相当する部分を示し、uOはファラデー
素子、αっけファラデー素子(10に磁界を印加する円
筒状のマグネットである。(7a), (9), and (9m) indicate parts that are the same as or correspond to the same symbols in the m1 diagram, and uO is a Faraday element, an α-faraday element (a cylindrical magnet that applies a magnetic field to 10).
次にこの発明の動作について説明する。Next, the operation of this invention will be explained.
従来の光分岐結合器の4分の1波長板(8ンの代シにマ
グネットα◇によって磁界が印加されるファンている。In place of the quarter-wave plate (8) in the conventional optical branching coupler, there is a fan to which a magnetic field is applied by a magnet α◇.
したがって、反射鏡(9)によって反射される光は、フ
ァラデー素子tIOを往復し、偏光方向が90度何回転
れるので、第1図に示す例と同様に、光ファイバ(1)
から偏光ビームスプリッタ(7)に入射した光は、S偏
光とP偏光に分離され、S偏光は偏光ビームスプリンタ
(7)の誘電体多層膜面(7a)で反射され、向きを9
0度変え、屈折率分布型レンズ(5)によって集光され
、光ファイバ(2)に結合伝搬される。一方、P偏光は
、偏光ビームスプIJ ツタ(7)を透過し、ファラデ
ー素子(10を往復して、再び偏光ビームスプリッタ(
7)に入り、偏光面が90度何回転ているので、誘電体
多層膜面(7a)で反射され、屈折率分布型レンズ(6
)によって集光され、光ファイバ(3)に結合伝搬され
る。他の光フアイバ間でも、第1図に示す例と同様に、
結合関係が得られ、光T形分岐結合器として機能する。Therefore, the light reflected by the reflecting mirror (9) travels back and forth through the Faraday element tIO, and the polarization direction is rotated several times by 90 degrees.
The light incident on the polarizing beam splitter (7) is separated into S-polarized light and P-polarized light, and the S-polarized light is reflected by the dielectric multilayer film surface (7a) of the polarized beam splitter (7), changing its direction to 9.
The light is shifted by 0 degrees, focused by a gradient index lens (5), and coupled and propagated to an optical fiber (2). On the other hand, the P-polarized light passes through the polarizing beam splitter IJ (7), travels back and forth to the Faraday element (10), and returns to the polarizing beam splitter (10).
7), and the polarization plane is rotated several times by 90 degrees, so it is reflected by the dielectric multilayer film surface (7a) and is reflected by the gradient index lens (6).
) and is coupled and propagated into an optical fiber (3). Similarly to the example shown in Fig. 1, between other optical fibers,
A coupling relationship is obtained and it functions as an optical T-type branching coupler.
この実施例においては、光の波長が変った場合には、フ
ァラデー素子111に印加される磁界を変更すればよく
、すなわち、マグネット0])の位置を調整することに
より、ファラデー素子(1(1を往復するなお、上記実
施例では、反射鏡(9)を使用したが、ファラデー素子
(1[)の片面に反射鏡を蒸着させたものにしてもよい
。また、上記実施例では、プリズム型の偏光ビームスプ
リッタ(7)を使用する場合について説明したが、透明
平板に誘電体多層膜をっけた偏光ビームスプリンタでも
同様の効果を期待できる。In this embodiment, when the wavelength of light changes, it is sufficient to change the magnetic field applied to the Faraday element 111, that is, by adjusting the position of the Faraday element (1 (1 Although the reflecting mirror (9) was used in the above embodiment, a reflecting mirror may be deposited on one side of the Faraday element (1[).Also, in the above embodiment, a prism type Although the case where the polarizing beam splitter (7) is used has been described, similar effects can be expected with a polarizing beam splitter in which a dielectric multilayer film is coated on a transparent flat plate.
さらに、磁界発生素子としては、マグネットの代シに電
磁石を使用してもよい。偏光ビームスプリンタは異方性
を有する結晶により作られた偏光プリズムでも同様の効
果を期待できる。Further, as the magnetic field generating element, an electromagnet may be used in place of the magnet. Similar effects can be expected for polarizing beam splinters using polarizing prisms made of anisotropic crystals.
ファラデー素子としては、商品名FR−5■。As a Faraday element, the product name is FR-5■.
SF −6■という磁性ガラス、YIGという結晶等が
ある。There is a magnetic glass called SF-6■, a crystal called YIG, etc.
以上のように、この発明によれば、使用する光の波長が
変っても、調整が容易で、かつ、精度高く調整ができる
と−う利点がある。As described above, the present invention has the advantage that even if the wavelength of the light used changes, adjustment can be made easily and with high precision.
第1図は従来の光分岐結合g(lの一例を示す斜視図、
第2図は4分の1波長板を経由して1つの光(6)は屈
折率分布πVレンズ、(7)は偏光ビームスプリッタ、
(7a)は誘誼体多8膜、(9)は反射鏡、四はファラ
デー素子、αυはマグネットである。
なお、各図中同−W号は同一または相当する部分を示す
ものとする。
比肪人 1木4ね打1yc張
川川浴鄭
第1図
第2図
第3図FIG. 1 is a perspective view showing an example of a conventional optical branching and coupling g(l).
In Figure 2, one light (6) passes through a quarter-wave plate, a refractive index distribution πV lens, (7) a polarizing beam splitter,
(7a) is a dielectric multilayer film, (9) is a reflecting mirror, 4 is a Faraday element, and αυ is a magnet. Note that the numbers -W in each figure indicate the same or corresponding parts. Hibijin 1 tree 4 nets 1 yc Harikawa river bathing 1 figure 2 figure 3
Claims (3)
結合器において、第1、第2、第3の光ファイバのそれ
ぞれの端に装着され、光ファイバからの光を平行光線ビ
ームにして投射し、光ファイバとの接続端と反対の端か
ら入射する平行光線ビームを光ファイバに集光する第1
、第2、第3の屈垂率分布型レンズと、誘電体多層j換
部が上記第1・D屈折率分布型レンズから投射される平
行光線ビ十ムのビーム軸に対して45度の角度をなす状
態に一配置〜され、上記第1の屈折率分布型レンズから
投射される上記平行光線ビームのS偏光を上記誘電体多
層膜面で反射し向きを90度変える偏光ビームスプリッ
タと、上記第1の屈折率分布型レンズから投射され上記
偏光ビームスプIJ 、7タを透過する上記平行光線ビ
ームのP偏光の偏光面を45度変換するファラデー素子
と、このファラデー素子に磁界を印加するマグネットと
、上記ファラデー素子を通過する上記平行光線ビームの
P偏光を反射し向きを180度変える反射鏡と、上記誘
電体多層膜面で反射され上記偏光ビームスプリッタから
出射される平行光線ビームのS偏光が入射される位置に
上記第2の屈折率分布型レンズを配置する手段と、上記
反射鏡で反射され上記誘電体多層膜面で反射され上記偏
光ビームスプリッタから出射される上記平行光線ビーム
のP偏光が入射される位置に上記第3の屈折率分布型レ
ンズを配置する手段とを備えたことを特徴とする光分岐
結合器。(1) In an optical branching coupler that performs T-type branching and coupling of light between optical fibers, it is attached to each end of the first, second, and third optical fibers, and converts the light from the optical fibers into parallel beams. A first beam of parallel light is projected onto the optical fiber and is incident from the end opposite to the end connected to the optical fiber.
, the second and third graded index lenses and the dielectric multilayer conversion section are arranged at an angle of 45 degrees with respect to the beam axis of the parallel ray beam projected from the first and D graded index lenses. a polarizing beam splitter that is arranged at an angle and reflects the S-polarized light of the parallel light beam projected from the first gradient index lens on the dielectric multilayer film surface and changes the direction by 90 degrees; A Faraday element that converts the polarization plane of the P-polarized light of the parallel light beam projected from the first gradient index lens and transmitted through the polarized beam beams IJ and 7 by 45 degrees, and a magnet that applies a magnetic field to the Faraday element. , a reflecting mirror that reflects the P-polarized light of the parallel light beam passing through the Faraday element and changes its direction by 180 degrees, and S-polarized light of the parallel light beam reflected by the dielectric multilayer film surface and output from the polarization beam splitter. means for arranging the second gradient index lens at a position where P is incident, and P of the parallel light beam reflected by the reflecting mirror, reflected by the dielectric multilayer film surface, and emitted from the polarizing beam splitter. and means for arranging the third gradient index lens at a position where polarized light is incident.
できる移動可能なものであることを特徴とする特許請求
の範囲第1項記載の光分岐結合器。(2) The optical branching coupler according to claim 1, wherein the magnet is movable to adjust the magnetic field of the Faraday element 1:1.
タに面する側と反対側の面に反射膜を蒸着したものであ
ることを特徴とする特許請求の範囲第1項記載の光分岐
結合器。(3) The optical branching coupler according to claim 1, wherein the reflecting mirror is a Faraday element with a reflective film deposited on the surface opposite to the side facing the polarizing beam splitter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP185084A JPS60146215A (en) | 1984-01-11 | 1984-01-11 | Optical branch coupler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP185084A JPS60146215A (en) | 1984-01-11 | 1984-01-11 | Optical branch coupler |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60146215A true JPS60146215A (en) | 1985-08-01 |
Family
ID=11513024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP185084A Pending JPS60146215A (en) | 1984-01-11 | 1984-01-11 | Optical branch coupler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60146215A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2624622A1 (en) * | 1987-12-11 | 1989-06-16 | Onera (Off Nat Aerospatiale) | Directional optical couplers especially for devices for calibrating echometers and reflectometers |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56161520A (en) * | 1980-05-19 | 1981-12-11 | Fujitsu Ltd | Optical variable attenuator |
JPS57171314A (en) * | 1981-04-15 | 1982-10-21 | Mitsubishi Electric Corp | Optical branching and coupling circuit |
-
1984
- 1984-01-11 JP JP185084A patent/JPS60146215A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56161520A (en) * | 1980-05-19 | 1981-12-11 | Fujitsu Ltd | Optical variable attenuator |
JPS57171314A (en) * | 1981-04-15 | 1982-10-21 | Mitsubishi Electric Corp | Optical branching and coupling circuit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2624622A1 (en) * | 1987-12-11 | 1989-06-16 | Onera (Off Nat Aerospatiale) | Directional optical couplers especially for devices for calibrating echometers and reflectometers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02239219A (en) | Lighting system for liquid crystal display system | |
JP3122111B2 (en) | Optical isolator | |
JPS6118481Y2 (en) | ||
US8358466B2 (en) | Optical delay line interferometers with silicon dual mirror for DPSK | |
US5377040A (en) | Polarization independent optical device | |
EP0848278B1 (en) | Optical circulator | |
CN108957773B (en) | Polarization light splitting device | |
JPS60146215A (en) | Optical branch coupler | |
JPH024864B2 (en) | ||
JP3368209B2 (en) | Reflective optical circulator | |
JPH05313094A (en) | Optical isolator | |
JPH03157621A (en) | Polarization light source | |
JP3000030B2 (en) | Measuring method of reflection amount of optical fiber component and apparatus therefor | |
JPH0357459B2 (en) | ||
JPS6257012B2 (en) | ||
JPH0830789B2 (en) | Polarization splitting prism | |
JPH0527200A (en) | Polarized wave coupler | |
JPH09258024A (en) | Polarizing element | |
JPH04139416A (en) | Polarized light generating optical device | |
JPS5848018A (en) | Optical circuit device | |
JPH10186278A (en) | Optical circulator | |
JPS6130247B2 (en) | ||
JP2647488B2 (en) | Polarization coupler | |
RU2060519C1 (en) | Light polarizer | |
JPS6111683Y2 (en) |