JPS60146132A - Method and apparatus for evaluating semiconductor crystal - Google Patents

Method and apparatus for evaluating semiconductor crystal

Info

Publication number
JPS60146132A
JPS60146132A JP59002182A JP218284A JPS60146132A JP S60146132 A JPS60146132 A JP S60146132A JP 59002182 A JP59002182 A JP 59002182A JP 218284 A JP218284 A JP 218284A JP S60146132 A JPS60146132 A JP S60146132A
Authority
JP
Japan
Prior art keywords
sample
light
axis
semiconductor crystal
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59002182A
Other languages
Japanese (ja)
Inventor
Akira Mita
三田 陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59002182A priority Critical patent/JPS60146132A/en
Publication of JPS60146132A publication Critical patent/JPS60146132A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Abstract

PURPOSE:To measure a semiconductor without destruction quickly, by transmitting a light beam through a cylinder shape semiconductor sample, converting the light, which is transmitted, refracted and outputted, into an electric quantity, and obtaining the space distribution of a deep level in a crystal. CONSTITUTION:A semiconductor crystal is machined into a circular cylinder shape and mounted on a rotary sample table 2 as a sample 1. Light 11 having a wavelength, which can transmit through the sample 1, is projected from a light source 3 in a beam shape. The light 11 is transmitted through the sample 1 and becomes refracted light 11'. The light 11' is converted into an electric quantity by a light detector 5, on which a plurality of light receiving devices 6 are arranged, and displayed. For example, when the semiconductor is a GaAs single crystal or an InP single crystal, wavelengths of 1.0-1.5mum and 1.3mum are used for the light source 3. The light source 3 is moved in the direction of the Z axis with a Y-Z plane (the axis of the cylinder is made to be Z) being moved. The light beam is projected with the sample table rotated, and the measurement is performed. By obtaining the distribution of the absorption coefficient due to the deep level in the semiconductor crystal, the semiconductor crystal can be accurately evaluated without destruction quickly.

Description

【発明の詳細な説明】 本発明は半導体結晶の評価装置及び評価方法に関し、特
に半導体結晶中の深い準位の空間分布を非破壊的にめる
ことのできる半導体結晶の評価装置及び評価方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor crystal evaluation apparatus and evaluation method, and more particularly to a semiconductor crystal evaluation apparatus and evaluation method that can non-destructively determine the spatial distribution of deep levels in a semiconductor crystal. .

近年、高速でしかも高機能の電子回路への必要性が高ま
った結果、従来用いられていた8iを利用した集積回路
(以下ICと記す)に代シ、よシ高い易動度を有する化
合物半導体を用いたICに対する関心が高まっている。
In recent years, as a result of the increasing need for high-speed and highly functional electronic circuits, compound semiconductors with higher mobility have replaced the conventionally used 8i integrated circuits (hereinafter referred to as ICs). There is growing interest in ICs using .

現在かかるICの基板に用いる結晶は高い抵抗を持つG
a A sで、最近では従来使用されていたCr ドー
プ結晶に代って意図的に不純物を添加しないアンドープ
結晶が一般に用いられつつある。かかる結晶からGaA
s −ICを形成する上で現在問題になっている点は、
結晶の諸性負が必ずしも均一でなく、代表的なICであ
るlli’ET回路を形成したときピンチオフ電圧の不
均一を招き、実用上の障害を起す点にあった。
The crystals currently used for the substrates of such ICs have a high resistance of G.
In recent years, undoped crystals to which impurities are not intentionally added are generally being used in place of the conventionally used Cr doped crystals. GaA from such crystals
The current problems in forming s-IC are:
The various properties of the crystal are not necessarily uniform, and when an lli'ET circuit, which is a typical IC, is formed, the pinch-off voltage becomes non-uniform, which causes a practical problem.

最近の研究の結果、このような不均一は、結晶中の転位
、あるいは深い準位の分布に関係していることか明らか
にされつつある。かかる理由から結晶の転位あるいは深
い準位の空間的分布を、できれば非破壊的な方法でめる
ことに対し現在大きな関心が寄せられている。代表的な
方法には、エツチングによシ転位に対応するエッチビッ
トを露呈せしめ、これを算定することにょシ転位密度を
めるか、あるいは直接ウェハー上KFETを形成して特
性分布を2次元的に測定し評価を行なうなどのやり方が
あった。しかし、これらの方法はいずれも破壊的なもの
であシ大きな工数と低い収率を覚悟せねばならなかった
。また光ルミネセンス、カソードルミネセンスの測定に
よる方法も本来間1妾的な性格のものであシ、結晶良否
の正確な評価手段たシえなかった。また最近にいた9、
1.0ないし1.3μmの光の吸収の分布を空間的に測
定することによシ、深い準位に関する直接的な知見が得
られることが明らかにされた。しかしこの波長域におけ
る結晶の吸収係数は1cm’以下と低く、正確な分布を
測定して得るためKは、5龍あるいはそれ以上の厚みを
有ししかも両面を光学研磨した結晶を必要とし到底一般
的に使用しうる評価手段たりえなかった。
Recent research has revealed that such nonuniformity is related to dislocations in the crystal or the distribution of deep levels. For these reasons, there is currently a great deal of interest in determining the spatial distribution of crystal dislocations or deep levels, preferably by a non-destructive method. Typical methods include exposing etch bits corresponding to dislocations by etching and calculating the dislocation density, or forming KFETs directly on the wafer to obtain a two-dimensional characteristic distribution. There were methods such as measuring and evaluating the situation. However, all of these methods are destructive, requiring large man-hours and low yields. Furthermore, the methods of measuring photoluminescence and cathodoluminescence are inherently unreliable, and cannot be used as an accurate means of evaluating the quality of crystals. 9 who was also recently
It has been shown that direct knowledge of deep levels can be obtained by spatially measuring the distribution of light absorption between 1.0 and 1.3 μm. However, the absorption coefficient of crystals in this wavelength range is as low as 1 cm' or less, and in order to measure and obtain an accurate distribution, K requires a crystal with a thickness of 5 dragons or more and optically polished on both sides, which is far from common. It was not possible to provide a usable evaluation tool.

このように従来の方法は、破壊的なもので大きな工数と
低い収率であるか、あるいは非破壊的なものは実用的で
ないという欠点があった。
As described above, conventional methods have the disadvantage that either they are destructive and require a large number of steps and have low yields, or that non-destructive methods are impractical.

本発明の目的は、上記欠点を除去し、非破壊的、迅速か
つ正確に結晶中の深い準位を定量的に評価することので
きる半導体結晶の評価装置及び評価方法を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor crystal evaluation device and evaluation method that can eliminate the above drawbacks and quantitatively evaluate deep levels in a crystal non-destructively, quickly and accurately.

本発明の半導体結晶の評価装置は、半導体結晶を円柱形
に加工して成る被測定の試料を載置し該円柱の軸を中心
として回転せしめる機構を有する回転試料台と、前記試
料を透過し得る波長の光をビーム状に発射する光源と、
前記試料の円柱の軸をZ軸とするとき前記光源をY−Z
の二次元に移動せしめるI−Z移動機構と、前記光源か
ら発射され前記試料を透過屈折して出て来た透過光を受
け電気量に変換する光検出器を複数個配置して成る受光
装置と、該受光装置からのデータ情報を演算処理する計
算機とを含むことを特徴として構成される。
The semiconductor crystal evaluation apparatus of the present invention includes a rotary sample stage having a mechanism for placing a sample to be measured made by processing a semiconductor crystal into a cylindrical shape and rotating the sample about the axis of the column; a light source that emits a beam of light at the desired wavelength;
When the axis of the cylinder of the sample is the Z axis, the light source is Y-Z
A light-receiving device comprising: an I-Z moving mechanism that moves the sample in two dimensions; and a plurality of photodetectors that receive transmitted light emitted from the light source and transmitted through and refracted through the sample, and convert it into an electrical quantity. and a computer for processing data information from the light receiving device.

本発明の半導体結晶の評価方法は、被測定の半導体結晶
を円柱形に加工し表面を平滑に研磨して試料とする第1
のプロセスと、前記試料を回転試料台に該回転試料台の
回転軸と試料の円柱軸とを合せて載置する第2のプロセ
スと、前記試料を透過し得る波長の光ビームを前記試料
の円柱側面垂直に入射せしめ該試料を透過屈折して出て
来た透過光を光電変換機構付きの受光装置で受光し該受
光装置からの情報を計算機に入力し記憶せしめる第3の
プロセスと、前記試料の円柱の軸をZ軸とするときY軸
方向に小距離だけ移動せしめた後前記第3のプロセスを
行うことを所定のY軸方向距離だけ移動し終るまで繰返
す第4のプロセスと、前記試料をZ軸の周シに小角度だ
け回転した後前記第3のプロセスと第4のプロセスとを
行うことを前記試料が1回転するまで繰返す第5のプロ
セスと、前記試料をZ軸方向に小距離だけ移動せしめた
後前記第3のプロセス、第4のプロセス及ヒ第5のプロ
セスを行うことを所定のZ軸方向距離を移動し終るまで
繰返す第6のプロセスと、前記記憶した情報を演算処理
して試料の結晶中の特定の深い準位に起因する吸収係数
の分布を再構成し表示する第7のプロセスを含むことを
特徴として構成される。
The semiconductor crystal evaluation method of the present invention includes a first process in which a semiconductor crystal to be measured is processed into a cylindrical shape and the surface is polished to a smooth surface.
a second process of placing the sample on a rotating sample stand with the rotational axis of the rotating sample stand aligned with the cylindrical axis of the sample; and a second process of placing a light beam of a wavelength that can pass through the sample on the sample. a third process in which the transmitted light is incident perpendicularly to the side surface of the cylinder and is transmitted and refracted through the sample, and the transmitted light is received by a light receiving device equipped with a photoelectric conversion mechanism, and the information from the light receiving device is input into a computer and stored; a fourth process in which the sample is moved a short distance in the Y-axis direction when the axis of the cylinder of the sample is the Z-axis, and then the third process is repeated until the sample has been moved a predetermined distance in the Y-axis direction; a fifth process in which the sample is rotated by a small angle around the Z-axis and then the third process and the fourth process are repeated until the sample rotates once; and a fifth process in which the sample is rotated in the Z-axis direction. a sixth process of repeating the third process, the fourth process and the fifth process after moving a small distance until the movement is completed a predetermined distance in the Z-axis direction; The present invention is characterized in that it includes a seventh process of reconstructing and displaying the distribution of absorption coefficients due to a specific deep level in the crystal of the sample through calculation processing.

一次に本発明の実施例について図面を用いて説明する。First, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の半導体結晶の評価装置の一実施例のブ
ロック図である。
FIG. 1 is a block diagram of an embodiment of the semiconductor crystal evaluation apparatus of the present invention.

この実施例は、半導体結晶を円柱形に加工して成る被測
定の試料1を載置し円柱の軸を中心として回転せしめる
機構を有する回転試料台2と、試料1を透過し得る波長
の光11をビー、ム状に発射する光#、3と、試料10
円柱の軸をZJII+とするとき光源なY−Zの二次元
に移動せしめるX−Y移動機構4と、光源3から発射さ
れ試料1を透過屈折して出て来た透過光11’を受け電
気量に変換する光検出器5を複数個配置して成る受光装
置6と、受光装置6からのデータ情報を演算処理する計
算機7とを含んで構成される。
This embodiment includes a rotary sample stage 2 having a mechanism for placing a sample 1 to be measured made of semiconductor crystal processed into a cylindrical shape and rotating it around the axis of the cylinder, and a light beam of a wavelength that can pass through the sample 1. 11 in a beam shape, light #3, and sample 10.
When the axis of the cylinder is ZJII+, there is an X-Y moving mechanism 4 that moves the light source in two dimensions of Y-Z, and an electric light source that receives the transmitted light 11' that is emitted from the light source 3, passes through the sample 1, is refracted, and comes out. It is configured to include a light receiving device 6 which is formed by arranging a plurality of photodetectors 5 that convert the data into quantities, and a computer 7 which processes data information from the light receiving device 6.

試料例Ga A s単結晶である場合、光源には波長が
1.0〜1.5μmの範囲に発振光を有するレーザー(
例えば波長1.06μyaのNd:YAGレ−f−)が
適しておシ、InP 単結晶の場合には波長が1.3μ
mの半導体レーザーを用いるのが良い。光源はレーザー
に限定されず、通常の赤外線を用いることもできる。ま
た、光検出器5にはCODが適しているが他の受光素子
を用いることもできる。
When the sample is a GaAs single crystal, the light source is a laser (with a wavelength in the range of 1.0 to 1.5 μm).
For example, Nd:YAG laser (f-) with a wavelength of 1.06 μya is suitable, and in the case of InP single crystal, the wavelength is 1.3 μya.
It is preferable to use a semiconductor laser of m. The light source is not limited to lasers, and ordinary infrared rays can also be used. Further, although a COD is suitable for the photodetector 5, other light receiving elements can also be used.

次に、本発明の半導体結晶の評価方法について説明する
Next, a method for evaluating a semiconductor crystal according to the present invention will be explained.

第2図は本発明の半導体結晶の評価方法の一実施例を説
明するための光路図である。
FIG. 2 is an optical path diagram for explaining one embodiment of the semiconductor crystal evaluation method of the present invention.

この実施例では被測定試料として、■−v族化合物早導
体の代表的なものであるGaAsを選んでるるが、本発
明はInP などの他の■−■族化合物半導体結晶、C
dS などの■−■族化合物半導体結晶、SI + G
eなどの単元素半導体結晶などにも適用できるものであ
る。
In this example, GaAs, which is a typical fast conductor of the ■-v group compound, is selected as the sample to be measured, but the present invention is also applicable to other compound semiconductor crystals of the
■-■ group compound semiconductor crystals such as dS, SI + G
It can also be applied to single-element semiconductor crystals such as e.

まず、被測定の半導体結晶を円柱形に加工し、側面を平
滑に研摩して試料1を作る。これを回転試料台2に載置
する。
First, sample 1 is prepared by processing a semiconductor crystal to be measured into a cylindrical shape and polishing the side surface to make it smooth. This is placed on the rotating sample stage 2.

光源3としてNd:YAGレーザーを用い、波長1.0
6μmのレーザー光11を試料lの円柱側面にかつ円柱
の軸(これをZ軸とする)に垂直方向に入射せしめる。
A Nd:YAG laser is used as the light source 3, and the wavelength is 1.0.
A laser beam 11 of 6 μm is made incident on the cylindrical side surface of the sample 1 in a direction perpendicular to the axis of the cylinder (this is defined as the Z axis).

レーザー光は試料1との界面で屈折し、試料1内を通シ
、再び界面で屈折して透過光11′として出てくる。透
過光11′を光検出器5で受光し、電気量に変換し、計
算機7ヘデータ情報として送信し計算機に記憶させる。
The laser beam is refracted at the interface with the sample 1, passes through the sample 1, is refracted at the interface, and comes out as transmitted light 11'. The transmitted light 11' is received by the photodetector 5, converted into an amount of electricity, and transmitted to the computer 7 as data information to be stored in the computer.

Y−Z移動機構によ多光源3を図示するようにY軸方向
に矢印12のよう小距離だけ移動し、再び光11を試料
1に入射して透過光を受光し、そのデータを計算機7に
記憶させる。Y軸方向の小距離移動と透過光の受光、デ
ータの記憶を所定のY軸方向距離を移動し終るまで繰返
す。Y軸方向への移動は、余シ大きな移動を行うと結晶
界面における反射が大となって結果が表面の不均一性等
に左右されやすくなるので、入射角θは20度以下が適
当である。
The multi-light source 3 is moved by a small distance in the Y-axis direction as shown by the arrow 12 by the Y-Z moving mechanism, and the light 11 is again incident on the sample 1 to receive the transmitted light, and the data is sent to the computer 7. to be memorized. The process of moving a small distance in the Y-axis direction, receiving transmitted light, and storing data is repeated until a predetermined distance in the Y-axis direction has been moved. When moving in the Y-axis direction, if the movement is too large, the reflection at the crystal interface will increase and the result will be easily influenced by surface non-uniformity, so it is appropriate that the incident angle θ is 20 degrees or less. .

次に、試料をZ軸の周シに小角度回転し、再び光ビーム
11の入射と透過光の受光、データの記憶を行うことを
光源3をY軸方向に小距離移動させながら繰返す。光源
が所定のY軸方向距離だけ移動したら、試料を2軸の周
りに再び小角度回転し、前述と同様の操作を繰返す。こ
の操作は試料が回転するまで繰返す。
Next, the sample is rotated by a small angle around the Z-axis, and the incident of the light beam 11, reception of transmitted light, and data storage are repeated while moving the light source 3 a short distance in the Y-axis direction. After the light source has moved a predetermined distance in the Y-axis direction, the sample is again rotated by a small angle around the two axes, and the same operation as described above is repeated. This operation is repeated until the sample rotates.

次に、試料が1回転し終ったら、試料をZ軸方向に小距
離だけ移動し、光源3をY軸方向に移動させて測定する
繰作と試料をZ軸の周シに小角度回転する操作とを試料
が1回転するまで繰返す。
Next, once the sample has completed one rotation, move the sample a short distance in the Z-axis direction, move the light source 3 in the Y-axis direction, and rotate the sample by a small angle around the Z-axis. Repeat this operation until the sample rotates once.

試料が1回転し終ったら試料をZ軸方向に再び小距離だ
け移動し、同様の操作を2軸方向に所定の距離を移動し
終るまで繰返す。
When the sample completes one rotation, the sample is moved again by a small distance in the Z-axis direction, and the same operation is repeated until the sample has been moved a predetermined distance in the two-axis directions.

Z軸方向の移動と測定とが終了したら、計算機7に記憶
されたデータを公知のトモグラフィにおいて用いられる
連立方程式に入れ、計算機で演算処理して解き、結晶中
の深い準位に起因する吸収係数の分布を再構成する。こ
れから、結晶中の深い準位の空間的分布をめることがで
きる。
After the movement and measurement in the Z-axis direction are completed, the data stored in the computer 7 is entered into the simultaneous equations used in known tomography, and the computer calculates and solves it to calculate the absorption caused by deep levels in the crystal. Reconstruct the distribution of coefficients. From this, we can determine the spatial distribution of deep levels in the crystal.

以上詳細に説明したように、本発明によれば、非破壊的
、迅速かつ正確に結晶中の深い準位を定量的に評価する
ことのできる半導体結晶の計画装置及び評価方法が得ら
れる。
As described above in detail, the present invention provides a semiconductor crystal planning device and evaluation method that can quantitatively evaluate deep levels in a crystal nondestructively, quickly, and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体結晶の評価袋数の一実施例のブ
ロック図、第2図は本発明の半導体結晶の評価方法の一
実施例を説明するための光路図である。 1・・・・・・試料、2・・・・・・回転試料台、3・
・・・・・光臨、4・・・・・・Y−Z移動機構、5・
・・・・・光検出器、6・・・・・・受光装置、7・・
・・・・計算機、11・・・・−・光ビーム、11′・
・・・・・透過光、12・・・・・・Y軸方向。
FIG. 1 is a block diagram of an embodiment of the evaluation bag number of semiconductor crystals of the present invention, and FIG. 2 is an optical path diagram for explaining an embodiment of the semiconductor crystal evaluation method of the present invention. 1...Sample, 2...Rotating sample stage, 3.
...Kourin, 4...Y-Z movement mechanism, 5.
...Photodetector, 6...Photodetector, 7...
...Computer, 11...--Light beam, 11'
...Transmitted light, 12...Y-axis direction.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体結晶を円柱形に加工して成ha測定の試料
を載置し該円柱の軸を中心として回転せしめる機構を有
する回転試料台と、前記試料を透過し得る波長の光をビ
ーム状に発射する光源と、前記試料の円柱の軸を2軸と
するとき前記光源をY−Zの二次元に移動せしめるY−
Z移動1機構と、前記光源から発射され前記試料を透過
屈折して出て来た透過光を受け電気量に変換する光検出
器を複数個配置して成る受光装置と、該受光装置からの
データ情報を演算処理する計算機とを含むことを特徴と
する半導体結晶の評価装置。
(1) A rotating sample stage with a mechanism for processing a semiconductor crystal into a cylindrical shape and placing a sample for growth halide measurement on it and rotating it around the axis of the cylinder, and a beam of light with a wavelength that can pass through the sample. A light source that emits light in the direction of Y-Z and a Y-
a Z-movement 1 mechanism, a light receiving device comprising a plurality of photodetectors arranged to receive transmitted light emitted from the light source and transmitted through and refracted through the sample, and convert it into an electrical quantity; 1. A semiconductor crystal evaluation device comprising: a computer for processing data information.
(2) 被測定の半導体結晶を円柱形に加工し表iMi
を円滑に研摩して試料とする第1のプロセスと、前記試
料を回転試料台に該回転試料台の回転軸と試料の円柱軸
とを合せて載置する第2のプロセスと、前記試料を透過
し得る波長の光ビームを前記試料の円柱側面垂直に入射
せしめ該試料を透過屈折して出て来た透過光を光電変換
機構付きの受光装置で受光し該受光装置がらの情報を計
算機に人力し記憶せしめる第3のプロセスと、前記試料
の円柱の軸をZ軸とするときY軸方向に小距離だけ移動
せしめた後前記第3のプロセスを行うことを所定のY軸
方向距離だけ移動し終るまで繰返す第4のプロセスと、
前記試料をZ軸の周シに小角度だけ回転した後前記第3
のプロセスと第4のプロセスとを行つコトヲ前記試料が
1回転する捷で繰返す第5のプロセスと、前記試料を2
軸方向に小距離だけ移動せしめた後前記第3のプロセス
、第4のプロセス及び第5のプロセスを行うことを所定
のZ軸方向距離を移動し終るまで繰返す第6のプロセス
と、前記記憶した情報を演算処理して試料の結晶中の特
定の深い準位に起因する吸収係数の分布を再構成し表示
する第7のプロセスを含むことを特徴とする半導体結晶
の評価方法。
(2) The semiconductor crystal to be measured is processed into a cylindrical shape and the surface iMi
a first process in which the sample is smoothly polished to obtain a sample; a second process in which the sample is placed on a rotating sample stand with the rotational axis of the rotating sample stand aligned with the cylindrical axis of the sample; A light beam of a wavelength that can be transmitted is made perpendicular to the cylindrical side surface of the sample, and the transmitted light that is transmitted and refracted through the sample is received by a light receiving device equipped with a photoelectric conversion mechanism, and the information from the light receiving device is converted into a computer. A third process in which the cylinder of the sample is manually memorized, and when the axis of the cylinder of the sample is taken as the Z axis, the sample is moved a small distance in the Y-axis direction and then the third process is performed by moving it by a predetermined distance in the Y-axis direction. a fourth process that is repeated until the
After rotating the sample by a small angle around the Z-axis, the third
A fifth process in which the sample is repeated with a spindle in which the sample rotates once, and a fourth process in which the sample is rotated twice.
a sixth process of repeating performing the third process, the fourth process and the fifth process after moving a small distance in the axial direction until the movement is completed a predetermined distance in the Z-axis direction; A method for evaluating a semiconductor crystal, comprising a seventh process of processing information to reconstruct and display a distribution of absorption coefficients caused by a specific deep level in a crystal of a sample.
JP59002182A 1984-01-10 1984-01-10 Method and apparatus for evaluating semiconductor crystal Pending JPS60146132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59002182A JPS60146132A (en) 1984-01-10 1984-01-10 Method and apparatus for evaluating semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59002182A JPS60146132A (en) 1984-01-10 1984-01-10 Method and apparatus for evaluating semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS60146132A true JPS60146132A (en) 1985-08-01

Family

ID=11522216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59002182A Pending JPS60146132A (en) 1984-01-10 1984-01-10 Method and apparatus for evaluating semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS60146132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272342A (en) * 1991-07-12 1993-12-21 Kabushiki Kaisha Toshiba Diffused layer depth measurement apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272342A (en) * 1991-07-12 1993-12-21 Kabushiki Kaisha Toshiba Diffused layer depth measurement apparatus

Similar Documents

Publication Publication Date Title
US5729640A (en) Process of acquiring with an X=Y scannable array camera light emanted from a subject
US4925298A (en) Etch pit density measuring method
US20170372924A1 (en) Self-contained metrology wafer carrier systems
CN107275244A (en) A kind of chip detection method and device
JPS61151405A (en) Optical-electronic measurement method and device
CN110718478A (en) Wafer film measuring method and device
JP2003185410A (en) Method for calibrating and aligning multiple multi-axes operating stages in order to optically align in relation to planar type waveguide device and system
US6466642B1 (en) Methods and apparatus for the in-situ measurement of CMP process endpoint
US5008542A (en) Method and system for automated measurement of whole-wafer etch pit density in GaAs
JPH0442945A (en) Inspection of wafer slip line
JPH11274259A (en) Thickness measuring device and thickness controller
JPS60146132A (en) Method and apparatus for evaluating semiconductor crystal
Fowler et al. High accuracy measurement of aperture area relative to a standard known aperture
US10731973B2 (en) Apparatus for automatically and quickly detecting two-dimensional morphology for wafer substrate in real time
US5272342A (en) Diffused layer depth measurement apparatus
Hopkins et al. Raman microprobe determination of local crystal orientation in laser annealed silicon
US4510798A (en) Shallow junction depth measurement method
JP3730289B2 (en) Defect measuring method and apparatus for semiconductor wafer
CN104316552B (en) Measurement method for distribution information of Si(111) material stress along surface normal
JPS5571934A (en) Method of evaluating impurity doping amount in semiconductor
CN106546324A (en) The method of the little light beam interior three-dimensional light distribution of measurement random polarization state
JPH0719844A (en) Measuring method for roughness of surface of wafer
US7170075B2 (en) Inspection tool with a 3D point sensor to develop a focus map
US20030128360A1 (en) Elllipsometer and precision auto-alignment method for incident angle of the ellipsometer without auxiliary equipment
Flasse et al. Modeling Spectralon's bidirectional reflectance for in-flight calibration of Earth-orbiting sensors