JPS60145904A - Carbonization and activation furnace - Google Patents

Carbonization and activation furnace

Info

Publication number
JPS60145904A
JPS60145904A JP58251226A JP25122683A JPS60145904A JP S60145904 A JPS60145904 A JP S60145904A JP 58251226 A JP58251226 A JP 58251226A JP 25122683 A JP25122683 A JP 25122683A JP S60145904 A JPS60145904 A JP S60145904A
Authority
JP
Japan
Prior art keywords
furnace
gas
activation
carbonization
activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58251226A
Other languages
Japanese (ja)
Inventor
Akihiko Yoshida
昭彦 吉田
Atsushi Nishino
敦 西野
Ichiro Tanahashi
棚橋 一郎
Yasuhiro Takeuchi
康弘 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58251226A priority Critical patent/JPS60145904A/en
Publication of JPS60145904A publication Critical patent/JPS60145904A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an activated carbon fiber product (cloth, sheet, etc.) having uniform qualities, in high efficiency, by supplying activation gas to furnace from its bottom, and passing a material to be carbonized and activated continuously through the furnace via the gates opening at the top and the bottom of the furnace. CONSTITUTION:Activation gas generated by the generator 37 is supplied through the line 38 and the gate 36 to the furnace 39 composed of a furnace body 32 furnished with the top gate 30 and the bottom gate 31 each having gas curtain 41 and 42 (33 is a heater), and is discharged via an exhaust gas treating apparatus 45. The raw cloth 60 is introduced into the above modification furnace via the inlet of the upper closed chamber 43, passed via the gate 30 through the furnace 39 to activate the carbonized product, introduced via the gate 31 into the lower closed chamber 35, and wound with the automatic winder 64. In the above apparatus, the raw cloth can be activated in an optimum state by controlling the inert gas introducing port 40, the gas curtains 41, 42, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、炭素繊維、特に活性炭繊組を製造するだめの
炭化・賦活炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a carbonization/activation furnace for producing carbon fibers, particularly activated carbon fibers.

従来例の構成とその問題点 一般に、やしから、おがくずなとの粉末を炭化賦活して
活性炭粉末を得たり、繊維状物ff7j K炭化賦活し
て炭素繊維・活性炭繊維をイ4Iるために←1、原料を
不活性ガス中でBDO℃〜1600℃の品温に保持する
方法が用いられる。特に活性炭化反応を行なうためには
、不炭性ガス中に水蒸気、その他の酸化性ガスを賦活ガ
スとして一定濃度で加える。
Structures of conventional examples and their problems In general, in order to obtain activated carbon powder by carbonizing and activating powders of palm and sawdust, and to obtain carbon fibers and activated carbon fibers by carbonizing and activating fibrous materials. ←1. A method is used in which the raw material is maintained at a temperature of BDO°C to 1600°C in an inert gas. In particular, in order to carry out an activated carbonization reaction, water vapor or other oxidizing gas is added to the non-carbonaceous gas at a constant concentration as an activating gas.

従来、このような物質を炭化・賦活する装置としては、
第1図に示すような高温炉が用いられてきた。すなわち
、ニクロム、カンタル、炭化硅素などの抵抗加熱ヒータ
を用いた電気炉1中に磁製反応管2を配し、この反応管
2中に炭化賦活される試料3を置く。炉1は温度制御装
置4によって一定温度に保たれる。キャリアガスボンベ
5からの不活性ガスを水蒸気発生装置6全通して反応管
2に送りこむ。排出ガスは適当な排ガス処理装置7で処
理される。特にモータ8を用いて反応管2を回転するよ
うにした例も見られる。
Conventionally, the equipment for carbonizing and activating such substances is
A high temperature furnace as shown in FIG. 1 has been used. That is, a porcelain reaction tube 2 is placed in an electric furnace 1 using a resistance heater made of nichrome, kanthal, silicon carbide, etc., and a sample 3 to be carbonized is placed in the reaction tube 2. The furnace 1 is maintained at a constant temperature by a temperature control device 4. The inert gas from the carrier gas cylinder 5 is fed into the reaction tube 2 through the entire steam generator 6. The exhaust gas is treated in a suitable exhaust gas treatment device 7. In particular, there are examples in which the reaction tube 2 is rotated using the motor 8.

このように賦活反応炉は、基本的には炭化物と賦活ガス
とを高温下で接触反応させるものであるが、例えば繊維
を用いた織布、不織布、フェルト紙状シートなどのよう
なものを連続的に炭化賦活することは、その反応雰囲気
制御が難しい。上述の炭化・賦活反応のうち、炭化反応
は、低酸素濃度雰囲気高温 での均一炭化反応が必要に
なる。
In this way, an activation reactor basically causes a contact reaction between carbide and an activation gas at high temperatures. It is difficult to control the reaction atmosphere for carbonization activation. Among the carbonization and activation reactions mentioned above, the carbonization reaction requires a uniform carbonization reaction at high temperature in a low oxygen concentration atmosphere.

また賦活反応は、水蒸気賦活を例にあげると、第1式の
ように、高温下での水分子と基体構成炭素との固相−気
相反応になり、炭素原子のぬけ穴に細孔が生成し、これ
が活性炭の高比表面積をもたらす。
Taking water vapor activation as an example, the activation reaction is a solid phase-vapor phase reaction between water molecules and the carbon that constitutes the substrate under high temperature, and pores are created in the holes of the carbon atoms, as shown in equation 1. This results in a high specific surface area of activated carbon.

Cn+H20−+ Cn、 +CO+H2−(1)この
ような固相−気相反応では、(1)系の温度の均一性、
(2)固体表面と気体との接触頻度の高さ、および均等
さ、(3)賦活反応により生成した物質(第1式の反応
の場合はCo 、 H2ガス)の系外への速やかなる移
動、の3点が反応を支配する因イとして挙げられ、との
糸外が良好に制御されはじ△ めで賦活反応が正常に進行し、その結果、高比表面積で
優れた活性炭が得られる。寸だ観点を変えると、この3
条件を任意に制御することによ−〕て得られる活性炭の
特性を制御することがb]能に/3、る0 先述の反応管を用いたバッチ方式の賦活炉で6:j: 
Cn+H20-+ Cn, +CO+H2- (1) In such a solid phase-gas phase reaction, (1) uniformity of the temperature of the system;
(2) high frequency and uniformity of contact between the solid surface and the gas; (3) rapid movement of substances produced by the activation reaction (Co and H2 gas in the case of the reaction of formula 1) to the outside of the system; The following three points are mentioned as the factors that govern the reaction. When the outsideness of and is well controlled, the activation reaction proceeds normally, and as a result, excellent activated carbon with a high specific surface area is obtained. If you change your perspective, these 3
It is possible to control the properties of the obtained activated carbon by arbitrarily controlling the conditions.
.

被賦活物の量1位置が一定であり、上記の賦活条件を制
御することは比較的容易である。すなわち賦活ガスの濃
度、流量9反応管内への導入系路。
Since the amount of the substance to be activated is constant at one position, it is relatively easy to control the above activation conditions. In other words, the concentration and flow rate of the activation gas 9. The introduction path into the reaction tube.

などを種々設定することにより所望の特性の活性炭を得
ることができる。しかし、この方法では、バッチ法であ
るために、1回あたりの被賦活物処理量が限られ、この
量が多い場合は均一炭化・賦活物を得ることが困難にな
る。例えば、バッチ炉中で外表面部の方が内部よりも速
やかに賦活されるため、例えば被賦活物の回転、攪拌な
ど、炉の構造が複雑になってしまう。
Activated carbon with desired characteristics can be obtained by setting various parameters. However, since this method is a batch method, the amount of material to be activated per process is limited, and if this amount is large, it becomes difficult to uniformly carbonize and obtain the activated material. For example, in a batch furnace, the outer surface is activated more quickly than the inside, which makes the furnace structure complicated, such as rotation and stirring of the object to be activated.

第2図は、繊維を織って得られた布20を炭化賦活する
ための従来式のバッチ炉の概念図であるが、このように
布2oを炉室21中で1]広くっり丁げなければ、賦活
ガス22が布2oに均一に接触できなくなる。23は賦
活ガス供給装置、24は布を炉内につり下げるための治
具である。
FIG. 2 is a conceptual diagram of a conventional batch furnace for carbonizing cloth 20 obtained by weaving fibers. Otherwise, the activation gas 22 will not be able to come into uniform contact with the cloth 2o. 23 is an activation gas supply device, and 24 is a jig for suspending the cloth in the furnace.

以上述べたように、従来のバッチ式炭化賦活炉では、特
に布のような連続長尺のものを大量に一度に炭化賦活す
ることは難しく、これを均一に連続的に炭化賦活できる
炉が望まれる。
As mentioned above, in conventional batch-type carbonization activation furnaces, it is difficult to carbonize large quantities of continuous long items such as cloth at once, and a furnace that can uniformly and continuously carbonize these items is desirable. It will be done.

発明の目的 本発明は、均一な性質を有する炭素繊維、活性炭繊維を
連続的に得ることが可能な炭化賦活炉に関するものであ
り、炭素繊維布、活性炭繊維布のような布状、シート状
、フェルト状の炭素繊維。
Object of the Invention The present invention relates to a carbonization activation furnace capable of continuously obtaining carbon fibers and activated carbon fibers having uniform properties, and is capable of producing carbon fibers and activated carbon fibers in the form of cloth, sheet, etc. such as carbon fiber cloth and activated carbon fiber cloth. Felt-like carbon fiber.

活性炭繊維構成物を連続的に得るだめの炉を提供するも
のである。
A furnace for continuously obtaining activated carbon fiber composition is provided.

発明の構成 本発明の炭化賦活炉は、炉室の天井部および底部に開口
部を有し、天井部の開口部から底部の開口部へ、寸たは
底部の開口部から天井部の9ト10部へ被炭化賦活物が
連続的に移動通過するようにし、賦活ガスを炉室底部の
導入部から供給するように構成したものである。
Composition of the Invention The carbonization activation furnace of the present invention has openings at the ceiling and bottom of the furnace chamber, and from the ceiling opening to the bottom opening, or from the bottom opening to the ceiling. The activation material to be carbonized is continuously moved and passed through the furnace chamber, and the activation gas is supplied from the introduction section at the bottom of the furnace chamber.

ここで、上記底部の開口部を、炭化賦活終了物もしくは
炭化賦活原料を収納可能な密閉室とつ4ぐのが好ましい
Here, it is preferable that the bottom opening is connected to a closed chamber capable of storing the carbonized activated product or the carbonized activated raw material.

また、上記賦活ガスは、液体と、これに接している吸上
げ体と、この吸上体上部の発熱部とから伐る液体気化装
置と、不活性ガス供給装置とから構成されるガス供給装
置から供給するのが好ましい0 本発明によれば、炉室内を連続的に上下方向に移動する
布のような被賦活物に常に一定の条件で均一に賦活ガス
が接触反応し、炉下部に設けられ、炉室に通ずる密閉室
により炉室内の酸素濃度、賦活ガス濃度が常に一定に保
たれ、さらに均一で高精度に供給量を制御できる賦活ガ
ス供給装置を用いているため、従来のバッチ式炭化賦活
炉に比べて大量に連続的に均一な性質(比表面積、目付
等)の炭素繊維、活性炭繊維構成物を得ることができる
The above-mentioned activation gas is supplied from a gas supply device consisting of a liquid vaporizer that extracts the liquid, a suction body in contact with the liquid, a heat generating part on the upper part of the suction body, and an inert gas supply device. According to the present invention, the activation gas uniformly contacts and reacts under constant conditions with the object to be activated, such as cloth, which moves continuously in the vertical direction within the furnace chamber. , the oxygen concentration and activation gas concentration in the furnace chamber are always kept constant by the closed chamber leading to the furnace chamber, and the activation gas supply device that can control the supply amount uniformly and with high precision is used, so it is not possible to use conventional batch carbonization. Compared to an activation furnace, it is possible to continuously obtain carbon fibers and activated carbon fiber compositions with uniform properties (specific surface area, basis weight, etc.) in large quantities.

実施例の説明 本発明の炭化賦活炉の基本的な構成を第3図に示す。す
なわち、天井部および底部に、それぞれ開口部30,3
1を有する密閉炉体32が炭化硅素発熱体のような加熱
部33に囲まれており、さらに全体はアルミナファイバ
ー構成物、れんがのような保温材より成る保温部34で
おおわれている。炉室下部の開口部31は、密閉室36
とつなかっている。炉室下部には賦活ガス供給孔36が
あり、賦活ガス発生装置37で得られた賦活ガスは、供
給管38を通って供給孔36に達し炉室39内に供給さ
れる。炉室39内および密閉室35内は、後述する賦活
ガスのキャリアガスとして用いる窒素などの不活性ガス
や、密閉室35に設けられた不活性ガス導入孔40から
の不活性ガスによって5%以下の低酸素濃度に保たれて
いる。炉室39内の保温、酸素濃度を低く安定に保っ/
こめに、不活性ガスのガスカーテンを41.42の位置
に設けてもよい。
DESCRIPTION OF EMBODIMENTS The basic structure of the carbonization activation furnace of the present invention is shown in FIG. That is, openings 30 and 3 are provided in the ceiling and the bottom, respectively.
1 is surrounded by a heating part 33 such as a silicon carbide heating element, and the whole is covered with a heat insulating part 34 made of a heat insulating material such as an alumina fiber composition or a brick. The opening 31 at the bottom of the furnace chamber is a sealed chamber 36.
It is connected to There is an activation gas supply hole 36 in the lower part of the furnace chamber, and the activation gas obtained by the activation gas generator 37 passes through a supply pipe 38 to reach the supply hole 36 and is supplied into the furnace chamber 39 . The inside of the furnace chamber 39 and the sealed chamber 35 are filled with an inert gas such as nitrogen used as a carrier gas for the activation gas, which will be described later, and an inert gas from an inert gas introduction hole 40 provided in the sealed chamber 35 to provide a gas concentration of 5% or less. maintained at a low oxygen concentration. Keeps heat in the furnace chamber 39 and oxygen concentration low and stable/
In addition, a gas curtain of inert gas may be provided at positions 41 and 42.

さらにこの炭化賦活炉には、炉体上部に次に述べるよう
な賦活排ガスの処理装置が数句けられている。すなわち
、炉室天井部の開[]部30が上部密閉室43とつなが
っており、この上部密閉室43は天井部の開口部44を
通じてυ1ガス処理装置45と連絡される。この排ガス
処理装jq 45は、Ik19炉で発生した炭化水素ガ
スなどを燃焼し、CO2゜H2O、低級炭化水素に分解
、酸化浄化するものてあり、例えば巾の狭いスリット部
空間46を介して一対の加熱部47.48が相対してお
シ、このスリット部空間46を、下部の炉室39で発生
した炭化水素ガスが通過する。この装置45に設けられ
た一次空気孔49.二次空気孔50かも導入される空気
によって、炭化水素ガスは燃焼し分解浄化される。
Furthermore, this carbonization activation furnace has several activation exhaust gas treatment devices as described below installed in the upper part of the furnace body. That is, an opening 30 in the ceiling of the furnace chamber is connected to an upper sealed chamber 43, and this upper sealed chamber 43 is connected to the υ1 gas processing device 45 through an opening 44 in the ceiling. This exhaust gas treatment device jq 45 burns hydrocarbon gas etc. generated in the Ik19 furnace, decomposes it into CO2°H2O and lower hydrocarbons, and oxidizes and purifies it. The heating parts 47 and 48 are opposed to each other, and the hydrocarbon gas generated in the lower furnace chamber 39 passes through this slit space 46. Primary air holes 49 provided in this device 45. The hydrocarbon gas is combusted and decomposed and purified by the air introduced through the secondary air holes 50.

次に賦活ガス発生装置37について説明する。Next, the activation gas generator 37 will be explained.

第4図はこの装置の構成例を示すものである。密閉容器
51の中の液体52とこの液体52に一部接するガラス
繊維布のような多孔質吸上体53と、この吸上体63と
一部接肺する発熱ヒータ54とから基本的に構成される
。アルゴン、音素のような不活性ガスボンベ56からの
ガスは、入口56から上記装置“内に入り、吸上体53
とヒータ54との作用によって気化発生した蒸気は、不
活性ガスをキ゛ヤリアとして出口57から出て炉体59
へ供給される。58はヒータ54用の電力コントローラ
部であり、電力コントロールによって単位時間当たりの
蒸気供給を精度よく任意にコントロールできる。
FIG. 4 shows an example of the configuration of this device. It basically consists of a liquid 52 in a sealed container 51, a porous absorbent body 53 such as a glass fiber cloth that is partially in contact with the liquid 52, and a heat generating heater 54 that is partially in contact with this absorbent body 63. be done. Gas from an inert gas cylinder 56, such as argon, phoneme, enters the device through an inlet 56 and enters the wick 53.
Steam generated by the action of the heater 54 and the heater 54 exits from the outlet 57 using the inert gas as a carrier and enters the furnace body 59.
supplied to 58 is a power controller section for the heater 54, and the steam supply per unit time can be arbitrarily controlled with high precision by power control.

賦活ガス発生装置としては、この他に、容器中の高温に
保たれた液体中に不活性ガスるバブリングして酸化性ガ
スを得る方法や、水蒸気発生が1のような高温高圧がま
により賦活ガスを得る方法も可能であるが、上述の液体
気化装置を用いると、第6図に示すように加熱ヒータの
入力電力に比例して気化蒸気量が直線的に精度よく制御
できる/こめ、賦活ガス発生源として最適である。ただ
し、第5図は、液体として水を用いた場合のものてあり
、縦軸は、単位時間当たり消費された液体水分の量であ
る。
Other activation gas generators include a method of bubbling an inert gas into a liquid kept at a high temperature in a container to obtain an oxidizing gas, and a method of generating an oxidizing gas using a high-temperature, high-pressure pot such as one that generates steam. Although other methods of obtaining gas are possible, by using the liquid vaporizer described above, the amount of vaporized vapor can be controlled linearly and accurately in proportion to the input power of the heater, as shown in Figure 6. Ideal as a gas generation source. However, FIG. 5 shows the case where water is used as the liquid, and the vertical axis is the amount of liquid water consumed per unit time.

次に、以上述べた構成の賦活炉を用いて布を炭化賦活す
る方法、過程について第3図に従って説明する。原料布
60I″i、駆動ロー961によって入口62から上部
密閉室43に入り、ローラ63を通って炉室39内へ入
る。炉室39((J、800〜1200℃の高温に保た
れ、例えば水蒸気の」:うな酸化性ガ2がギヤリア不活
性ガスとともに炉室内に下部供給孔から上方に向けて供
給さ〕Lる0づなわち炉内を土から下に通過する間に布
は賦lII、ヵスによって均一に炭化賦活され、炉底部
間口部31から下部密閉室35に導かれる。賦活の完了
した布は、下部密閉室内に設けられた自動巻取装置64
によって巻取られる。賦活中は、既述のように、下部密
閉室35の不活性ガス導入孔40や、不活性ガス、ガス
カーテン41.42によって炉室内(d低酸素濃度に保
たれ、賦活反応は、速やかに最適に進行する。
Next, a method and process for carbonizing cloth using the activation furnace configured as described above will be explained with reference to FIG. The raw material cloth 60I''i enters the upper sealed chamber 43 from the inlet 62 by the driving row 961, passes through the roller 63 and enters the furnace chamber 39. Water vapor: The oxidizing gas 2 is supplied into the furnace chamber upward from the lower supply hole together with the gear inert gas.In other words, while passing through the furnace from the soil down, the cloth is The cloth is uniformly carbonized and activated by the dregs, and is led from the furnace bottom opening 31 to the lower sealed chamber 35.After the activation, the cloth is passed through an automatic winding device 64 provided in the lower sealed chamber.
It is wound up by. During activation, as described above, the inert gas inlet 40 of the lower sealed chamber 35 and the inert gas and gas curtains 41 and 42 keep the furnace chamber (d) at a low oxygen concentration, and the activation reaction occurs quickly. proceed optimally.

賦活ガスの供給孔の数2位置は、被賦活物の巾、大きさ
などに応じて複数個にしたり、その間隔を適当に選ぶと
とにより、最適な賦活が可能になる。
Optimum activation can be achieved by providing a plurality of activating gas supply holes in two positions depending on the width, size, etc. of the object to be activated, or by appropriately selecting the interval between them.

また、上記の実施例では被賦活物を上から下に移動させ
る方法について述べたが、逆に原料を下部密閉室35か
ら上方向に送り、炉室39内で賦活させ上部で巻き取る
方式も可能である。
Furthermore, in the above embodiment, a method was described in which the material to be activated was moved from the top to the bottom, but there is also a method in which the raw material is sent upward from the lower sealed chamber 35, activated in the furnace chamber 39, and then rolled up in the upper part. It is possible.

本発明の炉は、炭化炉としてもその優れた機能を有し、
賦活ガス供給孔36から不活性ガスのみを導入して用い
ることもできる。
The furnace of the present invention has excellent functions as a carbonization furnace,
It is also possible to introduce and use only the inert gas through the activation gas supply hole 36.

第6図は、本発明の、縦型炭化賦活方式の優れた特徴を
示すものである。
FIG. 6 shows the excellent features of the vertical carbonization activation method of the present invention.

本発明のように上方向から炉内に入り(下方向からの場
合も同じ)、第6図a)(イ)の位置から(ロ)の位置
に被賦活物80が移動する時、下方から発生する賦活ガ
ス81.82は被賦活物80の両面に均等に反応し、炉
から出て来た物は長尺のどの部分をとっても全く同一で
、均質な反応成層を不することになる。既述のように広
巾の被賦活物の場合は、その両面全体に均等に賦活ガス
83が供給されるようにすれ(iよい。
As in the present invention, when the object 80 enters the furnace from above (the same applies to the case from below) and moves from the position of (a) (a) to the position (b) of FIG. The generated activating gases 81 and 82 react equally on both sides of the object to be activated 80, and the object that comes out of the furnace is exactly the same no matter where it is in the long length, resulting in no homogeneous reaction stratification. As mentioned above, in the case of a wide object to be activated, the activation gas 83 should be supplied evenly to both sides of the object.

一方、第6図b)に示すように、被賦活物90を水平方
向に移動((イ)から(ロ)へ)する場合、炉内の温度
分布や重力の作用を考えると、上方からの賦活ガス92
.91を被賦活物90の両面に均一に供給することは困
難であり、この方式で得ら第1た物は、どちらかの面の
賦活が進みすきて優れ/こ活性炭が得られない。
On the other hand, as shown in Figure 6b), when moving the activated material 90 horizontally (from (a) to (b)), considering the temperature distribution in the furnace and the action of gravity, it is difficult to move the activated material 90 from above. Activating gas 92
.. It is difficult to uniformly supply 91 to both sides of the material to be activated 90, and the first product obtained by this method is unable to obtain excellent activated carbon because the activation progresses too much on either side.

次に具体的実施例を説明する。Next, specific examples will be described.

目付200.9 / m’のフェノール樹脂系LM !
flにより構成された布(II] 100 cm、 )
をブイ53図の賦活炉を用いて賦活を行なう。炉温度は
900℃、炉室の縦長さは30cm+横巾は1000m
、奥行は2゜cmのものを用いた。賦活ガスには第4図
の装置に水を入れることにより水蒸気TOを発生させて
炉内に導入した。水蒸気発生装置のヒータ電力は1KW
とし、キャリアガスにば201/分の窒素ガスを用いた
。この実施例で得られた活性炭布の特性を次表に示す。
Phenolic resin LM with a basis weight of 200.9/m'!
Cloth composed of fl (II] 100 cm, )
Activation is performed using the activation furnace shown in buoy 53. Furnace temperature is 900℃, furnace chamber length is 30cm + width is 1000m
, and the depth was 2°cm. For the activation gas, water was introduced into the apparatus shown in FIG. 4 to generate water vapor TO, which was then introduced into the furnace. The heater power of the steam generator is 1KW.
Nitrogen gas was used as the carrier gas at a rate of 201/min. The properties of the activated carbon cloth obtained in this example are shown in the following table.

同表には、活性炭繊維の特性の他に、本発明者らが考案
した電気二重層キャパシタに本実施例の活性炭繊維を用
いた時のキャパシタ特性も合わせて示す。この表中に、
従来のバッチ式炭化賦活炉により得られた活性炭の特性
In addition to the characteristics of the activated carbon fiber, the table also shows the capacitor characteristics when the activated carbon fiber of this example is used in the electric double layer capacitor devised by the present inventors. In this table,
Characteristics of activated carbon obtained using a conventional batch-type carbonization activation furnace.

量産性を比較掲載する。A comparison of mass productivity will be posted.

以下余白 発明の効果 以上のように、本発明の炭化賦活炉は、布のような長尺
物を連続賦活するのに適したものであり、次のような効
果を有する。(1)炉壁と被賦活物との距離が均一で近
距離であるため、温度分布が均一になる。(2)炉内を
連続に移動する被賦活物に対して賦活ガスが多弼に均等
に反応する構造である。(3)縦型炉であるため、ドラ
フト効果により賦活反応により生成したガスが速やかに
系外に排出される。(4)排ガス燃焼炉を付設すると、
賦活により生成した炭化水素ガスなどが分解浄化される
Effects of the Invention As described above, the carbonization activation furnace of the present invention is suitable for continuous activation of long objects such as cloth, and has the following effects. (1) Since the distance between the furnace wall and the object to be activated is uniform and close, the temperature distribution is uniform. (2) It has a structure in which the activation gas reacts evenly and evenly with the object to be activated that moves continuously in the furnace. (3) Since it is a vertical furnace, the gas generated by the activation reaction is quickly discharged out of the system due to the draft effect. (4) When an exhaust gas combustion furnace is attached,
Hydrocarbon gas generated by activation is decomposed and purified.

このように本発明の炉は、工業的にも高性能で均質な活
性炭布を大計に供給できるものであり、その価値は甘こ
とに大なるもの4である。
As described above, the furnace of the present invention can supply industrially high-performance, homogeneous activated carbon cloth in large quantities, and its value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のバッチ式炭化賦活炉の構成図、第2図は
バッチ炉を用いて活性炭布を生産する時の概念図、第3
図は本発明の実施例の炭化賦活炉の構成図、第4図は賦
活ガス発生装置の構成図、第5図は賦活ガス発生装置の
入力電力と消費水分量との関係を示す図、第6図は本発
明による賦活方式の他方式に対する優位性を説明する図
である。 30.31・・・開口部、32・ ・・炉体、33・・
・・加熱部、35・・・・・・密閉室、36・・ 賦活
ガス供給孔、37・・・・・・賦活ガス発生装置、40
・・・・不活性ガス導入孔、46・・・・排ガス処理装
置、60・・原料布。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第 3 図
Figure 1 is a configuration diagram of a conventional batch type carbonization activation furnace, Figure 2 is a conceptual diagram of producing activated carbon cloth using a batch furnace, and Figure 3 is a diagram of a conventional batch type carbonization activation furnace.
Figure 4 is a configuration diagram of a carbonization activation furnace according to an embodiment of the present invention, Figure 4 is a configuration diagram of an activation gas generation device, Figure 5 is a diagram showing the relationship between input power and water consumption of the activation gas generation device, FIG. 6 is a diagram explaining the superiority of the activation method according to the present invention over other methods. 30.31...opening, 32...furnace body, 33...
...Heating section, 35... Sealed chamber, 36... Activating gas supply hole, 37... Activating gas generator, 40
... Inert gas introduction hole, 46 ... Exhaust gas treatment device, 60 ... Raw material cloth. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3

Claims (1)

【特許請求の範囲】 (1)加熱された炉室の上部および下部に開口部を有し
、上部の開口部から下部の開口部へ、または下部の開口
部から上部の開口部へ被炭化賦活物が連続的に移動通過
するようにし、少なくとも炉室下部の3別の開口部から
賦活ガスを供給するように構成したことを特徴とする炭
化賦活炉。 (2)上記炉室下部の開口部が、炭化賦活終了物捷たは
炭化賦活原料を収納可能な密閉室とつながっている特許
請求の範囲第1項記載の炭化賦活炉。 (3)上記炉室上部の開口部および下部の開口部のいず
れかもしくは両者1て不活性ガスを被炭化賦活物の方向
に流す構造金有する特許請求の範囲第1項記載の炭化賦
活炉。 (4) −、J−記密閉室に不活性ガスを供給するよう
にした特許請求の範囲第2項記載の炭化賦活炉。 (6)上記炉室上部の開口部が排ガス処理装置と連結さ
れている特許請求の範囲第1項記載の炭化賦活炉。 (6)上記排ガス処理装置が、一対の相対する加熱ヒー
タと、その間のガス通過スリット部とから成る特許請求
の範囲第5項記載の炭化賦活炉。 (7)上記賦活ガスの供給が、液体と、この液体に接し
ている吸」二げ体と、この吸上は体上部の発熱部とから
成る液体気化装置と、不活性ガス供給部とから構成され
た特許請求の範囲第1項記載の炭化賦活炉。
[Claims] (1) The heated furnace chamber has openings at the top and bottom, and carbonization activation is carried out from the top opening to the bottom opening, or from the bottom opening to the top opening. A carbonization activation furnace characterized in that a material is continuously moved through the furnace and the activation gas is supplied from at least three separate openings in the lower part of the furnace chamber. (2) The carbonization activation furnace according to claim 1, wherein the opening in the lower part of the furnace chamber is connected to a closed chamber capable of storing the carbonization-activated material or the carbonization-activated raw material. (3) The carbonization activation furnace according to claim 1, which has a structure that allows inert gas to flow in the direction of the object to be carbonized through either or both of the upper opening and the lower opening of the furnace chamber. (4) The carbonization activation furnace according to claim 2, wherein an inert gas is supplied to the sealed chamber. (6) The carbonization activation furnace according to claim 1, wherein the opening at the top of the furnace chamber is connected to an exhaust gas treatment device. (6) The carbonization activation furnace according to claim 5, wherein the exhaust gas treatment device comprises a pair of opposing heaters and a gas passage slit section between them. (7) The above-mentioned activation gas is supplied from a liquid vaporizer consisting of a liquid, a suction body in contact with the liquid, and a heat generating section on the upper part of the suction body, and an inert gas supply section. A carbonization activation furnace according to claim 1 constructed.
JP58251226A 1983-12-29 1983-12-29 Carbonization and activation furnace Pending JPS60145904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58251226A JPS60145904A (en) 1983-12-29 1983-12-29 Carbonization and activation furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58251226A JPS60145904A (en) 1983-12-29 1983-12-29 Carbonization and activation furnace

Publications (1)

Publication Number Publication Date
JPS60145904A true JPS60145904A (en) 1985-08-01

Family

ID=17219579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58251226A Pending JPS60145904A (en) 1983-12-29 1983-12-29 Carbonization and activation furnace

Country Status (1)

Country Link
JP (1) JPS60145904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092706A (en) * 2010-12-13 2011-06-15 淮北市协力重型机器有限责任公司 External-heating energy-saving and environment friendly rotary carbonization furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331820A (en) * 1976-09-03 1978-03-25 Toho Rayon Co Ltd Continuous process and apparatus for producing fibrous activated carbon
JPS5725462A (en) * 1980-07-18 1982-02-10 Mitsubishi Rayon Co Shaft type flame proofness imparting treatment apparatus
JPS5725417A (en) * 1980-07-17 1982-02-10 Mitsubishi Rayon Co Ltd Heat-treating apparatus for preparing carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331820A (en) * 1976-09-03 1978-03-25 Toho Rayon Co Ltd Continuous process and apparatus for producing fibrous activated carbon
JPS5725417A (en) * 1980-07-17 1982-02-10 Mitsubishi Rayon Co Ltd Heat-treating apparatus for preparing carbon fiber
JPS5725462A (en) * 1980-07-18 1982-02-10 Mitsubishi Rayon Co Shaft type flame proofness imparting treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092706A (en) * 2010-12-13 2011-06-15 淮北市协力重型机器有限责任公司 External-heating energy-saving and environment friendly rotary carbonization furnace

Similar Documents

Publication Publication Date Title
US5516554A (en) Cyclic hot-filament CVD of diamond
JP4600893B2 (en) Chemical vapor infiltration method for refractory materials, especially for carbon and silicon carbide, and application of the method
CN104986753B (en) Overlength carbon nano pipe and preparation method thereof and device
KR830007425A (en) Process for producing gas containing carbon monoxide and hydrogen gas from materials containing carbon and or hydrocarbons
JPS6249363B2 (en)
JP5282323B2 (en) Method for producing carbide and decomposition products
JPS60145904A (en) Carbonization and activation furnace
US4814145A (en) Apparatus for carbonizing and activating fiber materials
JP2631244B2 (en) Method and apparatus for producing hydrogen for fuel cells
US2219004A (en) Formation of chromium-containing layers on ferrous surfaces
JPS6245725A (en) Production of carbon fiber
JPH02263782A (en) Preparation of ceramic-metal multi-layered constituting body
US3256206A (en) Activation of textile forms of carbon
CZ197695A3 (en) Heat treatment, particularly carburization of metal workpieces
JP2999042B2 (en) Method for producing vapor grown carbon fiber and apparatus for producing vapor grown carbon fiber used in the method
JPS60252721A (en) Production of carbon fiber
JPS63156542A (en) Method for regenerating activated carbon
JPH066782B2 (en) Carburizing process using fluidized particles and apparatus used directly to carry out it
JP2587057B2 (en) Atmosphere generator for heat treatment
JP3502682B2 (en) Vapor-grown carbon fiber production equipment
EP0480385A1 (en) A fluidized bed apparatus for chemically treating workpieces
CN107022751A (en) A kind of apparatus and method coated for gas phase
JPH1133390A (en) Powder material evaporating apparatus
Paulauskas et al. Apparatus and method for stabilization or oxidation of polymeric materials
KR101625307B1 (en) Activated carbon fiber manufacturing device