JPS60145681A - Laser device for stabilized mode synchronization - Google Patents

Laser device for stabilized mode synchronization

Info

Publication number
JPS60145681A
JPS60145681A JP59001638A JP163884A JPS60145681A JP S60145681 A JPS60145681 A JP S60145681A JP 59001638 A JP59001638 A JP 59001638A JP 163884 A JP163884 A JP 163884A JP S60145681 A JPS60145681 A JP S60145681A
Authority
JP
Japan
Prior art keywords
frequency
mode
pulses
deltaf
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59001638A
Other languages
Japanese (ja)
Inventor
Takahiro Aoki
青木 恭弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59001638A priority Critical patent/JPS60145681A/en
Publication of JPS60145681A publication Critical patent/JPS60145681A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1109Active mode locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity

Abstract

PURPOSE:To enable the array of stable photo pulses to be obtained as the output by maintaining the state of mode synchronization conveniently and securely by a method wherein the spectrum width of an optical fiber emitted light is used as a control signal. CONSTITUTION:A control circuit 10 consists of an input circuit that converts the spectrum width of the photo reception output of a photo detector 9 into an array of electric pulses by A/D conversion, and of an operational ciruit. The operational circuit increases the frequency of a sine wave oscillator 11 by DELTAf; consequently, when the spectrum width detected by the photo detector 9, i.e. the number of pulses increase more than the number of pulses of a memory circuit, the former circuit increases the frequency by DELTAf also at the next cycle. When the frequency is increased further by DELTAf, resulting in the reduction in the number of pulses more than that of the memory circuit, the frequency is reduced by 2DELTAf at the next cycle. This control method enables the frequency to vary by + or -DELTAf with the optimum mode synchronization frequency as the center; however, an increase in DELTAf to approx. more than 10kHz exerts no effect on the mode syncronization laser output.

Description

【発明の詳細な説明】 本発明はモード同期状態が常に安定に維持できる安定化
モード同期レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stabilized mode-locked laser device that can maintain a stable mode-locked state at all times.

一般に、固体レーザや色素レーザでは、発振縦モードを
モード同期することにより、サプビョ秒からサブナノ秒
のパルス幅を有する光パルス列が得られる。そのモード
同期法としては、発生する光パルス列の再現性が高いこ
とから、内部変調器を用いる強制モード同期法が主に用
いられている。
Generally, in a solid-state laser or a dye laser, by mode-locking the oscillation longitudinal mode, an optical pulse train having a pulse width of subbyoseconds to subnanoseconds can be obtained. As the mode-locking method, a forced mode-locking method using an internal modulator is mainly used because the reproducibility of the generated optical pulse train is high.

この様なモード同期レーザ装置においては、レーザ媒質
の発熱、外部気温の変動などによって、レーザ共振器の
実効的な共振器長が変化し、その結果モード同期の離調
現象を生じ、安定なモード同期光パルスを長時間に渡っ
ては得られない(!: i、/1う問題点があった。こ
のような問題の対策としては、出力光パルスのパルス幅
や出射タイミングを超高速光検出器とサンプリングオシ
ロスコープで検出し、その出力光パルスの変化から、レ
ーザ共振器長を機械的に調整したり、あるいは内部変調
器の変調周波数を微調することが考えられる。しかしな
がら、そのような超高速光検出器を用いる方法では、複
雑な制御回路を必要とし、多大な困罷を伴い、また、装
置が鳥価になってし捷うという欠点があった。
In such a mode-locked laser device, the effective cavity length of the laser resonator changes due to heat generation in the laser medium, fluctuations in external temperature, etc., resulting in a detuning phenomenon of mode-locking and a stable mode. There was a problem that synchronized optical pulses could not be obtained for a long time (!: i, /1).As a countermeasure to this problem, the pulse width and emission timing of the output optical pulse could be detected using ultra-high-speed optical detection. It is possible to mechanically adjust the laser resonator length or finely adjust the modulation frequency of the internal modulator based on the changes in the output optical pulse detected by a sampling oscilloscope.However, such ultra-high speed The method using a photodetector requires a complicated control circuit, is accompanied by a great deal of trouble, and has the disadvantage that the device becomes bulky and unusable.

本発明の目的は、このような欠点をなくし、簡便でしか
もモード同期状態が確実に維持でき、安定した光パルス
列が出力として得られる安定化モード同期レーザ装置を
提供することにある。
An object of the present invention is to eliminate such drawbacks and to provide a stabilized mode-locked laser device that is simple and capable of reliably maintaining a mode-locked state and producing a stable optical pulse train as an output.

本発明の安定化モード同期レーザ装置は、レーザ媒質と
変調器とを二個の反射鏡の間に設けた強制モード同期レ
ーザ発振器と、前記変調器に対して所定制御電圧により
周波数制御された発振出力を供給する周波数発振器と、
前記レーザ発振器の発振出力光からそのスペクトル幅を
計測するスペクトル測定器と、このスペクトル測定器か
ら出力されるスペクトル幅信号が最大になるように前記
周波数発振器の制御電圧を制御する制御回路とを含み構
成される。
The stabilized mode-locked laser device of the present invention includes a forced mode-locked laser oscillator in which a laser medium and a modulator are provided between two reflecting mirrors, and oscillation in which the frequency of the modulator is controlled by a predetermined control voltage. a frequency oscillator that provides an output;
A spectrum measuring device that measures the spectral width from the oscillation output light of the laser oscillator, and a control circuit that controls the control voltage of the frequency oscillator so that the spectral width signal output from the spectrum measuring device is maximized. configured.

本発明においては、強制モード同期レーザ発振器におい
て離調が生ずると、一般にその平均出力はほとんど変わ
らないが、出力光パルスのパルス幅が広がりピークパワ
ーは小さくなるという現象を利用1.で、その離調によ
っC生ずる出力光パルスの形状変化を光ファイバの自己
位相変調効果をド同期状態の安定化を行なうことを特徴
とする。
The present invention utilizes the phenomenon that when detuning occurs in a forced mode-locked laser oscillator, the average output generally remains almost unchanged, but the pulse width of the output optical pulse increases and the peak power decreases.1. The present invention is characterized in that the self-phase modulation effect of the optical fiber is stabilized in the de-synchronized state by the change in the shape of the output optical pulse caused by the detuning.

次に本発明の動作原理として光ファイバの自己位相変調
効果を簡単に説明する。光ファイバに、サブピコ秒から
サブナノ秒のパルス幅を有する光パルスを入射させると
、光パルスの強度に依存した屈折率変化を生じ、この光
パルスが光フアイバ出射後のそのスペクトルが拡がる現
象がある。この現象は自己位相変調効果と呼ばれており
、そのスペクトル拡がりの量は、光パルスのパルス幅が
狭く、かつピークパワーが大きい桟大きい。したがって
、光ファイバの出射スペクトル幅を最大になるようにす
れば、離調を極小化し、すなわち最適なモード同期状態
にすることができる。
Next, the self-phase modulation effect of an optical fiber will be briefly explained as the operating principle of the present invention. When a light pulse with a pulse width of sub-picoseconds to sub-nanoseconds is introduced into an optical fiber, a refractive index change occurs depending on the intensity of the light pulse, and there is a phenomenon in which the spectrum of this light pulse is broadened after exiting from the optical fiber. . This phenomenon is called the self-phase modulation effect, and the amount of spectrum broadening is large when the pulse width of the optical pulse is narrow and the peak power is high. Therefore, by maximizing the output spectrum width of the optical fiber, detuning can be minimized, that is, an optimal mode-locked state can be achieved.

次に本発明を図面を参照して詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明による一実施例を含む構成図である こ
の図において、強制モード同期レープ発振器20は、レ
ーザ媒質1、反射鏡2および3、モード同期用内部変f
A器4から構成され、また5は光ファイバ、6はレンズ
、7は反射鏡、8はスペクトル測定器、9は光検出器、
10はモード同期ドライバの制御回路、11はモード同
期ドライバを示す。
FIG. 1 is a configuration diagram including an embodiment according to the present invention. In this figure, a forced mode-locked Lepe oscillator 20 includes a laser medium 1, reflectors 2 and 3, and an internal changer f for mode-locking.
Consisting of A device 4, 5 is an optical fiber, 6 is a lens, 7 is a reflecting mirror, 8 is a spectrum measuring device, 9 is a photodetector,
Reference numeral 10 indicates a control circuit for a mode-locked driver, and 11 indicates a mode-locked driver.

本実施例において、レーザ発振器20はレーザ媒IjK
1として4鮨φ×75朋のNd:YAGロッドを用いて
波長1.06μm にて発振させたものを用いている。
In this embodiment, the laser oscillator 20 uses a laser medium IjK
As No. 1, a Nd:YAG rod of 4 mm diameter x 75 mm was used, which was oscillated at a wavelength of 1.06 μm.

また、モード同期用内部変調器4としては、超音波変調
器を用い、モード同期ドライノ(11としては電圧によ
り周波数制御のできる80MHz の正弦波発振器(V
CO)を用いてモード同期を行なっている。また、光フ
ァイノ(5としては、コア径10 I’m s )yイ
パ長IKyn、波長1.06μmにおける伝送損失1d
B/Kmの単一モードシリカファイバを、スペクトル測
定器8としては、オドダイオード(Ge−PD )を用
いている。
An ultrasonic modulator is used as the mode-locking internal modulator 4, and a mode-locking drino (11) is an 80 MHz sine wave oscillator (V) whose frequency can be controlled by voltage.
Mode synchronization is performed using CO). In addition, the optical fiber (as 5, core diameter 10 I'm s) y Ipa length IKyn, transmission loss 1 d at wavelength 1.06 μm
A single mode silica fiber of B/Km is used, and an odd diode (Ge-PD) is used as the spectrum measuring device 8.

ファブリペロ干渉計(8)は50Hzで掃引されており
、光フアイバ出射後のスペクトル幅の情報を含む掃引後
の光出力はGe−PDfq)で受光されて制御して電気
パルス列に変換する入力回路と、その電気パルス列の数
、即ちスペクトル幅に応じて正弦波発振器の周波数の所
要増減量、即ち離調量を計算する演算回路とから構成さ
れている。
The Fabry-Perot interferometer (8) is swept at 50 Hz, and the optical output after the sweep including information on the spectral width after being emitted from the optical fiber is received by a Ge-PDfq) and is controlled by an input circuit that converts it into an electric pulse train. , and an arithmetic circuit that calculates the required increase or decrease in the frequency of the sine wave oscillator, that is, the amount of detuning, according to the number of electric pulse trains, that is, the spectral width.

この演算回路は、次に述べる制御手順を1サイクルと呼
ぶと、1サイクル前のパルス数を記憶する記憶回路を含
んでおり、正弦波発振器(11)の周波数を増加させる
か、減少させるかを次の様に決定している。
If the control procedure described below is called one cycle, this arithmetic circuit includes a memory circuit that stores the number of pulses from one cycle before, and determines whether to increase or decrease the frequency of the sine wave oscillator (11). It is decided as follows.

■)正弦波発振器(11)の周波数をΔff?Cけ増加
させ、その結果光検出器9により検出されるスペクトル
幅、すなわちパルス数力柚白、恢回路のパルス数と同じ
かあるいは増加した場合には、次のサイクルにおいても
Δfだけ増加させる。
■) Is the frequency of the sine wave oscillator (11) Δff? As a result, if the spectral width detected by the photodetector 9, that is, the pulse number is equal to or increased by the number of pulses of the matching circuit, it is increased by Δf in the next cycle as well.

■)周波数をさらにΔfだけ増加させ、その結果パルス
数が記憶回路のパルス数よりも減少した場合には、次の
サイクルにおいて2Δfだけ減少させる。
(2) If the frequency is further increased by Δf and as a result the number of pulses decreases below the number of pulses in the memory circuit, it is decreased by 2Δf in the next cycle.

この制御方法によると最適のモード同期周波数を中心に
して±Δfだけ周波数が変化するが、Δfを10KHz
以下程度にすれば、モード同期レーザ出力にその影響は
全く現われない。また、本実施例のモード同期レーザに
おいては、離調を補償するために必要とされる最大の周
波数の増減晴は歯高50KHzであり、超音波変調器(
4)の変調度ケはとんど変えることなく、モード同期状
態の安定化を長時間に段って達成することができる。な
お、この構成では、ファブリペロ干渉計の掃引周波数で
ある50Hz より高速な離調現象に対しては追従でき
ないが、モード同期の離調現象は主にレーザ媒質の発熱
、外部気温の変動などによるもので時間的にゆるやかで
あり、この構成で十分安定化させることができる。
According to this control method, the frequency changes by ±Δf around the optimal mode-locking frequency, but if Δf is 10 KHz
If the amount is set below, the mode-locked laser output will not be affected at all. In addition, in the mode-locked laser of this example, the maximum frequency increase or decrease required to compensate for detuning is a tooth height of 50 KHz, and the ultrasonic modulator (
4) Stabilization of the mode-locked state can be achieved in stages over a long period of time without changing the modulation depth. Note that this configuration cannot track detuning phenomena faster than 50 Hz, which is the sweep frequency of the Fabry-Perot interferometer, but mode-locking detuning phenomena are mainly caused by heat generation in the laser medium, fluctuations in external temperature, etc. This is gradual in terms of time and can be sufficiently stabilized with this configuration.

以上説明した様に、本発明によれば、光フアイバ出射光
のスペクトル幅を制御信号として用いることにより、従
来の様な超高速光検出器および高速で複雑な制御回路を
必要とせず、構成が簡単でかつ安価な装置が得られると
いう利点を有する。
As explained above, according to the present invention, by using the spectral width of the light emitted from an optical fiber as a control signal, there is no need for a conventional ultra-high-speed photodetector and a high-speed and complicated control circuit, and the configuration can be simplified. This has the advantage that a simple and inexpensive device can be obtained.

なお、この発明は実施例の構成に限定されることなくい
くつかの変形が考えられる。例えは、スペクトル分析器
8として、分光器やプリズムを、光ファイバ5として、
Gem、あるいはP、 O,をコアにした光ファイバを
用いてもよい。また、制御回路10によって、モード同
期ドライバ11の変調出力パワーや反射鏡2,3の位置
を制御してもよい。さらに、強制モード同期レーザ発振
器2゜トシては、Ar レーザ励起色素レーザやYAQ
 L/−ザ励起カラーセンターレーザーなどの同ル」励
起方式のその他のレーザにももちろん用いることができ
る。
Note that the present invention is not limited to the configuration of the embodiment, and several modifications can be made. For example, as the spectrum analyzer 8, a spectrometer or a prism, and as the optical fiber 5,
An optical fiber having a core of Gem, P, or O may be used. Furthermore, the modulation output power of the mode-locked driver 11 and the positions of the reflecting mirrors 2 and 3 may be controlled by the control circuit 10. Furthermore, the forced mode-locked laser oscillator 2 is equipped with an Ar laser pumped dye laser and a YAQ
Of course, it can also be used with other lasers of the same excitation type, such as an L/-excitation color center laser.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例の構成図である。 図において 1・・・・・・レーザ媒質、2,3.7・川・・反射悦
、4・・・・・・モード同期用内部変調器、5・・・・
・・光ファイバ、6・・・・・・レンズ、8・・・・・
・スペクトル測定器、9・・・・・・光検出器、10・
・・・・・制御回路、11・・・・・・モード同期ドラ
イバ、20・・・・・・強制モード同期レーザ発振器で
ある。 沼1図
FIG. 1 is a block diagram of an embodiment according to the present invention. In the figure, 1...Laser medium, 2, 3.7 River...Reflection pleasure, 4...Internal modulator for mode locking, 5...
...Optical fiber, 6... Lens, 8...
・Spectrum measuring device, 9...Photodetector, 10・
... control circuit, 11 ... mode-locked driver, 20 ... forced mode-locked laser oscillator. Swamp 1

Claims (1)

【特許請求の範囲】[Claims] レーザ媒質と変調器とを二個の反射鏡の間に設けた強制
モード同期レーザ発振器と、前記変調器に対して所定制
御電圧により周波数制御された発振出力を供給する周波
数発振器と、前記レーザ発振器の発振出力光からそのス
ペクトル幅を計測するスペクトル測定器と、このスペク
トル測定器から出力されるスペクトル幅信号が最大にな
るように前記周波数発振器の制御電圧を制御する制御回
路とを含む安定化モード同期レーザ装置。
a forced mode-locked laser oscillator in which a laser medium and a modulator are provided between two reflecting mirrors; a frequency oscillator that supplies an oscillation output whose frequency is controlled by a predetermined control voltage to the modulator; and the laser oscillator. A stabilization mode that includes a spectrum measuring device that measures the spectral width from the oscillation output light of the oscillator, and a control circuit that controls the control voltage of the frequency oscillator so that the spectral width signal output from the spectrum measuring device is maximized. Synchronous laser equipment.
JP59001638A 1984-01-09 1984-01-09 Laser device for stabilized mode synchronization Pending JPS60145681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59001638A JPS60145681A (en) 1984-01-09 1984-01-09 Laser device for stabilized mode synchronization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59001638A JPS60145681A (en) 1984-01-09 1984-01-09 Laser device for stabilized mode synchronization

Publications (1)

Publication Number Publication Date
JPS60145681A true JPS60145681A (en) 1985-08-01

Family

ID=11507065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59001638A Pending JPS60145681A (en) 1984-01-09 1984-01-09 Laser device for stabilized mode synchronization

Country Status (1)

Country Link
JP (1) JPS60145681A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904041A (en) * 1988-12-20 1990-02-27 Bell Communications Research, Inc. Short optical pulse generator having a looped directional coupler external cavity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904041A (en) * 1988-12-20 1990-02-27 Bell Communications Research, Inc. Short optical pulse generator having a looped directional coupler external cavity

Similar Documents

Publication Publication Date Title
US4685107A (en) Dispersion compensated fiber Raman oscillator
JP4668423B2 (en) Oscillation of stabilized ultrashort light pulses and their use in optical frequency synthesis
US4700352A (en) FSK laser transmitting apparatus
JPS63164377A (en) Optical integrated circuit
JP2505892B2 (en) Parametric pulse laser
KR0178491B1 (en) Dual cavity laser for the repetition rate doubling
US3663897A (en) Method of modulating a laser beam and related apparatus
US4928282A (en) Laser generator with phase mode-locking
JPH02254777A (en) Semiconductor laser exciting type solid-state laser device
JPS60145681A (en) Laser device for stabilized mode synchronization
US11822207B2 (en) Method and apparatus for generating optical frequency comb
JP2697640B2 (en) Optical clock generator
JP3381668B2 (en) Optical clock extraction circuit
JP2750460B2 (en) Triangular-wave modulated semiconductor laser device with linearized frequency change of output light
JP3092757B2 (en) Optical pulse laser frequency division synchronization signal generator
GB2004413A (en) Isotopic CF4 laser
JPH0795618B2 (en) Hikari Baraman Soliton Laser
JP2614873B2 (en) Optical PLL circuit
JP2942831B1 (en) Ultrashort light pulse generator
JP2510348B2 (en) Laser device for short pulse generation
JP4930895B2 (en) Short light pulse generation method and short light pulse generator
JPS6028290A (en) Argon gas laser
GB1255807A (en) Method and apparatus for generating stable coherent pulses of optical radiation
JP3055735B2 (en) Passive mode-locked semiconductor laser device
JPH04163532A (en) Light clock extraction circuit