JPS60145204A - Hot rolling method of anisotropic silicon steel plate - Google Patents

Hot rolling method of anisotropic silicon steel plate

Info

Publication number
JPS60145204A
JPS60145204A JP25116683A JP25116683A JPS60145204A JP S60145204 A JPS60145204 A JP S60145204A JP 25116683 A JP25116683 A JP 25116683A JP 25116683 A JP25116683 A JP 25116683A JP S60145204 A JPS60145204 A JP S60145204A
Authority
JP
Japan
Prior art keywords
rolling
silicon steel
hot
stand
anisotropic silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25116683A
Other languages
Japanese (ja)
Other versions
JPS643564B2 (en
Inventor
Itaru Hishinuma
菱沼 至
Masataka Yamada
政孝 山田
Mitsumasa Kurosawa
黒沢 光正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25116683A priority Critical patent/JPS60145204A/en
Publication of JPS60145204A publication Critical patent/JPS60145204A/en
Publication of JPS643564B2 publication Critical patent/JPS643564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To eliminate the flaws of earing parts of a hot coil by subjecting a prescribed anisotropic silicon steel plate to the prescribed rolling reduction in its width direction, by edging rolls, at the initial stage of a finishing mill. CONSTITUTION:An anisotropic silicon steel slab containing 2.5-4.1wt% Si is heated to bae rought rolled. Next, its finish rolling is started at a temperature of >=1,100 deg.C. The slab is subjected to the width rolling reduction of 5-40mm. by edging rolls at the position of inlet and/or outlet side of the 1st stand of a finishing mill. In this way, the flaws generating at the earing parts of a hot coil are prevented.

Description

【発明の詳細な説明】 (技 術 分 野) 本発明は、一方向性けい素鋼板の製造に際しての熱間圧
延技術の分野に属し、方向性けい素鋼スラブな高温加熱
したときに生ずる熱間圧延時の耳鏡i、再割わの如き耳
きずを有効に阻止して製品歩留り向上を果すことのでき
る熱間圧延法についての提案である。
[Detailed Description of the Invention] (Technical Field) The present invention belongs to the field of hot rolling technology used in the production of grain-oriented silicon steel sheets, and relates to the field of hot rolling technology used in the production of grain-oriented silicon steel sheets. This is a proposal for a hot rolling method that can effectively prevent ear flaws such as otoscope i and re-splitting during inter-rolling and improve product yield.

(従来技術とその問題点) 方向性けい素鋼板は、高い磁束密度と低い鉄損とをもつ
優れた磁気特性により変圧器などの鉄心材料として広く
用いられている。近年、この種の技術分野でも、磁気特
性の優れた方向性けい素鋼板をより安価に供給すること
が望まれており、製造コスト?如何に低減させるかが当
該技術者にとって解決すべき共通の課題である。
(Prior art and its problems) Grain-oriented silicon steel sheets are widely used as iron core materials for transformers and the like due to their excellent magnetic properties, including high magnetic flux density and low iron loss. In recent years, even in this type of technical field, there has been a desire to supply grain-oriented silicon steel sheets with excellent magnetic properties at a lower cost, and the manufacturing cost has increased. How to reduce this is a common problem that must be solved by the engineers concerned.

一般に、磁気特性の優れた方向性けい素鋼板を得るため
には、最終焼鈍に際して、(]10)〈001)方位(
ゴス方位)が選択成長する2次再結晶現象を制御し、ゴ
ス方位の高度に集積した均一な2次再結晶組織とするこ
とが必要である。
Generally, in order to obtain grain-oriented silicon steel sheets with excellent magnetic properties, the (]10)<001) orientation (
It is necessary to control the secondary recrystallization phenomenon in which the Goss orientation selectively grows, and to obtain a uniform secondary recrystallization structure in which the Goss orientation is highly concentrated.

ゴス方位の再結晶集合組織を得るには、適切な析出分散
相を活用することが有効であり、このためニMnS 、
 MnSe 、 IN等のインヒビターと呼ばれる不純
物を利用する。この技術GF、まずスラブ加熱時にMn
S 、 MnSe等を十分解離固溶させてから適切な熱
間圧延を施すことにより、インヒビターとして好ましい
分散相な得ることが重要である。
In order to obtain a recrystallized texture with Goss orientation, it is effective to utilize an appropriate precipitated dispersed phase, and for this reason, NiMnS,
Impurities called inhibitors such as MnSe and IN are used. This technology GF first uses Mn during slab heating.
It is important to obtain a dispersed phase preferable as an inhibitor by sufficiently dissociating S, MnSe, etc. into a solid solution and then subjecting the material to appropriate hot rolling.

このインヒビターの解離固溶(溶体化処理)に要するス
ラブ加熱温度は、1800−1420℃という高温域で
長時間行なわれ蔦のが普通である。
The slab heating temperature required for this dissociation and solid solution (solution treatment) of the inhibitor is usually in the high temperature range of 1800-1420°C for a long time.

しかしながら、1800℃以上の高温域での長時間加熱
は、スラブ結晶粒の異常成長を誘発し、粗大化した結晶
粒は熱間圧延においても十分再結晶せず、粗い結晶粒を
残したままとなりしばしばホットコイルの耳部の割れに
代表される耳きずの原因となっていた。かようなホット
コイルの耳きずは、次工程の冷間圧延で破断の原因とも
なり、冷間圧延前にその耳荒れ部を耳切り除失しなけれ
ばならず、歩留りを大きく低下させ、製造コストアップ
の主因となっていた。
However, long-term heating in a high temperature range of 1800°C or higher induces abnormal growth of slab crystal grains, and the coarse crystal grains do not recrystallize sufficiently even during hot rolling, leaving coarse crystal grains. This was often the cause of ear scratches, as typified by cracks in the ears of hot coils. These hot coil edge flaws can cause breakage in the next process of cold rolling, and the rough edges must be removed by cutting off the edges before cold rolling, which greatly reduces yield and reduces production. This was the main cause of cost increases.

要するに、とりわけ連鋳スラブに顧著に見られる上述し
た現象は、連鋳スラブにあっては急速凝固により柱状晶
組織が形成されやすく、その柱状晶組織は通常造塊材に
較べ異常成長しやすいので粗圧延後に未再結晶粒として
残りやすい傾向がある。これらの粗大末男結晶粒は、著
しく靭性に乏しく、熱間仕上圧延後段でホットコイルの
耳きずとなっていくのである。
In short, the above-mentioned phenomenon, which is particularly observed in continuous cast slabs, is that columnar crystal structures are easily formed in continuous cast slabs due to rapid solidification, and these columnar crystal structures are more prone to abnormal growth than normal agglomerated materials. Therefore, they tend to remain as unrecrystallized grains after rough rolling. These coarse grains have extremely poor toughness and become ear flaws in the hot coil in the latter stages of hot finish rolling.

従来、かかる耳きず防止については、既に特公昭57−
4f190号として開示された技術があり、粗圧延時の
圧下スケジュールを変更することで、粗大粒の再結晶を
促進する方法であるが、この方決は通常の水平レールだ
けの圧延機では被圧延機の側面には十分応力が加わらす
、大きな効果は期待できない。その他、特開昭Rfi−
f1.2124号として開示された仕上圧延時の開始と
終了の温度差を制限する方法、特開昭57−]f151
(11号として開示された仕上圧延時の被圧延機の長手
方向、幅方向の温度差を制限する方法など温度制御によ
る方法が提案されている。これらは、いずれも温度的不
均一を排除することで耳きず防止を図、るものだが、ス
トリップ両側縁部(耳部)の現象に対しては、むしろ消
極的方法であり、根本的な解決手段を与えるまでには至
っていない。
Conventionally, such prevention of ear scratches has already been published in
There is a technique disclosed in No. 4F190, which is a method of promoting recrystallization of coarse grains by changing the rolling reduction schedule during rough rolling, but this method is difficult to achieve in a rolling mill with only a normal horizontal rail. Sufficient stress is applied to the sides, but no great effect can be expected. Others, Tokukai Showa Rfi-
Method for limiting temperature difference between start and end during finish rolling disclosed as f1.2124, JP-A-57-]f151
(Methods based on temperature control have been proposed, such as the method disclosed in No. 11, which limits the temperature difference between the longitudinal and width directions of the rolling machine during finish rolling. All of these methods eliminate temperature non-uniformity. Although this method is intended to prevent ear scratches, it is a rather passive method for the phenomenon of the edges (ears) on both sides of the strip, and has not yet provided a fundamental solution.

(発明への端緒) 本発明者らは、耳割れ等がどの時点で起き、どの様に発
展するか等圧延途中の現象を追跡調査した結果、以下に
述べるような知見を得た。すなわち、粗圧延を終了した
シートバ一段階での幅方向の両側縁部(耳部)は、粗大
結晶粒が十分再結晶せず粗大延伸粒と細かな再結晶粒の
混ざり合った状態にある。これは、加熱後の粗大粒が粗
圧延の段階ではエツチングを加えても厚みが大きいため
効果が薄く、板の両端面からの抗力が小さいため粒界で
すべりが生じて十分な応力が伝達されず、未再結晶粒と
して残るから−と考えられる。この場合のシートバー両
側縁部の形状は、粗大粒が不連続に飛び出して複雑なう
ねりを生じたものとなっている。
(Introduction to the Invention) The present inventors conducted a follow-up investigation of phenomena during rolling, such as when edge cracking occurs and how it develops, and as a result, the following findings were obtained. That is, at the both side edges (edges) in the width direction of the sheet bar in one stage after rough rolling, the coarse crystal grains are not sufficiently recrystallized and the coarse drawn grains and fine recrystallized grains are mixed together. This is because the thickness of the coarse grains after heating is large during rough rolling, so the effect is small, and the resistance from both end faces of the plate is small, so slippage occurs at the grain boundaries and sufficient stress is not transmitted. This is thought to be because they remain as unrecrystallized grains. In this case, the shape of both side edges of the sheet bar is such that coarse grains jump out discontinuously and create complex undulations.

通常、被圧延板は圧延に際してその両側縁部には、8軸
応力が作用し、ストリップは幅拡がりとなる。このとき
、ストリップの両側縁部、即ち耳部の形状が不規則にう
ねっている場合、局部的な応力集中が起り、内部にクラ
ックが生じやがて耳割れの原因となる。事実、シートバ
一段階での幅方向両側縁部の平坦度が高いほど耳きずの
程度は緩和され、仕上げ圧延前の被圧延材の両側縁部の
形状が耳きず(特に耳割れ)に大きく影響するというこ
とが判った。
Normally, when a rolled plate is rolled, 8-axis stress acts on both side edges of the plate, and the strip becomes wider. At this time, if the shape of both side edges of the strip, that is, the edges, is irregularly undulating, local stress concentration occurs, causing internal cracks and eventually causing edge splitting. In fact, the higher the flatness of both edges in the width direction at the first stage of the sheet bar, the more the degree of ear scratches will be alleviated, and the shape of the side edges of the rolled material before finish rolling has a large effect on ear scratches (particularly ear cracks). It turns out that it does.

(発明の目的と要旨構成) 本発明は、仕上圧延の初期段階における被圧延材の両側
縁部の形状によりホットコイルの耳きず状況が左右され
るという上述の知見により、磁気特性の劣化を伴なうこ
となく上記耳きずな効果的に防止することを目的とし、
仕上圧延の初期にシートバー、ストリップの両側端面を
エツジヤ−ロールにて櫟械的に矯正することな主たる特
徴とする特許請求の範囲に轡記したとおりの方法を採用
することで、前述の従来技術の限界を超えたので、あ為
(Objective and Summary Structure of the Invention) The present invention is based on the above-mentioned knowledge that the shape of the edges of the rolled material at the initial stage of finish rolling affects the condition of the edges of the hot coil. The purpose is to effectively prevent the above ear scratches without causing damage.
By adopting the method described in the claims, the main feature of which is to mechanically straighten both end surfaces of the sheet bar and strip using edger rolls at the initial stage of finish rolling, the above-mentioned conventional method can be improved. Sorry for exceeding the limits of technology.

(発明の構成) 本発明が適用される方向性けい紫鋼板の主要製造工程は
、Si : 2.r1〜4.1%を含有する鋼を造塊法
あるいは連続鋳造法によりスラブとし、これに熱間圧延
を施しホットコイルと成すこと。次に1回、あるいは中
間焼鈍を挾む2回の冷間圧延により最終板厚とした後、
脱炭焼鈍及び仕上焼鈍を施すことから成り、前記工程に
おける本発明の特徴とするところは、スラブの再加熱、
粗圧延後の仕上圧延工程にある。すなわち、仕上圧延機
、第1スタンドの入側及び出側のいずれか一方または両
方の位置でエツジヤリール(竪ロール)によるエツジン
グを加えて、シートバー、ストリップの両側端面に幅圧
下を加え両側縁部の形状を平坦に矯正する点にある。以
下に、上記製造工程における各条件限定の理由を述べる
(Structure of the Invention) The main manufacturing process of grain-oriented violet steel sheet to which the present invention is applied is as follows: Si: 2. Steel containing r1 to 4.1% is made into a slab by an ingot-forming method or a continuous casting method, and then hot rolled into a hot coil. Next, after achieving the final thickness by cold rolling once or twice with intermediate annealing in between,
It consists of performing decarburization annealing and finish annealing, and the features of the present invention in the above steps include reheating the slab,
It is in the finish rolling process after rough rolling. That is, by applying edging using an edger reel (vertical roll) at either or both of the entry and exit sides of the finishing mill and the first stand, width reduction is applied to both side end faces of the sheet bar and strip, and both side edges are The point is to correct the shape of the . The reasons for limiting each condition in the above manufacturing process will be described below.

本発明で用いる鋼の成分組成は、重1%で、Si : 
L5〜4.1%を必須成分とし、その他C:、0.(1
1〜0.08%、 In : 0.08〜0.1%、S
及び/又は88 + 0.005〜0.1 %ヲ含有サ
セ、残り鉄および若干の不可避成分である。
The composition of the steel used in the present invention is 1% by weight, Si:
L5 to 4.1% is an essential component, and other C:, 0. (1
1-0.08%, In: 0.08-0.1%, S
and/or 88 + 0.005-0.1% of sasse, remaining iron and some unavoidable components.

5iiiは、2.151より少ないと磁気特性が十分得
られず、4.1%より多いと冷間圧延が困難となるため
、Si : 2.5〜4.]%に限定した。Cilは、
0.0】%より少ないと熱延時に十分な量のγ相が生成
せず、0.08%より多いと後工程の脱炭に長時間を要
するので0.01〜0.08%に限定した。
If 5iii is less than 2.151, sufficient magnetic properties cannot be obtained, and if it is more than 4.1%, cold rolling becomes difficult; therefore, Si: 2.5 to 4. ]%. Cil is
If it is less than 0.0%, a sufficient amount of γ phase will not be generated during hot rolling, and if it is more than 0.08%, it will take a long time to decarburize in the subsequent process, so it is limited to 0.01 to 0.08%. did.

InとSおよびSsとは析出分散相として使用するイン
ヒビターP形成するので、それぞれの含有量がMn :
 0.08%、S及び/又は86 j 0.005 %
より少ないと析出分散相の量的不足を生じ、一方それぞ
れ0.】%を超えるとスラブ加熱時の溶体化不足が生じ
適切な分散相が得られないので、In :0.08〜0
.1%、S及び/又は88 : 0.Oft 〜0.1
%に限定する。その他ar 、 Ni + Ou 、 
No 、 8b 。
In, S and Ss form the inhibitor P used as the precipitated dispersed phase, so the content of each is Mn:
0.08%, S and/or 86 j 0.005%
Less than 0.0% respectively results in a quantitative deficiency of the precipitated dispersed phase. ]%, there will be insufficient solutionization during slab heating and an appropriate dispersed phase will not be obtained, so In: 0.08 to 0.
.. 1%, S and/or 88: 0. Of ~0.1
%. Others ar, Ni + Ou,
No. 8b.

P 、 Snなどの溶質原子を意識的に添加する場合が
あるが、この場合も本発明の効果は失なわれない。
Although solute atoms such as P and Sn may be intentionally added, the effects of the present invention are not lost in this case as well.

、上記成分を含有するスラブは、プッシャーあるいはウ
オーキングビームタイプスラブ加熱炉にて1800〜1
420℃の温度に加熱されるが、それはスラブの加熱温
度が1800℃より低いと析出分散相として使用する不
純物の固溶が不十分となり、高すぎると膨大なスケール
の発生に゛よる歩出、炉寿命の低下を招くため、1.1
100〜1420℃の範囲が好ましい。その後、粗圧延
機にて複数パス圧延され20〜flom/m程度の板厚
のシートバーとされる。
, the slab containing the above components is heated to 1800~1 in a pusher or walking beam type slab heating furnace.
The slab is heated to a temperature of 420°C, but this is because if the heating temperature of the slab is lower than 1800°C, solid solution of impurities used as a precipitated dispersed phase will be insufficient, and if it is too high, a huge amount of scale will be generated. 1.1 as it will reduce the life of the furnace.
The temperature range is preferably from 100 to 1420°C. Thereafter, it is rolled in multiple passes in a rough rolling mill to form a sheet bar having a thickness of about 20 to flom/m.

本発明の特徴の】つである仕上圧延機第1スタンド入側
、出側におけるいずれか少なくとも一方、または両方の
位置で行うエツジングは、5〜40m / mの矯正圧
下とする。この幅圧下の範囲は、第1図に示すように、
5 m / mより少ないと形状矯正の効果が少なく、
一方40 m / mを超えるとドックボーンの形成に
より形状不良が生じるため、その範囲f−5〜40m/
mに限定した。なお、この圧下は側縁部の形状矯正によ
り応力集中を防止し、内部クラツ々のS#を絨りス日的
で本り一大質的には第1スタンドに限定されるものでは
ないが、第2スタンド以降ではストリップの板厚が薄く
なり幅圧下による形状不良が起りやすくなるので、第1
スタンドの前後で行うこととした。
Etching, which is a feature of the present invention, is carried out at at least one or both of the entrance side and exit side of the first stand of the finishing rolling mill, with a straightening reduction of 5 to 40 m/m. The range of this width reduction is as shown in Figure 1.
If it is less than 5 m/m, the effect of shape correction will be small;
On the other hand, if it exceeds 40 m/m, shape defects will occur due to the formation of dog bones, so the range f-5 to 40 m/m is
m. Note that this reduction is performed to prevent stress concentration by correcting the shape of the side edges, and to reduce the S# of the internal cracks. After the second stand, the thickness of the strip becomes thinner and shape defects due to width reduction are more likely to occur.
We decided to do it before and after the stand.

次に、仕上圧延開始前温度を1100℃以下としたのは
、この温度を超えるとしばしば析出分散相のサイズが不
均一となり磁気特性が劣化するためである。
Next, the temperature before the start of finish rolling is set to 1100° C. or lower because if this temperature is exceeded, the size of the precipitated dispersed phase often becomes non-uniform and the magnetic properties deteriorate.

次いで1回あるいは中間焼鈍を含む2回以上の 、冷間
圧延を行い成品厚とした後、780〜800℃の湿水素
雰囲気中で1次再結晶を兼ねる脱炭焼鈍を8〜15分程
度行い1200℃以上の最終仕上焼鈍を行う。
Then, after performing cold rolling once or twice or more including intermediate annealing to obtain a finished product thickness, decarburization annealing that also serves as primary recrystallization is performed for about 8 to 15 minutes in a wet hydrogen atmosphere at 780 to 800°C. Final annealing is performed at 1200°C or higher.

なお、第2図に本発明の好適実施態様な示すが、図示の
1は粗エツジヤ−12は粗圧延機、8はクロップシャー
、4は入側エツジヤ−55は仕上圧延機の第1スタンド
で6はその第2スタンドでそれらの間には出側エツジヤ
−7が配置されており、8がその最終スタンドである。
In addition, FIG. 2 shows a preferred embodiment of the present invention, in which 1 is a rough edger, 12 is a rough rolling mill, 8 is a crop shear, 4 is an entry edger, and 55 is the first stand of a finishing mill. 6 is the second stand, between which the outlet edger 7 is arranged, and 8 is the final stand.

(実 施 例) Q : 0.04%、s、t : 2.9rs%、Mn
 : 0.07%s : o、o 2%残部が主として
7eよりなる溶鋼を連続鋳造し、280m/m厚のスラ
ブを得た。これを】850℃に加熱し、下記の(a)〜
(0)の8条件で熱間圧延し・厚み2.4 m / m
のホットコイルを製造した。
(Example) Q: 0.04%, s, t: 2.9rs%, Mn
: 0.07% s : o, o 2% Molten steel in which the balance mainly consisted of 7e was continuously cast to obtain a slab with a thickness of 280 m/m. This was heated to 850℃, and the following (a) ~
Hot rolled under 8 conditions of (0), thickness 2.4 m/m
manufactured hot coils.

製造工程の条件として仕上筒】スタンド人・出側両エツ
ジヤ−で9幅殺しを全く行なわれない条件(a)とし、
第1スタンド入側エツジヤ−で10 m / mの幅圧
下を施したものを条件(b)とし、入・出側両エツジヤ
−でそれぞれ] Om / m(合計26m/m)の幅
圧下をしたものを条件(0)とする。
As a condition for the manufacturing process, the condition (a) is that no 9-width cutting is performed at both the stand man and the exit edger,
Condition (b) is that a width reduction of 10 m/m was applied at the entrance edger of the first stand, and a width reduction of 10 m/m (26 m/m in total) was applied at both the entry and exit edgers respectively. Let that be the condition (0).

得られたホットコイ/l/は、900℃で8分間の均一
化焼鈍を行った俊、約70%の1次冷延な行い、950
℃で8分間の中間焼鈍後約60%の2次冷延を施して0
.8 m / mの成品厚とした。その後、820℃の
湿水葉中にて4分間脱炭焼鈍を施した。次いで、MgO
を主成分とする焼鈍分離剤を塗布し、】200°Cで最
終仕上焼鈍を行った。
The obtained hot carp/l/l was 950 % of the hot carp obtained by homogenizing annealing at 900°C for 8 minutes, about 70% of the primary cold rolling.
After intermediate annealing for 8 minutes at ℃, secondary cold rolling of approximately 60% is performed to
.. The product thickness was 8 m/m. Thereafter, decarburization annealing was performed for 4 minutes in a wet leaf at 820°C. Then, MgO
An annealing separator mainly composed of was applied, and final annealing was performed at 200°C.

その結果を次表に示す。The results are shown in the table below.

第 1 表 (発明の効果) 以上説明したように、方向性けい素鋼板について、仕上
圧延機の初期段階でエツジヤ−により適正な幅圧下を行
うという本発明熱間圧延法によれば、ホットコイルの幅
方向両側縁部(耳部)の耳きずをなくすことができる。
Table 1 (Effects of the Invention) As explained above, according to the hot rolling method of the present invention, in which a grain-oriented silicon steel sheet is subjected to appropriate width reduction by an edger at the initial stage of the finishing mill, hot coil It is possible to eliminate ear scratches on both sides of the widthwise edges (ears).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、エツジヤ−幅圧下量と耳割れ程度との関sf
−示すグラフ1 、第2図は、本発明法の実施に供される熱間圧延設備の
路線図である。 1・・・粗エツジヤ−2・・・粗圧延機8…クロツプシ
ヤー 4・・・仕正圧延機の第】スタンド入側エツジヤ−・5
・・・仕上圧延機の第1スタンド 6・・・仕上圧延機の第2スタンド 7・・・仕上圧延機の第1スタンド出側エツジヤ−8・
・・仕上圧延機の最終スタンド。 特許出願人 川崎製鉄株式会社
Figure 1 shows the relationship sf between the edge width reduction amount and the degree of edge cracking.
- Graph 1 and Figure 2 are route maps of hot rolling equipment used to carry out the method of the present invention. 1...Rough edger 2...Rough rolling mill 8...Crop shear 4...No. of finishing mill] Stand entry side edger 5
...First stand 6 of the finishing rolling mill...Second stand 7 of the finishing rolling mill...First stand exit edger 8 of the finishing rolling mill
...The final stand of the finishing rolling mill. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 LSi:2.5〜4.1重含%含有するけい素鋼スラブ
を、1800〜】420℃の温度に加熱して粗圧延、仕
上圧延と経る熱間圧延を施して熱間圧延鋼帯を得る方法
において、上記熱間仕上げ圧延に当り、 (イ)仕上圧延開始温度)ir1100℃以上とするこ
と、 (ロ)仕上圧延機の第1スタンドの入側、出側のいずれ
か一方または両方の位置で、エツジヤ四−ルによる5〜
40酩の幅圧下を加えること、 なる条件を満足するように圧延することを特徴とする方
向性けい素鋼板の熱間圧延方法。
[Claims] A silicon steel slab containing LSi: 2.5 to 4.1% by weight is heated to a temperature of 1800 to 420°C and subjected to rough rolling and finish rolling. In the method for obtaining a hot-rolled steel strip, during the above-mentioned hot finish rolling, (a) finish rolling start temperature) IR should be 1100°C or higher; (b) on the entry and exit sides of the first stand of the finishing mill; 5~ by Ezjar four in either or both positions
A method for hot rolling a grain-oriented silicon steel sheet, characterized by applying a width reduction of 40 mm, and rolling to satisfy the following conditions.
JP25116683A 1983-12-29 1983-12-29 Hot rolling method of anisotropic silicon steel plate Granted JPS60145204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25116683A JPS60145204A (en) 1983-12-29 1983-12-29 Hot rolling method of anisotropic silicon steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25116683A JPS60145204A (en) 1983-12-29 1983-12-29 Hot rolling method of anisotropic silicon steel plate

Publications (2)

Publication Number Publication Date
JPS60145204A true JPS60145204A (en) 1985-07-31
JPS643564B2 JPS643564B2 (en) 1989-01-23

Family

ID=17218655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25116683A Granted JPS60145204A (en) 1983-12-29 1983-12-29 Hot rolling method of anisotropic silicon steel plate

Country Status (1)

Country Link
JP (1) JPS60145204A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970602A (en) * 1995-06-30 1997-03-18 Kawasaki Steel Corp Manufacture of grain oriented electrical steel sheet
WO2022250112A1 (en) 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970602A (en) * 1995-06-30 1997-03-18 Kawasaki Steel Corp Manufacture of grain oriented electrical steel sheet
WO2022250112A1 (en) 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
KR20240004678A (en) 2021-05-28 2024-01-11 제이에프이 스틸 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS643564B2 (en) 1989-01-23

Similar Documents

Publication Publication Date Title
JP3488181B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPS5813606B2 (en) It&#39;s hard to tell what&#39;s going on.
EP0019289B1 (en) Process for producing grain-oriented silicon steel strip
EP0600181B1 (en) Method for producing regular grain oriented electrical steel using a single stage cold reduction
CZ291194B6 (en) Process for the production of silicon steel strips
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JPH08253816A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH036842B2 (en)
JPS60145204A (en) Hot rolling method of anisotropic silicon steel plate
JP2804381B2 (en) Method for producing grain-oriented silicon steel sheet having uniform longitudinal magnetic properties
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JP3234594B2 (en) Hot rolling method for grain-oriented silicon steel sheet.
US20230250503A1 (en) Method of manufacturing grain-oriented electrical steel sheet and manufacturing line
JPS60200916A (en) Manufacture of anisotropic silicon steel plate
JPH0249371B2 (en)
JPH0699751B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JPH0232327B2 (en) HOKOSEIKEISOKOHANYOSURABUNONETSUKANATSUENHOHO
JP2612075B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties and surface properties
JP2612074B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties and surface properties
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH0257125B2 (en)
JP2516441B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent ridging resistance
JP3697767B2 (en) Method for producing grain-oriented silicon steel sheets with extremely stable magnetic properties in the plate width direction
JPH0663031B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties with little edge cracking in hot rolling
JP3885240B2 (en) Method for producing unidirectional silicon steel sheet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term