JPS60144960A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS60144960A
JPS60144960A JP160684A JP160684A JPS60144960A JP S60144960 A JPS60144960 A JP S60144960A JP 160684 A JP160684 A JP 160684A JP 160684 A JP160684 A JP 160684A JP S60144960 A JPS60144960 A JP S60144960A
Authority
JP
Japan
Prior art keywords
electrode
capacitance
layer electrode
connecting section
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP160684A
Other languages
Japanese (ja)
Inventor
Yukio Katsuta
勝田 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP160684A priority Critical patent/JPS60144960A/en
Publication of JPS60144960A publication Critical patent/JPS60144960A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors

Abstract

PURPOSE:To adjust capacitance and the increase of capacitance with high accuracy by changing one part or the whole of a built-in capacitance element into two layers, using an uppermost layer electrode as a split-electrode and cutting a mutual connecting section. CONSTITUTION:A lowermost layer electrode 1 in a double-layer capacitance element is formed on an SiO2 film 7 on an Si substrate 6, an internal electrode 2 is formed on the electrode 1 through an SiO2 film 8, and an uppermost layer electrode 3 mutually connected by a connecting section 4 is disposed on the electrode 2 through an SiO2 film 9. The electrode 3 is connected to the lower layer electrode 1 through a connecting section 4' and a through-hole 5, and coated with a protective film 10. A wafer is treated, a laser is projected to the connecting section 4 or 4' in the uppermost layer electrode while inspecting the connecting section 4 or 4', and the connecting section 4 or 4' is evaporated together with the protective film 10 and a capacitance value is adjusted. According to the constitution, a capacitance and the capacitance ratio can be formed with high accuracy, and a D/A converter is manufactured easily with high precision.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は半導体集積回路装置に関し、特に高精度の容量
素子又は複数個の容量素子間の容量比の誤差を少なくし
た容量素子を内蔵する半導体集積回路装置に関する。
[Detailed Description of the Invention] [Technical field to which the invention pertains] The present invention relates to a semiconductor integrated circuit device, and in particular to a semiconductor integrated circuit device incorporating a high-precision capacitor or a capacitor with a reduced error in capacitance ratio between a plurality of capacitors. The present invention relates to integrated circuit devices.

〔従来技術〕[Prior art]

近年、MO8技術は製造技術および回路設計技術の長足
の進歩に伴い、応用分野の拡大が急速に進んでいる。
In recent years, MO8 technology has been rapidly expanding its application fields with the rapid progress in manufacturing technology and circuit design technology.

従来、抵抗素子を用いたディジタル・アナログ及びアナ
ログ・ディジタル変換器の分野において、容量を用いた
ディジタル・アナログ及びアナログ・ディジタル変換器
が製作されるようになってきた。
Conventionally, in the field of digital-to-analog and analog-to-digital converters using resistive elements, digital-to-analog and analog-to-digital converters using capacitors have been manufactured.

容量素子を用いたディジタル・アナログ及びアナログ・
ディジタル変換器精度劣化の原因となるのは、主に容量
素子間の容量比の精度である。
Digital/analog and analog/analog using capacitive elements
The main cause of deterioration in digital converter accuracy is the accuracy of the capacitance ratio between capacitive elements.

従来、容量素子間の容量比を確保する方法としては、第
1図、第2図に示すように単位容量を並列接続する方法
がよく知られている。第1図は従来の容量素子の一例の
平面図、第2図は第1図の断面図を示す。第1図、第2
図において、半導体基板6に形成された絶縁膜7上には
最下層電極1が形成され、絶縁膜8を介して上部電極2
1が形成された構成が一般的である。上記したようにこ
のような容量素子1個で規定の容量を得るのでなく複数
個を並列にして容量比の精度を確保していたが、10ビ
ット以上の高精度を必要とするディジタル・アナログ変
換器を得ようとするとき、プロセス変動、浮遊容量の影
響を受けて目的の精度を出すことは非常に困難である。
Conventionally, as a method of ensuring a capacitance ratio between capacitive elements, a method of connecting unit capacitors in parallel as shown in FIGS. 1 and 2 is well known. FIG. 1 is a plan view of an example of a conventional capacitive element, and FIG. 2 is a cross-sectional view of FIG. 1. Figures 1 and 2
In the figure, a lowermost electrode 1 is formed on an insulating film 7 formed on a semiconductor substrate 6, and an upper electrode 2 is formed through an insulating film 8.
1 is generally formed. As mentioned above, instead of obtaining a specified capacitance with a single capacitive element, multiple capacitive elements were used in parallel to ensure the accuracy of the capacitance ratio, but digital-to-analog conversion requires high precision of 10 bits or more. When trying to obtain the desired accuracy, it is extremely difficult to achieve the desired accuracy due to the effects of process variations and stray capacitance.

また、浮遊容量の影響等をさけるためには、単位容量を
大きくする必要がある。この方法によると、必然的に容
量素子面積の増大を招きチップ面積が大きくなるという
欠点が生ずる。
Furthermore, in order to avoid the influence of stray capacitance, it is necessary to increase the unit capacitance. This method inevitably has the drawback that the area of the capacitive element increases, resulting in an increase in the chip area.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記したような欠点を除き、容量精度
並びに容量比精度が高く、かつ小型化された容量素子を
含む半導体集積回路装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor integrated circuit device including a capacitive element which has high capacitance accuracy and capacitance ratio accuracy and is miniaturized, eliminating the above-mentioned drawbacks.

〔発明の構成〕[Structure of the invention]

本発明の半導体集積回路装置は、複数個の容量素子を内
蔵する半導体集積回路装置において、前記容量素子の一
部又は全部を2層容量素子とし、該2層容量素子の最上
層電極は1個又は相互に接続された複数個の分割電極か
らなり、かつ該最上層電極は該容量素子の最下層電極に
接続され、該最上層電極を最下層電極との接続部又は分
割電極内蔵することにより構成される。
A semiconductor integrated circuit device of the present invention is a semiconductor integrated circuit device incorporating a plurality of capacitive elements, in which a part or all of the capacitive elements are two-layer capacitive elements, and the two-layer capacitive element has one uppermost layer electrode. Or, it consists of a plurality of divided electrodes connected to each other, and the uppermost layer electrode is connected to the lowermost layer electrode of the capacitor, and the uppermost layer electrode is connected to the lowermost layer electrode or the divided electrode is built-in. configured.

〔実施例の説明〕[Explanation of Examples]

以下、本発明の実施例について、図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例の平面図であり、第4図は第
3図A −A’に於ける断面図である。
FIG. 3 is a plan view of one embodiment of the present invention, and FIG. 4 is a sectional view taken along line A-A' in FIG.

第4図、第5図に示すように、2層容量素子用最下層電
極1は、半導体基板6上に形成された絶縁膜7上に設け
られ、内部電極2は最下層電極1上に設けられた絶縁膜
8上に設けられ、さらに接続部4により相互に接続され
た最上層電極3は内部電極2上の絶縁膜9上に設けられ
ている。
As shown in FIGS. 4 and 5, the bottom layer electrode 1 for a two-layer capacitive element is provided on an insulating film 7 formed on a semiconductor substrate 6, and the internal electrode 2 is provided on the bottom layer electrode 1. The uppermost layer electrodes 3 are provided on the insulating film 8 and further connected to each other by the connecting portions 4. The uppermost layer electrodes 3 are provided on the insulating film 9 on the internal electrodes 2.

最上層電極3,4は接続部4によりスルーホール5を介
して最下層電極1に接続され、最終のつ工−ハ処理工程
にて表面保護膜10により容量素子部の全体は覆われて
いる。
The uppermost layer electrodes 3 and 4 are connected to the lowermost layer electrode 1 through a through hole 5 by a connecting portion 4, and the entire capacitive element portion is covered with a surface protective film 10 in the final processing step. .

次に、ウェーッ・処理工程終了後に集積回路装着はウェ
ーハの状態で特性の検査を行なうが、このとき検査しな
からレーザエネルギーを最上層電極接続部4又は4′に
照射し、表面保護膜ともども最上層電極接続部4又は4
′の一部を蒸発して切断する。
Next, after the wafer processing process is completed, the integrated circuit mounting is inspected for characteristics in the wafer state, but at this time, without inspection, laser energy is irradiated to the top layer electrode connection part 4 or 4', and the surface protective film and Top layer electrode connection part 4 or 4
′ is evaporated and cut.

なお、最上層電極接続部4及び4′は最上層電極部3に
比べ十分に細く形成されているので、レーザビームの照
射により簡単に切断でき、その切断部は周囲の表面保賎
膜が再溶融して流れ、完全に切断部が覆われるので、信
頼性の問題が起きることは無い。
Note that the uppermost layer electrode connecting portions 4 and 4' are formed sufficiently thinner than the uppermost layer electrode portion 3, so they can be easily cut by laser beam irradiation, and the surrounding surface protective film will be reused at the cut portion. Since it melts and flows and completely covers the cut, there are no reliability issues.

上記実施例では、電極形状を矩形で示したが、円形、多
角形等でもよく、特に限定されるものではない。
In the above embodiments, the electrode shape is shown to be rectangular, but it may be circular, polygonal, etc., and is not particularly limited.

また、電極材料として、最下層電極1はポリシリ、コン
、内部′電極2はポリシリコン又はアルミニウム、最下
層電極3はアルミニウム等を用いるのが比較的に容易で
ある。
Further, as electrode materials, it is relatively easy to use polysilicon or silicon for the lowermost layer electrode 1, polysilicon or aluminum for the inner electrode 2, and aluminum for the lowermost layer electrode 3.

容量形成用の層間の絶縁膜としては、第1層目の絶縁膜
8はシリコン酸化膜、シリコン窒化膜等を数百へ程歴、
第2層目の絶縁膜9は第1層目と同等にするか、又はシ
リコン酸化膜、シリコン屋化膜又はPEG膜を数千Aに
することもEJ能である。特に、後者のように、第2層
目の絶縁膜9として膜厚を数千穴にする場合は、通常の
シリコンゲー)MO8集積回路装置を製作する時のゲー
トポリシリコンとアルミニウム配線を、それぞれ内部電
極と最上層電極とすることができ、容量素子を2層化す
るための特別な工程を必要としないという特徴がある。
As the interlayer insulating film for capacitance formation, the first layer insulating film 8 is made of silicon oxide film, silicon nitride film, etc.
The second layer insulating film 9 may be made equal to the first layer, or a silicon oxide film, a silicon oxide film, or a PEG film may be made with a current of several thousand amps. In particular, when the second layer insulating film 9 is made to have a film thickness of several thousand holes, as in the latter case, the gate polysilicon and aluminum wiring are It has the feature that it can be used as an internal electrode and an uppermost layer electrode, and does not require a special process to form a two-layer capacitive element.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明によれば、内蔵された容量
素子を工程数を増すことなく2層化することができ、か
つ2層化した容量素子の最上N1tt極を分割iI!極
にし、レーザエネルギーを照射して切断することにより
容量値を調整することにより、大型にすることなく、高
精度の容量具びに容量比を得ることができ、従って高精
度のディジタ化・アナログ変換器等が容易に製作できる
という効果がある。
As explained above, according to the present invention, the built-in capacitive element can be made into two layers without increasing the number of steps, and the uppermost N1tt pole of the two-layered capacitive element can be divided iI! By adjusting the capacitance value by cutting the poles and irradiating them with laser energy, it is possible to obtain high-precision capacitors and capacitance ratios without increasing the size of the capacitors. Therefore, high-precision digitization and analog conversion can be achieved. This has the effect that utensils etc. can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の容量素子の一例の平面図、第2図は第1
図の断面図、第3図は本発明の一実施例の平面図、第4
図は第3図のA−A綜における断面図である。 1・・・・・・最下層電極、2・・・・・・内部電極、
3・・・・・・最上層電極、4,4′・・・・・・最上
層電極接続部、5・・・・・・スルーホール、6・・・
・・・半導体基板、7.’8.9・・・・・・絶縁膜、
10・・・・・・表面保護膜、21・・・・・・上部電
極。 羊l 凹 第2 図
Fig. 1 is a plan view of an example of a conventional capacitive element, and Fig. 2 is a plan view of an example of a conventional capacitive element.
FIG. 3 is a plan view of an embodiment of the present invention; FIG.
The figure is a sectional view taken along the line A-A in FIG. 3. 1... Bottom layer electrode, 2... Internal electrode,
3...Top layer electrode, 4,4'...Top layer electrode connection part, 5...Through hole, 6...
... semiconductor substrate, 7. '8.9・・・Insulating film,
10... Surface protective film, 21... Upper electrode. Sheep l concave 2nd figure

Claims (1)

【特許請求の範囲】[Claims] (1)複数個の容量素子を内蔵する半導体集積回路装置
において、前記容量素子の一部又は全部を2層容量素子
とし、該2層容量素子の最上層電極は1個又は相互に接
続された複数個の分割電極からなり、かつ該最上層電極
は該容量素子の最下層電極に接続され、該最上層電極と
最下層電極との接続部又は分割電極相互の接続部を切断
することにより容量調節を可能にじた容量調整用容量素
子部を有する容量素子を内蔵することを特徴とする半導
体集積回路装置。
(1) In a semiconductor integrated circuit device incorporating a plurality of capacitance elements, some or all of the capacitance elements are two-layer capacitance elements, and the top layer electrodes of the two-layer capacitance elements are connected to each other. It consists of a plurality of divided electrodes, and the uppermost layer electrode is connected to the lowermost layer electrode of the capacitive element, and the capacitance is increased by cutting the connection between the uppermost layer electrode and the lowermost layer electrode or the connection between the divided electrodes. 1. A semiconductor integrated circuit device comprising a built-in capacitive element having a capacitive element portion for adjusting capacitance that can be adjusted.
JP160684A 1984-01-09 1984-01-09 Semiconductor integrated circuit device Pending JPS60144960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP160684A JPS60144960A (en) 1984-01-09 1984-01-09 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP160684A JPS60144960A (en) 1984-01-09 1984-01-09 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS60144960A true JPS60144960A (en) 1985-07-31

Family

ID=11506155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP160684A Pending JPS60144960A (en) 1984-01-09 1984-01-09 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS60144960A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170462A (en) * 1988-12-22 1990-07-02 Nec Corp Semiconductor device
JPH03231453A (en) * 1990-02-07 1991-10-15 Toshiba Corp Semiconductor device provided with capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170462A (en) * 1988-12-22 1990-07-02 Nec Corp Semiconductor device
JPH03231453A (en) * 1990-02-07 1991-10-15 Toshiba Corp Semiconductor device provided with capacitor

Similar Documents

Publication Publication Date Title
US5736791A (en) Semiconductor device and bonding pad structure therefor
KR100447968B1 (en) method of fabricating wafer level package
US5041897A (en) Semiconductor device
JP2002043502A (en) Multichip semiconductor device, and chip for multichip semiconductor device and its manufacturing method
KR20220116560A (en) Thin film capacitor and electronic circuit board having same
US9521794B2 (en) Method for producing a microelectronic device
JPH01120858A (en) Integrated circuit device
JPS60144960A (en) Semiconductor integrated circuit device
JP2004146632A (en) Semiconductor device and its fabricating process
JPS6271256A (en) Compound semiconductor integrated circuit
JPH04290212A (en) Semiconductor device
JPS60121757A (en) Semiconductor integrated circuit device
JPS6165464A (en) Manufacture of film resistor in thick film multilayer substrate
CN111403602A (en) Vertical capacitor structure, capacitor assembly, and method of manufacturing the vertical capacitor structure
JPH058859B2 (en)
JPS63166256A (en) Semiconductor device and manufacture thereof
JPS61133645A (en) Semiconductor device and manufacture thereof
JPH10270248A (en) Spiral inductor
JPS644662B2 (en)
US6271074B1 (en) Process for producing an integrated semiconductor circuit
JPH05251450A (en) Semiconductor integrated circuit device
JPS6050937A (en) Manufacture of semiconductor device
JPH03120848A (en) Semiconductor integrated circuit
JPWO2019167456A1 (en) Thin film capacitors and their manufacturing methods
JPH0546992B2 (en)