JPS60144722A - Production of solid state type electrochromic display element - Google Patents

Production of solid state type electrochromic display element

Info

Publication number
JPS60144722A
JPS60144722A JP59000433A JP43384A JPS60144722A JP S60144722 A JPS60144722 A JP S60144722A JP 59000433 A JP59000433 A JP 59000433A JP 43384 A JP43384 A JP 43384A JP S60144722 A JPS60144722 A JP S60144722A
Authority
JP
Japan
Prior art keywords
film
carrier gas
electrode
substrate
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59000433A
Other languages
Japanese (ja)
Inventor
Hidetake Hashimoto
橋本 英豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP59000433A priority Critical patent/JPS60144722A/en
Publication of JPS60144722A publication Critical patent/JPS60144722A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • G02F1/15245Transition metal compounds based on iridium oxide or hydroxide

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To improve productivity and reproducibility by installing glass substrate on which a lower electrode and iridium hydroxide film are patterned in a reaction chamber and laminating successively a tantalum pentaoxide film, tungsten trioxide film and upper electrode by CVD on said substrate. CONSTITUTION:Ta2O5, WO3 and upper ITO electrode are continuously formed by a plasma CVD method on a substrate on which a lower ITO electrode and Ir(OH)n are preliminarily patterned. Ta(OC2H5)5 is introduced with gaseous H2 as a carrier gas into a vacuum chamber and a gaseous mixture composed of Ta(OC2H5)5-H2 and an equal amt. of gaseous O2 are introduced therein to form a Ta2O5 film. WCl6 is then introduced likewise with H2 as a carrier gas into the chamber to form WO3 by making the mixing ratio with O2 as 15SCCM (WCl6-H2):10SCCM(O2). A gaseous mixture composed of In(C2H5)3-H2 at 19 SCCM, a gaseous mixture composed of Sn(OCH3)4-H2 at 2SCCM and O2 at 15SCCM are introduced with H2 as a carrier gas into the chamber to form ITO. The film formation by such CVD method is excellent in productivity, reproducibility of element characteristics and ease of process automation.

Description

【発明の詳細な説明】 エレクトロクロミノク(以下ECと略す)表示素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrochrominok (hereinafter abbreviated as EC) display element.

EC表示素子は視野角依存性の少ないことおよび視認性
の良い(表示が一明るい)ことを特徴として最近時計そ
の他の分野での表示素子として注目されている。EC表
示素子の中で薄膜を積層して成る固体型素子が薄型化等
の有利性から盛んに研究されて来ている。本発明はこの
固体型EC素子の低温CVD法による製造に関する。
EC display elements are characterized by low viewing angle dependence and good visibility (bright display), and have recently attracted attention as display elements for watches and other fields. Among EC display elements, solid-state elements formed by laminating thin films have been actively researched due to their advantages in thinning and the like. The present invention relates to the production of this solid-state EC element by low-temperature CVD.

第1図に固体型EC表示素子の構造を断面模式図により
示す。基板ガラス11上に下部電極となる透明導電膜1
2(インジウム−錫酸化物( I T Oと略す))、
酸化着色型EC物質である水酸化イリジウム( I r
’(01()n ) 1 3、固体電解質である五酸化
タンタル( Ta2 0 s ) 1 4、還元着色型
EC物質である三酸化タングステン(WO3 )15お
よび上部I ’l’ 0電極16を順次真空蒸着又はイ
オンプレーテング法により形成する。
FIG. 1 shows a schematic cross-sectional view of the structure of a solid-state EC display element. Transparent conductive film 1 serving as a lower electrode on substrate glass 11
2 (indium-tin oxide (abbreviated as ITO)),
Iridium hydroxide (I r
'(01()n) 1 3, solid electrolyte tantalum pentoxide (Ta20s) 14, reduction colored EC material tungsten trioxide (WO3) 15, and upper I'l'0 electrode 16 in sequence. Formed by vacuum evaporation or ion plating method.

この構造において還元着色型EC物質であるWO3は WO3+xi−1++x e −+ 1−1xW03で
示されるし゛ロトン(1−1+)と電−子(e−)の二
重注入により着色する。また酸化着色型EC物質である
Ir(Of−1)nは Ir(Otl)n −xl−1+ −xe −+ Ir
0x(01−1)、、。
In this structure, WO3, which is a reduced colored EC substance, is represented by WO3+xi-1++x e -+ 1-1xW03, and is colored by double injection of roton (1-1+) and electron (e-). Ir(Of-1)n, which is an oxidized colored EC substance, is Ir(Otl)n -xl-1+ -xe -+ Ir
0x(01-1),.

で示されるプロトン(H”)と電子(e−)の二重放出
により着色する。そしてこれら2つのEC物質は相補的
にプロトンのやり取りを行ない同時に着消色し、透明な
Ta2O,層を通して二重に着色が観察される。
It is colored by the double emission of protons (H'') and electrons (e-), which are shown by Heavy coloring is observed.

従来このような固体型EC素子の膜形成は真空蒸着また
はイオンプレーテングによって行なわれて来た。しかし
これら°の方法は装置規模の割には有効成膜面積が狭(
、工業生産上不利である。また11つ)質のコントロー
ルが難しく、素子特性の再現性か乏しいきらいがある。
Conventionally, film formation of such solid-state EC elements has been carried out by vacuum evaporation or ion plating. However, these methods have a small effective film forming area compared to the equipment scale (
, which is disadvantageous for industrial production. 11) It is difficult to control the quality, and the reproducibility of the device characteristics tends to be poor.

さらに制御パラメーターが多く、工業生産上重要な鍵と
なる自動化が困莫(1である。
Furthermore, there are many control parameters, and automation, which is an important key to industrial production, is difficult (1).

本発明はプラズマCVDまたはフォ)CVDにより膜形
成を行なうことにより生産性および再現性が高く、自動
化容易なプロセスを提・案するものである。以下実施例
により説明する。
The present invention proposes a process that has high productivity and reproducibility and is easy to automate by forming a film by plasma CVD or photo-CVD. This will be explained below using examples.

実施例1 表示部をセグメント分離するためにあらかじめ下部IT
O電極およびI r (U H) nをパターンニング
した基板にTa2 o、 、W O3および上部11’
 0電極を連続してプラズマCVD法により形成した。
Example 1 In order to separate the display section into segments, the lower IT
Ta2 o, , W O3 and upper part 11' on the substrate patterned with O electrode and I r (U H) n
Zero electrodes were continuously formed by plasma CVD.

基板温度を100℃とし、水素(H2)ガスをキャリア
ーガスとしペンタエトキシタンタル(Ta(QC2Hs
 )5 )を真空室に導入した(流量20SCCM)。
The substrate temperature was 100°C, hydrogen (H2) gas was used as a carrier gas, and pentaethoxytantalum (Ta(QC2Hs)
)5) was introduced into the vacuum chamber (flow rate 20SCCM).

Ta (,0C21−1,)、−1−1,、混合ガスと
等量の酸素(02)ガスを導入し総ガス圧を0.4’l
”orrとし、高周波電力100WでTa205膜を形
成した。
Ta (,0C21-1,), -1-1,, introduce the same amount of oxygen (02) gas as the mixed gas and make the total gas pressure 0.4'l.
"orr", and a Ta205 film was formed with a high frequency power of 100 W.

Ta2O,の成膜速度は5 X / secで膜厚は1
μであった。
The film formation rate of Ta2O is 5X/sec and the film thickness is 1
It was μ.

次に塩化タングステン(WO6,)を同じり112をキ
ャリアガスとして導入し、02との混合比を15SCC
M (wcla −H2) : 10 SCCM((J
、)、総ガス圧0.25Torr、高周波電力SOWで
WO3を形成した。WO3の成膜速度は]、 OX /
 secでIIM J’lは6500λであった。次に
H2をキャリアガスとしてトリエチルインジウム(I 
n (C21−1,)3)−1−12混合ガスを1.9
 SCCM、テトラメトキシ錫(S n (ocl]、
)4. ) I−’s混合ガスを2 SCCM、 02
を15SCCM導入し、総ガス圧0,35Torr、高
周波電力65WでITOを形成した。ITOの成膜速度
はI A / secで膜厚1000Aであった。この
ように形成された固体EC素子の着色特性は以下の称で
あった。
Next, tungsten chloride (WO6,) was introduced with 112 as a carrier gas, and the mixing ratio with 02 was set to 15SCC.
M (wcla-H2): 10 SCCM ((J
), a total gas pressure of 0.25 Torr, and high frequency power SOW to form WO3. The film formation rate of WO3 is ], OX /
IIM J'l was 6500λ in sec. Next, using H2 as a carrier gas, triethylindium (I
n (C21-1,)3)-1-12 mixed gas at 1.9
SCCM, tetramethoxytin (S n (ocl),
)4. ) I-'s mixed gas 2 SCCM, 02
was introduced at 15 SCCM, and ITO was formed at a total gas pressure of 0.35 Torr and a high frequency power of 65 W. The ITO film formation rate was IA/sec and the film thickness was 1000A. The coloring characteristics of the solid-state EC element thus formed were as follows.

着色特性を評価するパラメーターとして着色効率かある
Coloring efficiency is a parameter used to evaluate coloring properties.

で表わされ、6人電荷がどれだけ着色に寄与するかを表
わす。従来の高周波イオンプレニティングによって形成
された素子の着色率は60ffl/c(633nm l
−1e−Ne レーザー測定)であツタが、本発明の高
周波プラズマCVD法により形成された素子の着色効率
は95a4/Cで著しい改良の効果が認められた。
It represents how much the 6-person charge contributes to coloring. The coloring rate of devices formed by conventional high-frequency ion preniting is 60 ffl/c (633 nm l
-1e-Ne laser measurement), the coloring efficiency of the element formed by the high frequency plasma CVD method of the present invention was 95a4/C, which was a significant improvement.

実施例2 あらかじめ下部ITO電極およびIr(OH)nをバタ
ーニングした基板にi’a20.、W O3および上部
ITO電極を連続してフォ)CVD法により形成した。
Example 2 I'a20. , WO3 and the upper ITO electrode were successively formed by the CVD method.

基板温度を100℃とし、1(2ガスをキャリアガスと
してTa (QC2H,)5を流量40SCCMで真空
室に導入した。流量20SCCMの0□ガスを導入し、
総ガス圧をQ、 5 T’ o r rとした。リアク
ターの水銀の温度を40°Gとし℃、紫外線(電力50
0W、波長2537X)を照射しTa2O,を形成した
The substrate temperature was set to 100°C, Ta (QC2H,)5 was introduced into the vacuum chamber at a flow rate of 40 SCCM using 1 (2 gas) as a carrier gas. 0□ gas at a flow rate of 20 SCCM was introduced,
The total gas pressure was set to Q, 5 T' o r r. The temperature of the mercury in the reactor is 40°G, and the ultraviolet rays (power 50
0W, wavelength 2537X) was irradiated to form Ta2O.

Ta2O,の成膜速度は0.5 X / secで11
・膜厚は3000Åであった。次にWC& を同じりI
]2をキャリアガスとして導入し、02との混合比 5
0SCCM(WCA6−H2) : 20 SCCM(
(J2)、総ガス圧07’L’ o r rでHg リ
アクター導入および紫外線照射を行ないWO3を形成し
た。WOlの成膜速度は0、7 A / secで膜厚
は3000Aであった。さらに1−12をキャリアガス
としてI n (C,、I−1,)3−1−12混合ガ
スを30 SCCM、 5n(OCI−1,)4−1−
12混合ガスを3SCCM、02を22 SCCM導入
し、総ガス圧0.55Torrとし、I−(g IJア
クタ−導入および紫外線照射を行ないI ’I’ Oを
形成した。I T Oの成膜速度は0.3 A / s
ecで膜厚は100OAだった。このようにフォ) C
V I)法によって形成された固体型1シ〕C素子の電
荷効率は907/cで従来の高周波イオンブレーティン
グ形成素子の60αlt/cに比べて優れた特性が得ら
れた。
The deposition rate of Ta2O is 0.5X/sec and 11
-The film thickness was 3000 Å. Next, WC & I
]2 is introduced as a carrier gas, and the mixing ratio with 02 is 5
0SCCM (WCA6-H2): 20 SCCM (
(J2), Hg reactor was introduced and ultraviolet irradiation was performed at a total gas pressure of 07'L' o r r to form WO3. The film formation rate of WOl was 0.7 A/sec, and the film thickness was 3000 A. Furthermore, using 1-12 as a carrier gas, I n (C,, I-1,) 3-1-12 mixed gas was added at 30 SCCM, 5n (OCI-1,) 4-1-
3 SCCM of 12 mixed gas and 22 SCCM of 02 were introduced, the total gas pressure was 0.55 Torr, I-(g IJ actor) was introduced and ultraviolet irradiation was performed to form I'I'O. is 0.3 A/s
The film thickness was 100OA using EC. Like this) C
The charge efficiency of the solid-state type 1C element formed by the VI) method was 907/c, which was superior to 60αlt/c of the conventional high-frequency ion blating forming element.

このように本発明のプラズマCVDまたはフォトCv1
.)形成により、特性の優れた固体型E C素子が製造
できることが明らかにされた。またこれらのCVD法は
形成槽における有効面積の大きさく生産性)、素子特性
の再現性、およびプロセスの自動化の容易性、いずれに
おいても従来の真空蒸着法およびイオンブレーティング
法に比べ優れており極めて有効な手段と思われろ。
In this way, plasma CVD or photo CV1 of the present invention
.. ) formation, it was revealed that a solid-state EC element with excellent characteristics could be manufactured. Furthermore, these CVD methods are superior to conventional vacuum evaporation methods and ion blating methods in terms of productivity (larger effective area in the formation tank), reproducibility of device characteristics, and ease of process automation. I think it's a very effective method.

11・・・・基板ガラス、12・・・・・・下部電極1
6・・・・・・水酸化イリジウム膜、14・・・・・・
五酸化タンタル膜、 15・・・・・・三酸化タングステン膜、16・・・・
・・上部電極。
11...Substrate glass, 12...Lower electrode 1
6...Iridium hydroxide film, 14...
Tantalum pentoxide film, 15...Tungsten trioxide film, 16...
...Top electrode.

Claims (1)

【特許請求の範囲】[Claims] 基板ガラスの上に下部電極としてインジウム−錫酸化物
膜、酸化着色型EC物7質として水酸化イリジウム膜、
固体電解質と゛して五酸化タンタル膜、還元着色型EC
物質として三酸化タングステン膜および上部電極として
インジウム−錫酸化物膜を順次積層してなる固体型エレ
クトロクロミック表示素子の製造方法において、あらか
じめ下部電極および水酸化イリジウム膜がパターン化さ
れて設けられている基板ガラスを反応室内に設置し、五
酸化タンタル膜、三酸化タングステン脱鉛よび上部電極
なCV I)により順次ν(層することを特徴とする固
体型エレクトロクロミック表示素子の製造方法。
An indium-tin oxide film as a lower electrode on the substrate glass, an iridium hydroxide film as an oxidized colored EC substance,
Solid electrolyte: tantalum pentoxide membrane, reduction colored EC
In a method for manufacturing a solid-state electrochromic display element in which a tungsten trioxide film as a material and an indium-tin oxide film as an upper electrode are sequentially laminated, the lower electrode and the iridium hydroxide film are patterned and provided in advance. A method for manufacturing a solid-state electrochromic display element, characterized in that a glass substrate is placed in a reaction chamber and sequentially layered with a tantalum pentoxide film, a tungsten trioxide deleaded film, and an upper electrode (CV I).
JP59000433A 1984-01-05 1984-01-05 Production of solid state type electrochromic display element Pending JPS60144722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59000433A JPS60144722A (en) 1984-01-05 1984-01-05 Production of solid state type electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59000433A JPS60144722A (en) 1984-01-05 1984-01-05 Production of solid state type electrochromic display element

Publications (1)

Publication Number Publication Date
JPS60144722A true JPS60144722A (en) 1985-07-31

Family

ID=11473676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59000433A Pending JPS60144722A (en) 1984-01-05 1984-01-05 Production of solid state type electrochromic display element

Country Status (1)

Country Link
JP (1) JPS60144722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063974A (en) * 2002-01-25 2003-07-31 주식회사 컴텍스 Manufacture method of transparent electrode for organic electro luminescence display
JP2008131733A (en) * 2006-11-20 2008-06-05 Nishiyama:Kk Duct port waterproofing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030063974A (en) * 2002-01-25 2003-07-31 주식회사 컴텍스 Manufacture method of transparent electrode for organic electro luminescence display
JP2008131733A (en) * 2006-11-20 2008-06-05 Nishiyama:Kk Duct port waterproofing device

Similar Documents

Publication Publication Date Title
US5002796A (en) Process for forming functional zinc oxide films using alkyl zinc compound and oxygen-containing gas
US4527007A (en) Process for forming passivation film on photoelectric conversion device and the device produced thereby
JPH084071B2 (en) Deposited film formation method
US5674599A (en) Deposited multi-layer device
JPS60144722A (en) Production of solid state type electrochromic display element
KR100445625B1 (en) Method of Making Bismuth Compound and Dielectric Material of Bismuth
JPH02259725A (en) Liquid crystal display device
JP2879747B2 (en) MIM element
JPS5916326A (en) Manufacture of thin film
US5904766A (en) Process for preparing bismuth compounds
JPH0486808A (en) Liquid crystal display device
JPS61127865A (en) Formation of platinum group oxide film
JP2869436B2 (en) Liquid crystal display
JP2798963B2 (en) Liquid crystal display
JP2987531B2 (en) Liquid crystal display
JPH0756194A (en) Active matrix substrate and liquid crystal display device
JPS6042739A (en) Preparation of electrochromic element
JPS59104626A (en) Manufacture of all solid-state electrochromic element
JPH03163531A (en) Active matrix substrate
JPH04137312A (en) P-type transparent conductive film and manufacture thereof
JPH03238424A (en) Liquid crystal display device
JPS6047474A (en) Amorphous silicon solar battery
JPH0472766A (en) Mimim element
JPS59105618A (en) Production of total solid state electrochromic element
JPH03163533A (en) Thin film two-terminal element