JPS60143795A - Correction of oblique incident error in topography detection apparatus - Google Patents

Correction of oblique incident error in topography detection apparatus

Info

Publication number
JPS60143795A
JPS60143795A JP58251972A JP25197283A JPS60143795A JP S60143795 A JPS60143795 A JP S60143795A JP 58251972 A JP58251972 A JP 58251972A JP 25197283 A JP25197283 A JP 25197283A JP S60143795 A JPS60143795 A JP S60143795A
Authority
JP
Japan
Prior art keywords
receiving
received
receiving beam
reflected signal
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58251972A
Other languages
Japanese (ja)
Other versions
JPS646416B2 (en
Inventor
Yoji Azuma
陽二 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Nihon Musen KK
Original Assignee
Japan Radio Co Ltd
Nihon Musen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd, Nihon Musen KK filed Critical Japan Radio Co Ltd
Priority to JP58251972A priority Critical patent/JPS60143795A/en
Publication of JPS60143795A publication Critical patent/JPS60143795A/en
Publication of JPS646416B2 publication Critical patent/JPS646416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To attain to reduce an oblique incident error, by integrating and averaging the intensity of a collected receiving reflective signal and detecting the max. position of the intensity value of a receiving reflective signal at every receiving of each receiving beam. CONSTITUTION:A sound wave is transmitted toward the objective sea bottom from a transmitter array 5 and the reflected sound wave arriving from the sea bottom is received by a receiver array 1. Receiving reflected signa intensity in the receiving beam is collected at every receiving beam and the receiving reflected signa intensity collected at every receiving beam is integrated and averaged at every transmitting wave and receiving beam by an integration and averaging circuit 20. The max. position of the receiving reflected signal is detected from the receiving reflected signal intensity value at every receiving beam by a max. position detection circuit 21 and the topography in the max. gain direction of each receiving beam is detected on the basis of the max. position. By this mechanism, a detection mistake caused by the whirling-up of earth and sand at the time of dredging or a school of fish is perfectly eliminated and an error caused by oblique incidence can be reduced.

Description

【発明の詳細な説明】 本発明は、ソナーを用いた地形検出装置における斜入射
誤差の補正方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for correcting oblique incidence errors in a terrain detection device using sonar.

通常マルチビームソナーは送波器アレイ或いは送受波器
アレイ目標物に向けて音波を送波し。
Typically, multibeam sonar uses a transmitter array or a transducer array to transmit sound waves toward a target.

その反射信号な受波器アレイ或いは送受波器アレイで受
波して、い(つかのマルチビームを合成し、音波の到来
方向を識別するソナーである。
A sonar device receives the reflected signals using a receiver array or a transducer array, synthesizes several multi-beams, and identifies the direction in which the sound waves arrive.

斯かるマルチビームソナーを用いた従来の海底地形検出
装置は、第1図に示すように送波器アレイ5より目標の
海底に向けて送波した音波の反射信号を受波器アレイ1
で受波し、ビーム合成器2でこれら各受波ビームを合成
する。そして各受波ビーム内の受信反射4W号強度を検
出し、これをスレシホールド値による海底判別回路3に
供給して、スレシホールド値以上の受信反射信号強度を
海底からの反射信号として取出し、この反射信号に基づ
いて検出された海底地形f!r:表示器4に表示するよ
うにしたものである。
As shown in FIG. 1, a conventional submarine topography detection device using such a multi-beam sonar detects the reflected signals of the sound waves transmitted from a transmitter array 5 toward the target sea floor to a receiver array 1.
and the beam combiner 2 combines these received beams. Then, the received reflected 4W strength in each receiving beam is detected, and this is supplied to the seabed discrimination circuit 3 based on a threshold value, and the received reflected signal strength that is equal to or higher than the threshold value is extracted as a reflected signal from the seabed. , the seafloor topography f! detected based on this reflected signal. r: Displayed on the display 4.

ところで、前記受波器アレイlの各受波ビームは第2図
に示すように、海底9に対しそれぞれ異なったビームチ
ルトが施された3本の受彼ビーム、すなわち第1受彼ビ
ーム6、第2受彼ビーム7及び第3受波ビーム8から成
り、これら3本の各受波ビーム内で受信された各受信反
射信号強度は、第3図に示す如く縦方向に信号強度33
を、また横方向に送波から音波到来までの時間34を採
って作った図表上に示すことができろ。同図において1
0は第1受波ビームの、11は第2受波ビームの、12
は第3受波ビームノソれぞれ受信反射信号強度を示し、
13は海底判別のために設定したスレシホールド値であ
る。このスレ7ホールド値13以上の各受信反射信号強
度を前述したように海底からの反射信号とし。
By the way, as shown in FIG. 2, each of the receiving beams of the receiver array 1 consists of three receiving beams each having a different beam tilt with respect to the seabed 9, that is, a first receiving beam 6, It consists of a second receiving beam 7 and a third receiving beam 8, and the strength of each received reflected signal received within each of these three receiving beams is 33 in the vertical direction as shown in FIG.
can also be shown on a chart made by measuring the time 34 from the transmission of the wave to the arrival of the sound wave in the lateral direction. In the same figure, 1
0 is the first receiving beam, 11 is the second receiving beam, 12
represents the received reflected signal strength of the third received beam,
13 is a threshold value set for determining the seabed. The strength of each received reflected signal with this threshold 7 hold value of 13 or higher is taken as a reflected signal from the seabed as described above.

これに基づいて第4図示の如き海底地形の表示を行なっ
ていた。同図において、14は第1受波ビームで、15
は第2受波ビームで、16は第3受波ビームでそれぞれ
検出した海底位置を示し。
Based on this, the seabed topography as shown in Figure 4 was displayed. In the figure, 14 is the first receiving beam, 15
indicates the seabed position detected by the second receiving beam and 16 by the third receiving beam.

17は各海底位置14乃至16相互間を結んで形成した
海底地形、18は真の海底地形を示すものである。
17 is a seafloor topography formed by connecting each seabed position 14 to 16, and 18 is a true seafloor topography.

斯様に従来装置は、各受波ビーム内の受信反射信号強度
のうちのスレソホールド値以上の各強度値を基にして海
底地形を検出する手段を採っていたために、殊に第4図
から明らかなように受波ビーム幅分だけ音波到来方向が
不確定となり、かつ第1乃至第3受波ビームと斜入射角
が大きくなるにつれて検出誤差が太き(なるという欠点
があった。
In this way, the conventional device employs a means of detecting the seafloor topography based on each intensity value that is equal to or higher than the threshold value among the received reflected signal intensities in each receiving beam, and therefore, the method shown in FIG. As is clear from the above, the direction of arrival of the sound wave becomes uncertain by the width of the receiving beam, and the detection error increases as the oblique incidence angle with respect to the first to third receiving beams increases.

これに対し本発明は、送波毎に受信する受信反射信号強
度を各受波ビーム別にサンプリングし、このヱーンプリ
ングされた受信反射信号強度を積算平均或いは乗みづけ
積算平均し、この平均された各受波ビーム別の受信反射
信号強度値の最大位置を検出し、この最大位置より各受
波ビームの最大オlI得方向の地形を検出することによ
って斜入射誤差の減少を図るようにしたことを目的とす
るものである。
On the other hand, the present invention samples the received reflected signal strength for each receiving beam for each transmitted wave, calculates the integrated average or multiplicative average of the received reflected signal strength, and calculates the averaged value of each received reflected signal strength. By detecting the maximum position of the received reflected signal strength value for each receiving beam and detecting the topography in the direction of the maximum optical gain of each receiving beam from this maximum position, the oblique incidence error is reduced. This is the purpose.

以下本発明の一実施例を図面を参照しながら詳細に説明
する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第5図は本発明方法を適用した峰底地形@出装置のブロ
ック図で1図中、1は受波器アレイ。
Fig. 5 is a block diagram of a peak/bottom topography @output device to which the method of the present invention is applied. In Fig. 5, 1 is a receiver array.

2は各受波ビームを合成するビーム合成回路。2 is a beam combining circuit that combines each receiving beam.

20は各受波ビーム別にサンプリングされた受信反射信
号強度を積算平均或いは嵐みづけ積算平均する各受波ビ
ーム別の平均回路、21は平均された各受波ビーム別の
受信反射信号強度値の最大位置を検出する検出回路、4
は掃引型記録器又は陰極線管表示器等からなる表示器、
5は目標の海底に向けて音波を送波する送波器アレイで
ある。
Reference numeral 20 denotes an averaging circuit for each receiving beam that cumulatively averages or storm-finds cumulatively averages the received reflected signal strength sampled for each receiving beam, and 21 indicates the averaged received reflected signal strength value for each received beam. Detection circuit for detecting the maximum position, 4
is a display consisting of a sweep type recorder or a cathode ray tube display, etc.;
5 is a transmitter array that transmits sound waves toward the target ocean floor.

これを動作するには先ず、送波器アレイ5より目標とし
ている海底に向けて音波を送波し。
To operate this, first, a sound wave is transmitted from the transmitter array 5 toward the target ocean floor.

海底より帰来する反射音波な受波器アレイlで受波する
。受波された各受波ビームはビーム合成回路2で合成さ
れ、各受波ビーム別に受信反射信号強度がサンプリング
される。このサンプリングされた各受波ビーム別の受信
反射信号強度は各受波ビーム別に設けられている積算平
均或いは恵みづげ積算平均回路2oで平均され、更に1
次段の最大位置検出回路21にて平均値の最大位置が検
出される。この最大位置な受波ビームの最大利得方向か
らの海底反射信号とする。
The reflected sound waves returning from the ocean floor are received by the receiver array l. The received beams are combined by a beam combining circuit 2, and the intensity of the received reflected signal is sampled for each received beam. The received reflected signal strength for each sampled receiving beam is averaged by an integrating averaging circuit 2o provided for each receiving beam, and then
The maximum position of the average value is detected by the maximum position detection circuit 21 at the next stage. This signal is taken as the seabed reflection signal from the maximum gain direction of the receiving beam at the maximum position.

この海底反射信号の音波到来時間より最大利得方向の受
波器アレイと海底間の距離をめ。
Determine the distance between the receiver array and the seabed in the maximum gain direction from the sound wave arrival time of this seabed reflected signal.

これを表示器4に表示するように構成しである。This is configured to be displayed on the display 4.

従って前記平均回路20には、浚渫時の土砂の巻き上が
りや魚群等によって生じる変動反射信号を除去して海底
反射信号の安定化を図り、もって土砂の巻き上がり、魚
群等に起因する検出ミスを皆無とする作用があり、また
最大位置検出回路21には、斜入射誤差を減少させる作
用がある。
Therefore, the averaging circuit 20 is designed to stabilize the seabed reflection signal by removing the fluctuating reflected signals caused by the rolling up of earth and sand during dredging, schools of fish, etc., thereby eliminating detection errors caused by rolling up of earth and sand, schools of fish, etc. Furthermore, the maximum position detection circuit 21 has the effect of reducing oblique incidence errors.

第6図はビーム合成回路2で合成された一つの受波ビー
ムの指向特性を示す図で2図中、1は受波器アレイ、9
は海底、 30は受波ビーム指向特性である。一般に第
6図示のようにある程度受波ビーム幅が狭ければ、ビー
ム幅内の海底からの反射信号強度は一様と考えられるの
で。
Figure 6 is a diagram showing the directivity characteristics of one received beam combined by the beam combining circuit 2. In Figure 2, 1 is the receiver array, 9
is the seabed, and 30 is the receiving beam directional characteristic. In general, if the received beam width is narrow to some extent as shown in Figure 6, the strength of the reflected signal from the seabed within the beam width is considered to be uniform.

受信反射信号強度は指向特性に左右され、その指向特性
の最大;Fll#方向から音波が入射した1拍受信反射
信号強度は最大値となる。第7図は第6図の受波ビーム
30で受信した時の受信反射信号強度3Jを示した図で
9図中、32が受信反射信号強度31の最大位置である
。斯様なことから。
The intensity of the received reflected signal depends on the directional characteristic, and the intensity of the received reflected signal for one beat when the sound wave is incident from the direction Fll# is the maximum value of the directional characteristic. FIG. 7 is a diagram showing the received reflected signal strength 3J when received by the receiving beam 30 of FIG. 6, and in FIG. 9, 32 is the maximum position of the received reflected signal strength 31. Because of this.

受波ビーム内における海底からの受信反射信号強度の最
大位置を検出すれば、受波ビームの最大利得方向の受波
器アレイと海底間の距離すなわち海底地形がまるのであ
る。
By detecting the maximum position of the received reflected signal strength from the seabed within the receiving beam, the distance between the receiver array and the seabed in the maximum gain direction of the receiving beam, that is, the seafloor topography, can be determined.

以上要するに1本発明は上述したようにして各受波ビー
ムの最大利得方向の地形を検出するようにしたものであ
るから、従来装置が有していた各受波ビーム幅の不確定
分がな(なり、斜入射による検出誤差を減少できると同
時に、土砂等による濁りの反射信号強度より大きい真の
海底の反射信号強度を検出基準にしているので。
In short, the present invention detects the topography in the maximum gain direction of each receiving beam as described above, so there is no uncertainty in the width of each receiving beam, which conventional devices had. (This is because the detection error due to oblique incidence can be reduced, and at the same time, the detection standard is based on the true seabed reflection signal intensity, which is higher than the reflection signal intensity from turbidity caused by sediment, etc.).

濁りの影響による検出誤差も軽減でき、正確な海底地形
を検出表示できる卓越した効果がある。
Detection errors caused by turbidity can also be reduced, and the system has the outstanding effect of accurately detecting and displaying seafloor topography.

同、一実施例として本発明はマルチピームンナーの場合
に付いて説明したが、シングルビームに句いても同様に
行なえることは勿論である。
Although the present invention has been described in connection with the case of a multi-beam beam as an embodiment, it goes without saying that it can be carried out in the same manner in a single beam beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の海底地形検出装置のブロック図、第2図
は従来装置におげろ受波ビームの指向特性図、第3図は
第2図示の各受波ビーム内の受信反射信号強度を示す線
図、第4図は従来装置によって検出された海底地形の表
示図、第5図は本発明方法を適用した辞底地形検出装置
1q。 のブロック図、第6図は本発明における受波ビーム内指
向特性図、第7図は第6図示の受波ビーム内の受信反射
信号強度とその最大位置を示す線図である。 1・・受波器アレイ、2・・・ビーム合成回路、4・・
・表示器、5・・・送液器アレイ、9・・・海底、 2
0・各受波ビーム別の積算平均酸(・は重みづけ積IF
平均回路、21・海底反射信号の最大位置検出回路、3
0・・・受波ビーム指向特性、31−・受(g反射信号
強度、32・最大位置、33信号強度、34 送波かも
音波到来までの時間。 特許出願人 日本無線株式会社
Fig. 1 is a block diagram of a conventional submarine topography detection device, Fig. 2 is a directional characteristic diagram of a receiving beam of the conventional device, and Fig. 3 shows the received reflected signal strength within each receiving beam shown in Fig. 2. FIG. 4 is a diagram showing a seabed topography detected by a conventional device, and FIG. 5 is a bottom topography detection device 1q to which the method of the present invention is applied. FIG. 6 is a diagram showing the directivity characteristics in the receiving beam according to the present invention, and FIG. 7 is a diagram showing the received reflected signal strength and its maximum position in the receiving beam shown in FIG. 6. 1...Receiver array, 2...Beam combining circuit, 4...
・Indicator, 5... Liquid feeder array, 9... Seabed, 2
0. Cumulative average acid for each received beam (・ is weighted product IF
Average circuit, 21・Maximum position detection circuit of seabed reflection signal, 3
0... Receiving beam directivity characteristics, 31 - Receiving (g reflected signal strength, 32 - Maximum position, 33 Signal strength, 34 Time until the sound wave arrives at the transmitter. Patent applicant: Japan Radio Co., Ltd.

Claims (1)

【特許請求の範囲】 送波した音波を各別に受波し、それぞれの受波ビーム内
の受信反射信号強度を検出して海底地形の検出を行なう
装置において、前記受波ビーム内の受信反射信号強度な
各受波ビーム別にサンプリングし、このサンプリングさ
れた各受波ビーム別の受信反射信号強度を送波毎に、か
つ各党彼ビーム別に積算平均し、この積算平均された各
受波ビーム別の受信反射信号強度値からその受信反射信
号強度の最大位置を検出し。 この各最大位置に基づいて各受波ビームの最大利得方向
の地形を検出することにより斜入射誤差を減少せしめる
ことを特徴とする地形検出装置における斜入射誤差の補
正方法。
[Scope of Claims] In an apparatus for detecting seafloor topography by receiving transmitted sound waves separately and detecting the received reflected signal strength within each received wave beam, the received reflected signal within the received wave beam is The intensity of each received beam is sampled, and the received reflected signal strength of each sampled received beam is integrated and averaged for each transmitted beam and for each party beam. The maximum position of the received reflected signal strength is detected from the received reflected signal strength value. A method for correcting an oblique incidence error in a terrain detection device, characterized in that the oblique incidence error is reduced by detecting the terrain in the maximum gain direction of each received beam based on each of the maximum positions.
JP58251972A 1983-12-29 1983-12-29 Correction of oblique incident error in topography detection apparatus Granted JPS60143795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58251972A JPS60143795A (en) 1983-12-29 1983-12-29 Correction of oblique incident error in topography detection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58251972A JPS60143795A (en) 1983-12-29 1983-12-29 Correction of oblique incident error in topography detection apparatus

Publications (2)

Publication Number Publication Date
JPS60143795A true JPS60143795A (en) 1985-07-30
JPS646416B2 JPS646416B2 (en) 1989-02-03

Family

ID=17230730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58251972A Granted JPS60143795A (en) 1983-12-29 1983-12-29 Correction of oblique incident error in topography detection apparatus

Country Status (1)

Country Link
JP (1) JPS60143795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859381A1 (en) * 2020-01-29 2021-08-04 Furuno Electric Co., Ltd. Underwater detection device and underwater detection image generation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3859381A1 (en) * 2020-01-29 2021-08-04 Furuno Electric Co., Ltd. Underwater detection device and underwater detection image generation method
JP2021117213A (en) * 2020-01-29 2021-08-10 古野電気株式会社 Underwater detection device and method for displaying underwater detection image

Also Published As

Publication number Publication date
JPS646416B2 (en) 1989-02-03

Similar Documents

Publication Publication Date Title
US7330399B2 (en) Sonar system and process
US7193930B2 (en) Quantitative echo sounder and method of quantitative sounding of fish
JP4475982B2 (en) Weighing fish finder and fish length measuring method
US4400803A (en) Wide swath precision echo sounder
EP0397547A1 (en) Avoidance sonar for subsurface under water objects
JP3269527B2 (en) Buried object detection sonar system and its detection method
JP3420300B2 (en) Sonar system
JPS60143795A (en) Correction of oblique incident error in topography detection apparatus
US20040170085A1 (en) Bistatic azimuth detection system and detection method
EP3325997A1 (en) Forward scanning sonar system and method with angled fan beams
JP2948092B2 (en) Fish frequency response measuring device
JPH0679065B2 (en) Seabed search device
JP2865082B2 (en) Radio wave receiver
JPH04357487A (en) Side looking sonar
JP5259076B2 (en) Ultrasonic transceiver and scanning sonar
JP2883679B2 (en) Ultrasonic reflection intensity measurement device
JP5102520B2 (en) Ultrasonic detection apparatus and ultrasonic detection method
JP2528973B2 (en) Underwater detector
JP3162873B2 (en) Ship speed measuring device
Hammerstad et al. Ultra Wide Swath Sea interferometric multibeam echo sounder with sea bottom imaging system.
JPH0239754B2 (en)
JPH03242583A (en) Hydrospace detector
WO1985005694A1 (en) Device in an echo sounding or sonar system
JP3113120B2 (en) Ship speed measurement device
JPH03245626A (en) Underwater digital communication equipment