JPS60143738A - Manufacture of diluted gas - Google Patents

Manufacture of diluted gas

Info

Publication number
JPS60143738A
JPS60143738A JP24980683A JP24980683A JPS60143738A JP S60143738 A JPS60143738 A JP S60143738A JP 24980683 A JP24980683 A JP 24980683A JP 24980683 A JP24980683 A JP 24980683A JP S60143738 A JPS60143738 A JP S60143738A
Authority
JP
Japan
Prior art keywords
gas
dilution
solenoid valve
diluting
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24980683A
Other languages
Japanese (ja)
Other versions
JPH0550697B2 (en
Inventor
Shotaro Oka
正太郎 岡
Osamu Tawara
修 田原
Junya Kobayashi
潤也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP24980683A priority Critical patent/JPS60143738A/en
Publication of JPS60143738A publication Critical patent/JPS60143738A/en
Publication of JPH0550697B2 publication Critical patent/JPH0550697B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To make it possible to set a diluting rate, whose dynamic range is wide of selected value, by keeping the pressures of a raw gas and a diluting gas at constant levels, mixing both gases alternately at a specified switching period many times through selector valves, and obtaining a diluted gas having a desired concentration. CONSTITUTION:The pressures of a raw gas 2 and a diluting gas are kept at constant levels by back pressure regulating valves 3 and 3'. A three-way solenoid valve 5 alternately supplies the gas 2 and the gas 1 to a diluted gas path at a preset period. A solenoid valve 17 is opened only when the gas 1 flows and exhausts the gas 2, whose flow rate is controlled by a needle valve 18. Back pressure regulating valves 6 and 6' regulate the pressures of the mixed gas and the gas 1 to the specified values, respectively. The mixed gas is more uniformly mixed in a buffer tank 9. The diluted gas is alternately mixed with the gas 1 at another specified period by a three-way solenoid valve 10 and supplied to a buffer tank 14.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、希釈ガス製造方法に関する。さらに詳しく
は、高m度の原料ガスを希釈して所定濃度のガスを得る
方法であって湿度測定器のようなガス分析計の標準ガス
を得たり、種々の濃度の市販用ガスを得るのに有用な、
希釈ガス製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a method for producing diluent gas. More specifically, it is a method of diluting a high-concentration raw material gas to obtain a gas of a predetermined concentration, and is used to obtain a standard gas for a gas analyzer such as a humidity meter, or to obtain commercially available gases of various concentrations. useful for,
This invention relates to a dilution gas production method.

(ロ)従来、技術 従来、ガスを多段階に希釈する方法として、複数のキャ
ピラリーチューブ等を用いて原料ガスの流−を適宜切換
えた後、一定流量の希釈用ガスと混合するいわゆる流量
比混合法が知られている。
(b) Conventional technology Conventionally, as a method of diluting gas in multiple stages, the flow of raw material gas is appropriately switched using multiple capillary tubes, etc., and then mixed with a constant flow rate of dilution gas, so-called flow ratio mixing. The law is known.

しかしこの方法により設定される希釈率は固定されたも
のであり、希釈率の範囲を広くかつ多く設定するために
はキャピラリーチューブの種類を多くしなければならず
、しかも流量の制御の精度にも限界があった。さらにか
ような方式を標準水分含有ガスの製造に適用した際には
水分が状態変化を起し易い成分であるためpp−オーダ
ーの低濃度の水分含有ガスを得ることは実際上困難であ
った。
However, the dilution rate set by this method is fixed, and in order to set a wide range of dilution rates, it is necessary to use many types of capillary tubes, and the accuracy of flow rate control is also affected. There was a limit. Furthermore, when such a method was applied to the production of a standard moisture-containing gas, it was actually difficult to obtain a moisture-containing gas with a low concentration of pp-order because moisture is a component that easily changes its state. .

また、標準水分含有ガスの製造において、酸素−水素燃
焼反応法やパーミェーションチューブ法などが知られて
いるが、前者についてはEIDIオーダーの水分含有ガ
スの製造は反応率の制御が困難な点から不利であり、ま
た触媒の経時変化に伴なう不安定要素があり、後者では
p111オーダーの水分含有ガスは得られるが、%オー
ダーの水分含有ガスを得ることはできずダイナミックレ
ンジは狭くかつ温度や希釈ガスの流量の影響を受けると
いう不都合があった。
In addition, oxygen-hydrogen combustion reaction method and permeation tube method are known for producing standard moisture-containing gas, but in the former case, it is difficult to control the reaction rate when producing EIDI-order moisture-containing gas. In addition, there is an element of instability due to changes in the catalyst over time. In the latter case, a water-containing gas on the order of p111 can be obtained, but a water-containing gas on the order of % cannot be obtained, and the dynamic range is narrow. In addition, there is a disadvantage that the method is affected by temperature and the flow rate of diluent gas.

(ハ)目的 この発明は上記のごとき従来の問題点に鑑みなされたも
のであり、ooraオーダーから%オーダーまでのダイ
ナミックレンジの広い希釈率を任意に設定でき、かつ流
量係数や反応効率などの希釈率補正要素を含まず、高精
度で所望の濃度の希釈ガスを得ることのできる製造方法
を提供することを目的とする。
(c) Purpose This invention was made in view of the above-mentioned conventional problems, and it is possible to arbitrarily set a dilution rate with a wide dynamic range from the order of oora to the order of %, and it is possible to adjust the dilution rate such as flow rate coefficient and reaction efficiency. It is an object of the present invention to provide a manufacturing method that does not include a rate correction element and can obtain a diluent gas of a desired concentration with high precision.

(ニ)構成 かくしてこの発明によれば、原料ガスと希釈用ガスとを
混合して希釈ガスを製造するに際し、原料ガスと希釈用
ガスとを一定圧力に維持しつつ切換弁を介して所定の切
換周期で交互に多数回混合して所望濃度の希釈ガスを得
ることを特徴とする希釈ガス製造方法が提供される。
(d) Structure Thus, according to the present invention, when producing diluent gas by mixing raw material gas and diluting gas, the raw material gas and diluting gas are maintained at a constant pressure while being controlled at a predetermined value through the switching valve. A diluent gas production method is provided, which is characterized in that the diluent gas is mixed alternately many times at a switching period to obtain a diluent gas having a desired concentration.

この発明の最も特徴とする点は、原料ガスと希釈用ガス
との混合比率を一定圧力下における混入時間比で決定し
たことにある。そしてさらに均一な混合を意図するため
にその混入を交互に多数回行なう点にある。かかる方法
は従来のように流(6)や圧力等の状態変化を起し易い
物理量の変化に基づく希釈率の設定ではないので変動要
素が少なく、それにより信頼性のある希釈率が発現され
るものと信じられる。
The most distinctive feature of this invention is that the mixing ratio of the raw material gas and the diluting gas is determined by the mixing time ratio under a constant pressure. In order to achieve even more uniform mixing, the mixture is alternately repeated many times. Since this method does not set the dilution rate based on changes in physical quantities such as flow (6) and pressure that are likely to change state as in the past, there are fewer variables, and a reliable dilution rate is thereby achieved. I can believe it.

この発明の対象とする原料ガスは特に限定されない。そ
の具体例として代表的には02、CO2、NO2,7レ
オンガス、半導体用ガス等のガスや水分含有ガスなどが
挙げられ、もちろん器材を選定することによりCI2や
No等の腐食性を有するガスも適用可能である。一方用
いる希釈用ガスとして通常、高純度のN2ガス(99,
99%)を使用するのが好ましい。なお、水分含有ガス
を対象とする場合には、一定圧力及び温度下で水蒸気を
飽和させる手段により原料ガスを作製し、かつ希釈用ガ
スとして、P20ラヤモレキュラーシーブなどの吸着剤
に通して除湿した高純度N2ガスを用いる゛のが好適で
ある。ことにがかる組合せは湿度測定セルの較正用の標
準水分含有ガスの製造方法として有用である。
The raw material gas targeted by this invention is not particularly limited. Typical examples include gases such as 02, CO2, NO2, 7 Leon gas, semiconductor gas, and moisture-containing gases. Of course, depending on the equipment, corrosive gases such as CI2 and No. Applicable. On the other hand, the dilution gas used is usually high-purity N2 gas (99,
99%) is preferably used. In addition, when a water-containing gas is used, the raw material gas is prepared by means of saturating water vapor under a constant pressure and temperature, and is dehumidified by passing it through an adsorbent such as P20 Raya molecular sieve as a dilution gas. It is preferable to use high purity N2 gas. Such a combination is particularly useful as a method for producing a standard moisture-containing gas for the calibration of humidity measuring cells.

切換弁は後述のごとく、切換周期を適宜設定できる三方
の電磁弁が用いられる。なお、連続的に希釈ガスを用い
る際には、混合部にバッファータンクを設定し、これを
介して用いるのが、より均一に混合された希釈ガスが利
用できる点好ましい。
As described later, the switching valve is a three-way solenoid valve whose switching cycle can be set appropriately. Note that when using the diluent gas continuously, it is preferable to set a buffer tank in the mixing section and use it through this, since the diluent gas can be used more uniformly mixed.

(ホ)実施例 以)、この発明を実施例により詳しく説明する。(e) Examples Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図はこの発明の希釈ガスの製造に用いられる装置の
一例を示す構成説明図である。この装置は基本的に、希
釈用ガス(1)から背圧調整弁(3)及び圧力計(4)
を通して三方電磁弁(5)に接続される希釈用ガス供給
流路と、原料ガス(2から背圧調整押印及び圧力計(イ
)を通して三方電磁弁(5)に接続される原料ガス供給
流路と、三方電磁弁(5)から背圧調整弁(6)、抵抗
管(8)及び圧力計(刀を通じてバッファータンク(9
)に接続される希釈ガス流路とから構成されている。そ
して、この実施例においては、さらに得られた希釈ガス
を希釈用ガス(1)で希釈すべく背圧調整弁(ω及び圧
力計(7)を通して三方電磁弁■に接続される流路と、
バッファータンク(9)から已方電磁弁(財)に接続さ
れる流路と、三方電磁弁(至)から背圧調整弁aυ圧力
計(+2)及び抵抗管(13)を通して第2のバッファ
ータンク(14)に接続される流路が設定されており、
二段階の希釈を行なうことができる。
FIG. 1 is a configuration explanatory diagram showing an example of an apparatus used for producing diluent gas according to the present invention. This device basically consists of a diluent gas (1), a back pressure regulating valve (3) and a pressure gauge (4).
A dilution gas supply channel is connected to the three-way solenoid valve (5) through the raw material gas (2), and a raw material gas supply channel is connected to the three-way solenoid valve (5) through the back pressure adjustment stamp and pressure gauge (A). and from the three-way solenoid valve (5) to the back pressure regulating valve (6), the resistance pipe (8) and the pressure gauge (through the buffer tank (9)
) and a diluent gas flow path connected to the In this embodiment, a flow path is connected to a three-way solenoid valve (■) through a back pressure regulating valve (ω) and a pressure gauge (7) in order to further dilute the obtained dilution gas with a dilution gas (1);
A flow path is connected from the buffer tank (9) to the three-way solenoid valve, and the second buffer tank is connected from the three-way solenoid valve to the back pressure regulating valve aυ pressure gauge (+2) and the resistance pipe (13). A flow path connected to (14) is set,
Two stages of dilution can be performed.

そして三方電磁弁(5)、(ト)はそれぞれ所定周期で
原料ガスと希釈用ガスとを交互に希釈ガス流路に供給し
うるよう制御されており、その周期はデジタルスイッチ
等で任意に設定できるよう構成されている。
The three-way solenoid valves (5) and (g) are each controlled to alternately supply raw material gas and dilution gas to the dilution gas flow path at a predetermined period, and the period can be set arbitrarily using a digital switch, etc. It is configured so that it can be done.

上記希釈用ガス(1)として高純度N、(99,99%
)を用い、かつ原料ガス(aとして1%のNoガス(f
nN2)を用いた際の操作について説明する。
High purity N (99,99%) is used as the diluent gas (1).
), and 1% No gas (f
The operation when using nN2) will be explained.

原料ガス(2)と希釈用ガス(1)はそれぞれ背圧弁(
3)、印で5koJの一定圧力に維持される。三方電磁
弁(5)は第3図に示すように予め設定された周期で交
互に原料ガス+21と希釈用ガス(1)とを希釈ガス流
路に供給する(図中、Aは希釈ガスの供給周期、Bは原
料ガスの供給周期を示す)。希釈用ガスが流れている時
だけ電磁弁07)が開いてニードル(財)で流量制御さ
れた原料ガスが排気される。背圧調整弁(6)、(0は
それぞれ混合ガス及び希釈用ガスを圧力3kg4に調整
している。バッファータンク(9)中で混合ガスはより
均一に混合され均一な希釈ガスとなる。このバッファー
タンクは希釈ガス流路の径や流量に比して充分大容量で
あることが必要である。例えば内径2.0mの流路を用
い流速500if/分の場合には少なくとも内径100
mmの容量1000CJのバッファータンクが用いられ
る。
The raw material gas (2) and dilution gas (1) are each supplied with a back pressure valve (
3), maintained at a constant pressure of 5 koJ at mark. The three-way solenoid valve (5) alternately supplies raw material gas +21 and dilution gas (1) to the dilution gas flow path at a preset period as shown in Figure 3 (in the figure, A indicates the dilution gas flow path). supply cycle, B indicates the supply cycle of the raw material gas). Only when the dilution gas is flowing, the solenoid valve 07) opens and the raw material gas whose flow rate is controlled by the needle is exhausted. The back pressure regulating valves (6) and (0) respectively adjust the pressure of the mixed gas and the diluting gas to 3 kg4.The mixed gas is mixed more uniformly in the buffer tank (9) and becomes a uniform diluting gas. The buffer tank needs to have a sufficiently large capacity compared to the diameter and flow rate of the diluent gas flow path.For example, when using a flow path with an inner diameter of 2.0 m and a flow rate of 500 if/min, the buffer tank must have an inner diameter of at least 100 m.
A buffer tank with a capacity of 1000 CJ is used.

上記希釈ガスは三方電磁弁ω)で前記と同様に別の所定
周期で交互に希釈用ガスと混合されてバッファータンク
G4)に供給される。電磁弁(15]、(+5)は、そ
れぞれのガスが三方電磁弁のを通過しない時に霧いてニ
ードル(ト)、(6)を通じて排気するためのものであ
る。背圧調整弁aυは1.5にa4に調圧されている。
The diluent gas is alternately mixed with the diluent gas at another predetermined period in the same manner as described above and supplied to the buffer tank G4) by the three-way solenoid valve ω). The solenoid valves (15) and (+5) are for misting the respective gases when they do not pass through the three-way solenoid valve and exhausting them through the needles (g) and (6).The back pressure regulating valve aυ is 1. The pressure was regulated to A4 on 5th.

このようにして二段階希釈された希釈ガスは、所望の供
給ラインに接続されて用いられる。もちろん、上記装置
において、電磁弁0■を通じて一段階希釈されたガスを
取り出し、用いることもできる。また、さらに三方電磁
弁を付設して多段階の希釈が行なえるようにしてもよい
The diluent gas thus diluted in two stages is connected to a desired supply line and used. Of course, in the above apparatus, it is also possible to take out and use gas that has been diluted in one step through the solenoid valve 0. Furthermore, a three-way solenoid valve may be further provided to enable multi-stage dilution.

上記実施例の装置を用い、1%のNOガスから種々の希
釈率(1/2〜1/2000)のNOガスの製造を試み
た結果を第1表に示す。なお、発生ガス流量は300i
f/分とし、1希釈率に対して60分操作し、N01度
の測定は、減圧式化学発光NO分析計により行なった。
Table 1 shows the results of attempts to produce NO gas at various dilution rates (1/2 to 1/2000) from 1% NO gas using the apparatus of the above embodiment. In addition, the generated gas flow rate is 300i
f/min, and the operation was performed for 60 minutes per dilution rate of 1, and the measurement of NO1 degrees was performed using a reduced pressure chemiluminescence NO analyzer.

(以下余白、次頁に続く) なお、表中、時間が999,9: Oとは2段目で希釈
しない場合を示すものである。
(The following is a margin, continued on the next page) In the table, the time 999, 9: O indicates the case where there is no dilution in the second stage.

この結果、第4図に示されるごとく意図する希釈比^N
O分析計で測定された希釈ガス濃度との関係はほぼ直線
となり、C,V、も5%以内で良好な結果が得られた。
As a result, as shown in Figure 4, the intended dilution ratio ^N
The relationship with the diluent gas concentration measured by the O analyzer was almost linear, and good results were obtained for C and V within 5%.

一方、第2図はこの発明の希釈ガスの製造に用いられる
装置の他の一例を示す構成説明図であり、ことに標準水
分含有ガス発生装置を示すものである。図において、希
釈用1ガス供給流路に、モレキュラーシーブ3Aからな
る除湿剤を充填した除湿器(lυが設定されており、加
湿器(6)及び凝縮器(7)により飽和水蒸気を含む原
料ガスが連続的に供給されるように設定されている以外
、基本構成は第1図と同様である。希釈用ガスとして高
純度N2ガス(99,99%)を使用した場合、このガ
ス中にも数pp−の水分が含有されているので除湿器(
11)を通してその含有量を0.19p−以下とする。
On the other hand, FIG. 2 is a structural diagram showing another example of the apparatus used for producing the diluent gas of the present invention, and particularly shows a standard moisture-containing gas generating apparatus. In the figure, a dehumidifier (lυ) filled with a dehumidifying agent made of molecular sieve 3A is installed in one gas supply channel for dilution, and the raw material gas containing saturated water vapor is The basic configuration is the same as that shown in Figure 1, except that the gas is set to be continuously supplied.When high-purity N2 gas (99,99%) is used as the dilution gas, this gas also contains Since it contains several pp- of water, a dehumidifier (
11) so that its content is 0.19 p- or less.

一方、原料ガスは高純度N2ガス(7)を常温下で加湿
器&1)に通して掌編飽和のガスとし、次に2℃に温度
コントロールされた凝縮器θに導くことにより得られた
2℃の飽和水蒸気含有ガスが用いられる。この際の水蒸
気ll1度はi4ooppmである。以下の動作は前記
と同様である。
On the other hand, the raw material gas is a high-purity N2 gas (7) at room temperature that is passed through a humidifier &1) to make it a palm-saturated gas, and then led to a condenser θ whose temperature is controlled at 2°C. A saturated water vapor-containing gas of At this time, the water vapor 11 degrees is i4ooppm. The following operations are the same as above.

上記標準水分含有ガス発生装置を用いて、原料ガスを種
々の希釈率(1/2〜1/2000)で希釈して種々の
標準水分含有ガスの製造を試みた結果を第2表に示す。
Table 2 shows the results of attempts to produce various standard moisture-containing gases by diluting the raw material gas at various dilution rates (1/2 to 1/2000) using the standard moisture-containing gas generator described above.

なお、発生ガス流量は300猷/分とし、1希釈率に対
して180分操操作、水分濃度の測定はピエゾエレクト
リックセンサーを内蔵する湿度測定セルを用いて行なっ
た。
The flow rate of generated gas was 300/min, the operation was performed for 180 minutes per dilution rate, and the moisture concentration was measured using a humidity measuring cell with a built-in piezoelectric sensor.

(以下余白次頁に続く) この結果、第5図に示されるごとく意図する発生水分濃
度と希釈比との関係はほぼ直線となり、高精度の希釈が
行なわれていることが判明した。
(The following margin continues on the next page) As a result, as shown in FIG. 5, the relationship between the intended generated water concentration and the dilution ratio was almost a straight line, indicating that highly accurate dilution was performed.

(へ)効果 以上述べたごとく、この発明の希釈ガス製造方法は、1
/1101)pオーダーから%オーダー迄の広範囲の希
釈ガスを任意の希釈率でしかも高精度で得ることができ
るという優れた効果を有するものである。
(f) Effects As stated above, the dilution gas production method of the present invention has the following advantages:
/1101) It has the excellent effect of being able to obtain a wide range of dilution gases from the p order to the % order at any dilution rate and with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の希釈ガス製造方法に用いる装置の
一例を示す構成説明図、第2図は同じく他の一例を示す
構成説明図、第3図はこの発明の製造方法における切換
周期のタイムチャートを示すグラフ、第4図及び第5図
は、この発明の製造方法により得られた希釈ガスの精度
をそれぞれ説明するためのグラフである。 (1)・・・・・・希釈用ガス、(2)・・・・・・原
料ガス、■聞・・・・・・背圧調整弁、(4)(7)・
・・・・・圧力計、(5)・・・・・・三方電磁弁。
FIG. 1 is a structural explanatory diagram showing an example of an apparatus used in the dilution gas manufacturing method of the present invention, FIG. 2 is a structural explanatory diagram showing another example of the same, and FIG. 3 is a diagram showing the switching cycle in the manufacturing method of the present invention. Graphs showing time charts, FIGS. 4 and 5, are graphs for explaining the precision of the diluent gas obtained by the manufacturing method of the present invention, respectively. (1)... Dilution gas, (2)... Raw material gas, ■ Back pressure adjustment valve, (4) (7).
...Pressure gauge, (5) ...Three-way solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 1、原料ガスと希釈用ガスとを混合して希釈ガスを製造
づるに際し、原料ガスと希釈用ガスとを一定圧力に維持
しつつ切換弁を介して所定の切換周期で交互に多数回混
合して所望11の希釈ガスを得ることを特徴とする希釈
ガス製造方法。
1. When producing diluent gas by mixing raw material gas and diluting gas, the raw material gas and diluting gas are maintained at a constant pressure and mixed alternately many times at a predetermined switching cycle via a switching valve. A method for producing a diluent gas, characterized in that a desired diluent gas is obtained.
JP24980683A 1983-12-29 1983-12-29 Manufacture of diluted gas Granted JPS60143738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24980683A JPS60143738A (en) 1983-12-29 1983-12-29 Manufacture of diluted gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24980683A JPS60143738A (en) 1983-12-29 1983-12-29 Manufacture of diluted gas

Publications (2)

Publication Number Publication Date
JPS60143738A true JPS60143738A (en) 1985-07-30
JPH0550697B2 JPH0550697B2 (en) 1993-07-29

Family

ID=17198483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24980683A Granted JPS60143738A (en) 1983-12-29 1983-12-29 Manufacture of diluted gas

Country Status (1)

Country Link
JP (1) JPS60143738A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632211A1 (en) * 1988-06-06 1989-12-08 Sardou Max Process for producing a gas mixture and device enabling the process to be used
EP0370150A1 (en) * 1988-11-21 1990-05-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing standard gas mixture and apparatus for producing the same
EP0370151A1 (en) * 1988-11-21 1990-05-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing low-concentration gas mixtures, and apparatus for producing the same
JPH02135843U (en) * 1988-11-08 1990-11-13
US5239856A (en) * 1988-11-21 1993-08-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for producing standard gas mixtures
JP2005527822A (en) * 2002-05-29 2005-09-15 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Moisture-reduced composition comprising acid gas and matrix gas, product comprising the composition and method for producing the same
CN100458267C (en) * 2007-01-15 2009-02-04 同济大学 Air distributing device
JP2011043435A (en) * 2009-08-21 2011-03-03 National Institute Of Advanced Industrial Science & Technology Trace moisture generation device and standard gas production device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578208B2 (en) * 2006-12-15 2009-08-25 Mocon, Inc. System and method for generating a gas sample of known and adjustable relative humidity

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632211A1 (en) * 1988-06-06 1989-12-08 Sardou Max Process for producing a gas mixture and device enabling the process to be used
JPH02135843U (en) * 1988-11-08 1990-11-13
EP0370150A1 (en) * 1988-11-21 1990-05-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing standard gas mixture and apparatus for producing the same
EP0370151A1 (en) * 1988-11-21 1990-05-30 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing low-concentration gas mixtures, and apparatus for producing the same
US5054309A (en) * 1988-11-21 1991-10-08 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing low-concentration gas mixtures, and apparatus for producing the same
US5157957A (en) * 1988-11-21 1992-10-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing standard gas mixture and apparatus for producing the same
US5239856A (en) * 1988-11-21 1993-08-31 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus for producing standard gas mixtures
JP2005527822A (en) * 2002-05-29 2005-09-15 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Moisture-reduced composition comprising acid gas and matrix gas, product comprising the composition and method for producing the same
CN100458267C (en) * 2007-01-15 2009-02-04 同济大学 Air distributing device
JP2011043435A (en) * 2009-08-21 2011-03-03 National Institute Of Advanced Industrial Science & Technology Trace moisture generation device and standard gas production device

Also Published As

Publication number Publication date
JPH0550697B2 (en) 1993-07-29

Similar Documents

Publication Publication Date Title
JP5855921B2 (en) Gas concentration adjustment device
JPH0481650A (en) Apparatus for preparing standard gas
US8178070B2 (en) Air demand feedback control systems and methods for sulfur recovery units
JPS60143738A (en) Manufacture of diluted gas
JP4913714B2 (en) System and method for generating a gas sample of known and adjustable relative humidity
JPH02276945A (en) Method and apparatus for manufacturing standard gas mixture
WO1994007795A1 (en) Water generating method
CN206583507U (en) A kind of gas-dynamic dilutes air distribution system
US2707964A (en) Measurement and control of the compositions of flowing streams of fluid mixtures
EP2218496B1 (en) Method for stable and adjustable gas humidification
US5213769A (en) Mixture forming method and apparatus
JP2008309550A (en) Standard steam gas generation device
JPH01199133A (en) Gas generation apparatus and method
US6182951B1 (en) Method and apparatus for providing a precise amount of gas at a precise humidity
TW201938477A (en) Ozone generating apparatus and ozone generating method
Muller Multiple contaminant gas effects on electronic equipment corrosion
US4046158A (en) Apparatus for diluting gas
USRE28864E (en) Process and apparatus for automated regulation of sulphur production units
JPH05223767A (en) Method of implementing instantaneous measurement of concentration of water of gaseous fluid
US3933992A (en) Process for automated regulation of sulfur production units
JPH04353743A (en) Method and apparatus for evaluating amount of impurity adsorption
US4476092A (en) Method for adjusting the humidity of gas to a constant value
SCHEIDE et al. A calibration system for producing known concentrations of mercury vapor in air
SU1648490A1 (en) Respiratory gas mixer
Parkinson Mass spectrometric analysis of high-purity helium and hydrogen, using a dynamic sampling and calibration system