JPS6014229B2 - Magnetic fluid seal device - Google Patents

Magnetic fluid seal device

Info

Publication number
JPS6014229B2
JPS6014229B2 JP53105162A JP10516278A JPS6014229B2 JP S6014229 B2 JPS6014229 B2 JP S6014229B2 JP 53105162 A JP53105162 A JP 53105162A JP 10516278 A JP10516278 A JP 10516278A JP S6014229 B2 JPS6014229 B2 JP S6014229B2
Authority
JP
Japan
Prior art keywords
magnetic fluid
pressure
magnetic
annular
pulse motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53105162A
Other languages
Japanese (ja)
Other versions
JPS5533921A (en
Inventor
義彦 新藤
昭 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP53105162A priority Critical patent/JPS6014229B2/en
Publication of JPS5533921A publication Critical patent/JPS5533921A/en
Publication of JPS6014229B2 publication Critical patent/JPS6014229B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/43Sealings between relatively-moving surfaces by means of fluid kept in sealing position by magnetic force

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Of Bearings (AREA)

Description

【発明の詳細な説明】 この発明は種々のガスシールに適用される磁性流体シー
ル装置における磁性流体の補給機構の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a magnetic fluid replenishment mechanism in a magnetic fluid seal device applied to various gas seals.

従来の磁性流体シール装置において、定常運転時は充分
なシール性能があっても突発的圧力上昇が発生した場合
とか磁性流体が蒸発して消耗した場合には磁性流体が飛
散してシール性能を失うので磁性流体を補給しなければ
ならない。
Conventional magnetic fluid seal devices have sufficient sealing performance during steady operation, but if a sudden pressure rise occurs or the magnetic fluid evaporates and is consumed, the magnetic fluid scatters and loses its sealing performance. Therefore, magnetic fluid must be replenished.

この補給装置をもつ磁性流体シール装置の従来構造の一
例として第1図に縦断面図を示す。第1図において回転
軸1を取り囲む2個の環状ポールブロック2は○リング
3を介して固定ケーシング4の内周面に支持され、2個
の環状ポールブロック2の内周面と対向して回転軸1に
0リング5を介して鼓着された磁性円筒6の外周面にそ
れぞれ複数条の環状微小突起7が形議されている。環状
ボールブロック2の対向する両端面間には同一円周上に
等ピッチで隆磁石8が橋架され、対向しない両外側端面
は空間を隔て)軸受9に対向している。ガスはパイプ入
口10を通り回転軸1および磁性体円筒6を貫通して固
定ケーシング4の内周面、磁性体円筒6の競面および環
状ポールブロック2の対向する側面にて囲まれた空間1
1を満たしたのち固定ケーシング4を貫通するパイプ出
口12を通り抜ける。固定ケーシング4の内周面、回転
軸1の外周面、環状ポールブロック2の側面、磁性体円
筒6の側面、および軸受9の側面にて囲まれた空間13
は大気で満たされている。また磁性流体補給管14は固
定ケーシング4および環状ポールブ。ック2を貫通して
設けられる。このような構造において、綾磁石8→左側
環状ポールブロック2→(空隙)→左側の複数条の環状
微小突起7→磁性体円筒6→右側の複数条の環状微小突
起7→(空隙)→右側の環状ポールフロック2→樺磁石
8なる磁気回路が形成される。そしてそれぞれの環状微
小突起7部分に、磁性徴粉を含有する粘性流体いわゆる
磁性流体15を磁性流体補給路14から適宜注入してお
くと、この磁性流体15は前述の磁気回路中に位置して
いるために、磁束密度の最も大なる環状微小突起7の先
端部分に集中し、この磁性流体15によってガスをシー
ルする耐圧力を生じ、空間1 1のガスは大気側の空間
13に漏れることはない。このような従来からの磁性流
体シール装置において、何らかの原因でガスに突発的な
異常圧力上昇が発生した場合には磁性流体15が飛散し
てシール性能がなくなるので直ちに磁性流体補給路14
より磁性流体15を注入補給しなければならないが、例
えば超亀導回転機の場合低温のヘリウムガスのガス圧が
高いので磁性流体補給管14から外部に冷たいガスが噴
出し、この周辺が冷却されて霜がつき、ガスが定常状態
の圧力に復帰しても磁性流体を磁性流体補給路14より
注入補給することができないという欠点をもっていた。
すなわち磁性流体15を補給するためには回転機の運転
を停止させ、ガス圧を低下させるという処置をしなけれ
ばならなかった。この発明は上記のような欠点を除去し
て、回転機の運転を停止させ、ガス圧を低下させるとい
う処置をなくして自動的に速やかに磁性流体を補給して
シール性能を復帰させることの可能な磁性流体シール装
置を提供することを目的とする。このため本発明によれ
ば上記の目的は磁性流体補給路に補給装置を設けて磁性
流体を強制圧入補給し、前記補給装置を制御するのに例
えば圧力検知器、比較回路、パルス発信器、増幅器、ス
プラィン鞄継手、圧力センサ、微分回路を用いて行なう
構造とすることにより達せられる。以下この発明の実施
例を図面に基づいて説明する。
As an example of the conventional structure of a magnetic fluid sealing device having this replenishing device, a vertical cross-sectional view is shown in FIG. In FIG. 1, two annular pole blocks 2 surrounding a rotating shaft 1 are supported on the inner peripheral surface of a fixed casing 4 via a ring 3, and rotated facing the inner peripheral surface of the two annular pole blocks 2. A plurality of annular microprotrusions 7 are formed on the outer peripheral surface of a magnetic cylinder 6 attached to the shaft 1 via an O-ring 5, respectively. Raised magnets 8 are bridged between opposing end surfaces of the annular ball block 2 at equal pitches on the same circumference, and both non-opposed outer end surfaces are opposed to a bearing 9 with a space between them. The gas passes through the pipe inlet 10, passes through the rotating shaft 1 and the magnetic cylinder 6, and enters the space 1 surrounded by the inner circumferential surface of the fixed casing 4, the competitive surface of the magnetic cylinder 6, and the opposing sides of the annular pole block 2.
1 and then passes through the pipe outlet 12 that penetrates the fixed casing 4. A space 13 surrounded by the inner circumferential surface of the fixed casing 4, the outer circumferential surface of the rotating shaft 1, the side surface of the annular pole block 2, the side surface of the magnetic cylinder 6, and the side surface of the bearing 9.
is filled with atmosphere. Further, the magnetic fluid supply pipe 14 includes a fixed casing 4 and an annular pole valve. It is provided through the rack 2. In such a structure, the twill magnet 8 → left annular pole block 2 → (gap) → the plurality of annular microprotrusions 7 on the left side → the magnetic cylinder 6 → the multiple annular microprotrusions 7 on the right side → (gap) → the right side A magnetic circuit is formed from the annular pole flock 2 to the birch magnet 8. When a viscous fluid containing magnetic particles, so-called magnetic fluid 15, is appropriately injected into each of the annular microprotrusions 7 from the magnetic fluid supply path 14, this magnetic fluid 15 is located in the magnetic circuit described above. Therefore, the magnetic flux density is concentrated at the tip of the annular microprotrusion 7 where the density is highest, and this magnetic fluid 15 generates a pressure resistance that seals the gas, so that the gas in the space 11 does not leak into the space 13 on the atmosphere side. do not have. In such a conventional magnetic fluid sealing device, if a sudden abnormal pressure rise occurs in the gas for some reason, the magnetic fluid 15 will scatter and the sealing performance will be lost, so the magnetic fluid supply path 14 will be immediately closed.
Although it is necessary to inject and replenish the magnetic fluid 15, for example, in the case of a superconductive rotating machine, the gas pressure of low-temperature helium gas is high, so cold gas is ejected to the outside from the magnetic fluid replenishment pipe 14, and the surrounding area is cooled. This has the disadvantage that, even if frost forms and the gas returns to a steady state pressure, the magnetic fluid cannot be injected and replenished from the magnetic fluid supply path 14.
That is, in order to replenish the magnetic fluid 15, it was necessary to stop the operation of the rotating machine and lower the gas pressure. This invention eliminates the above-mentioned drawbacks and makes it possible to automatically and quickly replenish magnetic fluid and restore sealing performance without having to stop the rotating machine and reduce gas pressure. The purpose of the present invention is to provide a magnetic fluid sealing device. Therefore, according to the present invention, the above object is to provide a replenishment device in a magnetic fluid replenishment path to forcibly replenish the magnetic fluid, and to control the replenishment device, for example, a pressure detector, a comparator circuit, a pulse generator, an amplifier, etc. This can be achieved by using a structure that uses a spline bag joint, a pressure sensor, and a differential circuit. Embodiments of the present invention will be described below based on the drawings.

第2図にこの発明の一実施例による磁性流体シール装置
の縦断面を示す。図中従来(第1図)と対応する部品に
は同一符号を付してある。この実施例では磁性流体補給
路14には予め多量の磁性流体を貯え少量ずつ補給する
磁性流体補給装置16が接続され、さらに磁性液体補給
装置16にはスプラィン軸継手17を介してパルスモー
タ18が直結されている。20はこのパルスモー夕18
にパルスを供v給するパルス発信器で、通常は増幅器1
9が介在される。
FIG. 2 shows a longitudinal section of a magnetic fluid seal device according to an embodiment of the present invention. In the figure, parts corresponding to those of the conventional device (FIG. 1) are given the same reference numerals. In this embodiment, a magnetic fluid replenishing device 16 that stores a large amount of magnetic fluid in advance and replenishes it little by little is connected to the magnetic fluid replenishing path 14, and a pulse motor 18 is connected to the magnetic fluid replenishing device 16 via a spline shaft joint 17. Directly connected. 20 is this pulse mode 18
A pulse oscillator that supplies pulses to
9 is interposed.

21は比較回路で大気側圧力検知器23 億設定値とな
る場合が多い)に対し、シールが破れた場合に高圧から
大気圧に降下4する圧力を検出する圧力検知器22との
圧力信号を比較する。
21 is a comparison circuit that outputs a pressure signal to the atmospheric side pressure sensor (often set to 2.3 billion) and a pressure sensor 22 that detects the pressure that drops from high pressure to atmospheric pressure when the seal is broken. compare.

第3図は磁性流体補給装置16、スプラィン軸継手17
部分の縦断面図で17aはスプラィン部で、軸17bは
磁性流体補給装置16の軸と一体となっている。16a
は磁性流体補給袋直16のシリンダで内面にねじ16b
が切ってあり、これに螺合するねじを外周に持つプラン
ジヤ16cが軸17bに連結されていて、軸17bの回
転に伴いプランジャ16cが回転しながら下降し、磁性
流体16dが押し出され、シリンダ16aの底面につな
がっている磁性流体補給路14に注入される構造となっ
ている。
Figure 3 shows the magnetic fluid supply device 16 and spline shaft joint 17.
In the vertical cross-sectional view of the part, 17a is a spline part, and the shaft 17b is integrated with the shaft of the magnetic fluid replenishing device 16. 16a
is a cylinder with a straight 16 magnetic fluid supply bag and a screw 16b on the inside.
A plunger 16c is connected to the shaft 17b, and the plunger 16c has a screw on the outer periphery to be screwed into the plunger 16c.As the shaft 17b rotates, the plunger 16c rotates and descends, pushing out the magnetic fluid 16d, and pushing out the plunger 16c. The structure is such that the magnetic fluid is injected into a magnetic fluid supply path 14 connected to the bottom surface of the magnetic fluid.

また空間11(ガス側)に設けられた圧力検知器23と
空間13(大気側)に設けられた圧力検知器23とは共
に比較回路21に信号を与えるように機成され、磁性流
体補給装置16の内圧すなわち磁性流体16dの圧力は
圧力センサ24と微分回路25とを経てパルス発信回路
20にフィードバックされるように構成されている。こ
の構造において何らかの原因により磁性流体15の部分
のシールが破損した場合は高い圧力のガスは低い圧力の
大気側に流れて空間11と空間13との圧力が等しくな
り、圧力検知器22,23の差圧がなくなったことが比
較回路21に伝えられ、比較回路21よりの出力信号に
よりパルス発信器20が所定のパルスを発信し、これが
増幅器19にて増幅されたのちパルスモータ18に入り
、パルスモーター8は回転させられる。パルスモータ1
8の回転は前述のスプラィン軸17を介して磁性流体補
給装置16に伝達され、磁性流体補給装置16の作動に
伴い、磁性流体16dは磁性流体補給路14より注入さ
れる。この注入はガス圧を上回る圧力で強制的に磁性流
体補給路14を経て環状微4・突起7の全周にわたって
補給される。このとき磁性流体シールの最高耐圧は環状
微小突起7の数、環状微小突起7と環状ポールブロック
2との空隙寸法によって決まっているので、ある一定量
以上の磁性流体を補給しても磁性流体補給装置16の内
圧は前記磁性流体シールの最高耐圧以上に上昇しないと
いう特性を利用し、圧力検知器22で磁性流体補給装置
16は監視されながら運転させられ、磁性流体が補給さ
れながら圧力検知器22の圧力上昇がなくなり一定値に
到達した際圧力センサ24を介した微分回路25よりの
信号は0となり、この場合に出力を発生するように構成
してあるのでパルス発信器20‘こしや断指令が送られ
パルス発信はなくなり、このためパルスモータ18は停
止され、磁性流体の注入停止によりシール性能復帰が完
了する。上記の発明によればガス圧と大気圧との差もし
くは温度変化を検知して磁性流体補給装置の作動により
強制的に磁性流体を圧入補給させることができるので、
自動的にシール性能を復帰させることの可能な磁性流体
シール装置を提供することができる。
Further, the pressure detector 23 provided in the space 11 (gas side) and the pressure sensor 23 provided in the space 13 (atmospheric side) are both configured to give signals to the comparison circuit 21, and the magnetic fluid replenishing device 16, that is, the pressure of the magnetic fluid 16d, is configured to be fed back to the pulse generating circuit 20 via a pressure sensor 24 and a differential circuit 25. In this structure, if the seal of the magnetic fluid 15 is broken for some reason, the high pressure gas flows to the lower pressure atmosphere side, and the pressures in the spaces 11 and 13 become equal, and the pressure detectors 22 and 23 The comparator circuit 21 is informed that the differential pressure has disappeared, and the pulse generator 20 transmits a predetermined pulse based on the output signal from the comparator circuit 21. After this is amplified by the amplifier 19, it enters the pulse motor 18 and generates a pulse. The motor 8 is rotated. Pulse motor 1
8 is transmitted to the magnetic fluid replenishing device 16 via the aforementioned spline shaft 17, and as the magnetic fluid replenishing device 16 operates, the magnetic fluid 16d is injected from the magnetic fluid replenishing path 14. This injection is forcibly replenished over the entire circumference of the annular micro 4 and protrusion 7 via the magnetic fluid supply path 14 at a pressure higher than the gas pressure. At this time, the maximum withstand pressure of the magnetic fluid seal is determined by the number of annular microprotrusions 7 and the gap size between the annular microprotrusions 7 and the annular pole block 2, so even if more than a certain amount of magnetic fluid is replenished, Utilizing the property that the internal pressure of the device 16 does not rise above the maximum withstand pressure of the magnetic fluid seal, the magnetic fluid replenishing device 16 is operated while being monitored by the pressure detector 22, and the pressure detector 22 is operated while the magnetic fluid is being replenished. When the pressure stops increasing and reaches a certain value, the signal from the differential circuit 25 via the pressure sensor 24 becomes 0, and in this case, the pulse generator 20' is configured to generate an output, so the pulse generator 20' commands is sent and the pulse transmission ceases, so the pulse motor 18 is stopped, and the restoration of the sealing performance is completed by stopping the injection of the magnetic fluid. According to the above invention, it is possible to forcibly replenish magnetic fluid by detecting the difference between gas pressure and atmospheric pressure or temperature change and operating the magnetic fluid replenishing device.
A magnetic fluid sealing device capable of automatically restoring sealing performance can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従釆の磁性流体シール装置の縦断面図、第2図
は本発明になる一実施例の磁性流体シール装置の縦断面
図、第3図は磁性流体補給装層、スプライン軸継手の縦
断面図である。 11・・・・・・回転軸、2・・・・・・環状ポールフ
ロック、4・・・・・・固定ケーシング、6・・・・・
・磁性体円筒、7・・・・・・環状微小突起、8…・・
・様磁石、9・・・・・・軸受、14・…・・磁性流体
補給路、15・・・・・・磁性流体、16・・・・・・
磁性流体補給袋鷹、17・・・・・・スプラィン軸継手
、18・・…・パルスモータ、19・…・・増幅器、2
0・・・・・・パルス発信器、21…・・・比較回路、
22,23……圧力検知器、24・・・・・・圧力セン
サ、25…・・・微分回路。 第1図 第2図 第3図
Fig. 1 is a longitudinal sectional view of a subordinate magnetic fluid seal device, Fig. 2 is a longitudinal sectional view of a magnetic fluid seal device according to an embodiment of the present invention, and Fig. 3 shows a magnetic fluid replenishment layer and a spline shaft coupling. FIG. 11... Rotating shaft, 2... Annular pole flock, 4... Fixed casing, 6...
・Magnetic cylinder, 7... Annular microprotrusion, 8...
・Magnet, 9...bearing, 14...magnetic fluid supply path, 15...magnetic fluid, 16...
Magnetic fluid supply bag hawk, 17...Spline shaft joint, 18...Pulse motor, 19...Amplifier, 2
0... Pulse transmitter, 21... Comparison circuit,
22, 23...Pressure detector, 24...Pressure sensor, 25...Differential circuit. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 回転軸を取囲むポールブロツクと、このポールブロ
ツクの内周面と、回転軸外周とのいずれか一方に設けた
複数条の環状微小突起と、前記環状微小突起部に注入し
た磁性流体と、この磁性流体を前記環状微小突起の先端
に集中せしめる磁気回路をもつ磁石とを備えるものにお
いて、前記ポールブロツクにこれを貫通する磁性流体補
給路を設け、この補給路に必要時磁性流体を注入する磁
性流体補給装置をパルスモータによって駆動可能に構成
し、シールの破壊を検出する検出装置の信号により前記
パルスモータを駆動し、シール圧の上昇を検出する検出
装置により圧力の上昇が止まるまで、前記パルスモータ
ーを駆動することを特徴とする磁性流体シール装置。
1. A pole block surrounding a rotating shaft, a plurality of annular microprotrusions provided on either the inner peripheral surface of the pole block or the outer periphery of the rotating shaft, and a magnetic fluid injected into the annular microprotrusions; A magnet having a magnetic circuit for concentrating the magnetic fluid at the tip of the annular microprotrusion, and a magnetic fluid supply path passing through the pole block is provided, and the magnetic fluid is injected into this supply path when necessary. The magnetic fluid replenishing device is configured to be driven by a pulse motor, and the pulse motor is driven by a signal from a detection device that detects breakage of the seal, and the pulse motor is driven until the pressure stops increasing by the detection device that detects an increase in seal pressure. A magnetic fluid seal device characterized by driving a pulse motor.
JP53105162A 1978-08-29 1978-08-29 Magnetic fluid seal device Expired JPS6014229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53105162A JPS6014229B2 (en) 1978-08-29 1978-08-29 Magnetic fluid seal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53105162A JPS6014229B2 (en) 1978-08-29 1978-08-29 Magnetic fluid seal device

Publications (2)

Publication Number Publication Date
JPS5533921A JPS5533921A (en) 1980-03-10
JPS6014229B2 true JPS6014229B2 (en) 1985-04-12

Family

ID=14399994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53105162A Expired JPS6014229B2 (en) 1978-08-29 1978-08-29 Magnetic fluid seal device

Country Status (1)

Country Link
JP (1) JPS6014229B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407518A (en) * 1983-01-05 1983-10-04 Ferrofluidics Corporation Nonbursting multiple-stage ferrofluid seal and system
US20100230901A1 (en) * 2009-03-12 2010-09-16 Ferrotec (Uk), Ltd. Magnetic fluid rotary feedthrough with sensing and communication capability
CN110848393B (en) * 2019-10-17 2020-11-20 浙江大学 Multistage magnetic fluid sealing device

Also Published As

Publication number Publication date
JPS5533921A (en) 1980-03-10

Similar Documents

Publication Publication Date Title
US6325382B1 (en) Non-contact type mechanical seal
US4026159A (en) Fluidic angular rate sensor null error compensation
JPS6014229B2 (en) Magnetic fluid seal device
JPS6014228B2 (en) Magnetic fluid seal device
US4027743A (en) Axle end oil fill and leakage detector method of charging lubricant
JPS6239309B2 (en)
JPS6169365A (en) Magnetic coupling joint
US5824896A (en) Measure driving apparatus and measure signal generating apparatus of non-contact system, using wave of inclined rotor
JPH0474589B2 (en)
CN209415812U (en) Mainshaft mechanism and spindle cooling device with it
US3599490A (en) Safety seal for direct reading flow meter
US5472215A (en) Rotating high vacuum mercury seal
JPH0220803B2 (en)
JPS57102595A (en) Oil supplier screw compressor
JPS627030Y2 (en)
JPS5712164A (en) Air supply device to rotor
JPH0259341B2 (en)
GB2261265A (en) Mechanical face seals
JPS62220774A (en) Shaft seal device using visco seal
JPH0258506B2 (en)
JPH0929583A (en) Cooling device and cooling device for spindle head
US4059984A (en) Fluid leak detector
JPH018756Y2 (en)
JPS62177366A (en) Magnetic fluid shaft seal device for liquid
JPH0434285Y2 (en)