JPS62220774A - Shaft seal device using visco seal - Google Patents

Shaft seal device using visco seal

Info

Publication number
JPS62220774A
JPS62220774A JP6279186A JP6279186A JPS62220774A JP S62220774 A JPS62220774 A JP S62220774A JP 6279186 A JP6279186 A JP 6279186A JP 6279186 A JP6279186 A JP 6279186A JP S62220774 A JPS62220774 A JP S62220774A
Authority
JP
Japan
Prior art keywords
pressure
seal
turbine
visco
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6279186A
Other languages
Japanese (ja)
Other versions
JPH0474590B2 (en
Inventor
Hiroyuki Imai
今井 寛之
Sadami Korenaga
是永 定美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6279186A priority Critical patent/JPS62220774A/en
Publication of JPS62220774A publication Critical patent/JPS62220774A/en
Publication of JPH0474590B2 publication Critical patent/JPH0474590B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

PURPOSE:To effectively prevent the leak of sealing liquid by controlling the pressure difference between the sealed fluid and cover gas to a constant value. CONSTITUTION:A generator is installed on the right of the revolution shaft 2 of a potassium vapor turbine 1, and visco seals 3 and 4 are arranged on the revolution shaft 2. When the vapor pressure on the vapor turbine 1 side increases, the pressure difference between the cover gas pressure in a shielding chamber 8 and the vapor pressure in the turbine casing 1 is detected by a differential pressure detecting sensor 12, and a signal is supplied into a pressure controller 14. Said pressure controller 14 operates a solenoid valve 13 to supply the cover gas into the shielding chamber 8 and the space of a liquid tank 6, and the pressure is increased, and the equilibrium with the vapor pressure on the casing 1 side is maintained, and the solenoid valve 13 is closed. On the contrary, when the pressure on the turbine 1 side lowers, a solenoid valve 18 on the decompression side operates to maintain the equilibrium.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はビスコシールを用いたqIl!+封装置に関し
、詳しくは蒸気タービンあるいはポンプ等の回転軸から
の被密封流体の漏れを防ぐ軸シールのうち、化学的に活
性な物質に使用するに好適なビスコシールを用いた軸封
装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a qIl! using visco seal. +Regarding sealing devices, in detail, among shaft seals that prevent leakage of sealed fluid from the rotating shaft of a steam turbine or pump, etc., this article relates to a shaft sealing device using a visco seal suitable for use with chemically active substances. It is something.

[従来の技術および本発明の背景] 従来から軸シールには、例えば、水蒸気タービンの軸シ
ールの場合、接触式のメカニカルシールや蒸気圧を減じ
て行く非接触式ラビリンスシールが使われてぎた。メカ
ニカルシールは接触式であるため、シール圧も大きく完
全密封に近い状態にできる利点があるが、蒸気等被密封
流体の種類によっては、シール材料に腐食を生しるため
、例えば、被密封流体が金属カリウム蒸気のような化学
的に非常に活性な物質の場合には長時間使用できないな
ど、かなりの制約を受4Jる。また一方のラビリンスシ
ールは非接触式のため被密封流体による腐食に関しては
それほど厳しくないが、その漏れを完全に防ぐことはそ
の構造上できない。
[Prior Art and Background of the Invention] Conventionally, in the case of a shaft seal for a steam turbine, for example, a contact mechanical seal or a non-contact labyrinth seal that reduces steam pressure has been used as a shaft seal. Since mechanical seals are contact type, they have the advantage of high sealing pressure and being able to achieve a nearly complete seal. However, depending on the type of fluid to be sealed, such as steam, the seal material may corrode. However, in the case of extremely chemically active substances such as metallic potassium vapor, it cannot be used for long periods of time, and is subject to considerable limitations. On the other hand, since the labyrinth seal is a non-contact type, corrosion by the sealed fluid is not so severe, but due to its structure, it cannot completely prevent leakage.

これらの軸シールに対して、対向ビスコシールは実用例
がほとんどなく、わずかに高速増殖炉用ナトリウムポン
プの軸シールや米国のNASAが宇宙電源用発電機に使
用することを計画したことが知られている程度である。
In contrast to these shaft seals, there are almost no practical examples of opposed visco seals, and only a few examples are known, such as shaft seals for sodium pumps for fast breeder reactors and NASA in the United States planning to use them in space power generators. It is the extent that

対向ビスコシールは化学的に非常に活性な物質を被密封
流体とする場合にでもほぼ完全な密封が可能である反面
、軸シール長当たりの密封圧力が小さいことと、軸回転
停止時には漏れる欠点かある。また、ビスコシールにお
いては、回転軸と固定部(ハウシング)との間隔を小さ
くするか、軸回転数を大きくすることにより密封圧力を
大きくすることができる筈であるが、現実にはこれらに
限界があり、それほど大きくできない。なお、この対向
ビスコシールを使用する場合の回転停止の捕れについて
はシールシステムおよびシステム運転方法によって十分
カバーできることが確認されている。
Opposed visco seals can provide almost complete sealing even when the sealed fluid is a chemically very active substance, but the drawbacks are that the sealing pressure per shaft seal length is small and that it leaks when the shaft stops rotating. be. In addition, with Visco Seal, it is possible to increase the sealing pressure by reducing the distance between the rotating shaft and the fixed part (housing) or by increasing the shaft rotation speed, but in reality, there are limits to these. , and it cannot be made that large. It has been confirmed that the problem of rotation stoppage when using this opposed visco seal can be sufficiently covered by the seal system and system operating method.

[発明が解決しようとする問題点] 本発明の目的は、」二連対向ビスコシールの欠点を除去
し、被密封流体とカバーガスとの圧力差か写あるいはあ
る一定の圧力差になるようカバーガスの圧力を被密封流
体の圧力変動に対応して制御することのできるビスコシ
ールを用いた軸封装置を提供することにある。
[Problems to be Solved by the Invention] It is an object of the present invention to eliminate the drawbacks of the double opposed visco seal, and to provide a cover so that the pressure difference between the fluid to be sealed and the cover gas is equal to or a certain constant pressure difference. It is an object of the present invention to provide a shaft sealing device using a visco seal capable of controlling gas pressure in accordance with pressure fluctuations of a fluid to be sealed.

[問題点を解決するための手段] かかる目的を達成するために、本発明は、回転機器内の
被密封流体が回転機器の回転軸に対流体と、ビスコシー
ルの回転機器とは反対側の端部に供給する不活性ガスと
、不活性ガスの圧力を被密封流体の圧力に対応して制御
する手段とを備えたことを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a system in which the fluid to be sealed in the rotating equipment is connected to the rotating shaft of the rotating equipment, and the visco seal is connected to the fluid on the opposite side of the rotating equipment. It is characterized by comprising an inert gas supplied to the end and means for controlling the pressure of the inert gas in accordance with the pressure of the fluid to be sealed.

[作 用] 本発明のビスコシールを用いた軸封装置においては、例
えば被密封流体側の圧力か上y−すると、ビスコシール
対向部の被密封流体側とは反対側の位置に設番プられた
遮蔽室に供給されているカバーガスと上記被密封流体側
の圧力との圧力差が検知されて、カバーガスの圧力が高
められ、また、被密封流体側の圧力が遮蔽室内のガス圧
力より低くなるとガスを逃してその圧力が低められて、
ビスコシール内において、その満たされた密封流体を介
し、常に被密封流体側と遮蔽室側とが圧力の均衡を保つ
ように制御されることによって、圧力の高いような被密
封流体に対しても効果的にビスコシールの特性を発揮し
、良好な密封状態を保たせることができる。
[Function] In the shaft seal device using the Visco seal of the present invention, for example, when the pressure on the sealed fluid side rises, a number plate is installed at a position opposite to the sealed fluid side of the Visco seal opposing part. The pressure difference between the cover gas supplied to the shielded chamber and the pressure on the sealed fluid side is detected, the pressure of the cover gas is increased, and the pressure on the sealed fluid side is increased to the gas pressure inside the shielded chamber. When it gets lower, gas escapes and its pressure is lowered,
Inside the visco seal, the pressure is always maintained between the sealed fluid side and the shielded chamber side through the filled sealing fluid, so that even high-pressure sealed fluids can be protected. It can effectively exhibit the characteristics of Visco Seal and maintain a good sealing state.

[実施例] 以下に図面に基づいて本発明の実施例を詳細に説明する
[Examples] Examples of the present invention will be described in detail below based on the drawings.

第1図は本発明の一実施例を示し、本例はカリウム蒸気
タービンの回転軸に適用した例を示す。
FIG. 1 shows an embodiment of the present invention, in which the present invention is applied to a rotating shaft of a potassium steam turbine.

ここで、1はカリウム蒸気タービン、2はその回転軸で
あり、図の右方に、図示しないが例えば発電機が装着さ
れている。3および4は互いに逆向ぎのねじが設けられ
て回転軸2上に組込まれたビスコシールであり、これら
のビスコシール3および4のポンプ作用によりその中央
部(以下で対向部といい、この部分にはねじが設りられ
てない)5に供給される密封流体のシーラントに圧力を
持たせタービン1側からの蒸気を輔月する。このような
装置は対向ビスコシールと称されるもので、本発明はこ
のようなビスコシールを用いた対向ビスコシールによる
軸封装置にかかるものである。
Here, 1 is a potassium steam turbine, 2 is its rotating shaft, and, although not shown, for example, a generator is mounted on the right side of the figure. Reference numerals 3 and 4 are visco seals that are installed on the rotating shaft 2 and have threads facing in opposite directions.The pumping action of these visco seals 3 and 4 causes the central part (hereinafter referred to as the opposing part) to be (No screws are provided) The sealant of the sealing fluid supplied to the turbine 5 is pressurized to prevent steam from the turbine 1 side. Such a device is called an opposed visco seal, and the present invention relates to a shaft sealing device using such an opposed visco seal.

6は対向部5の上方に設けられ、シーラントとしてカリ
ウム液を貯留している液槽であり、液槽6から対向部5
に向けてシーラント7が充填される。8は対向ビスコシ
ールの右端に設けられた遮蔽室であり、遮蔽室8には後
述するようにして、不活性ガス(以下でカバーガスとい
う)が所定の圧力を保って供給される。
6 is a liquid tank provided above the facing part 5 and storing potassium liquid as a sealant; from the liquid tank 6 to the facing part 5
The sealant 7 is filled toward the area. Reference numeral 8 denotes a shielding chamber provided at the right end of the opposing visco seal, and an inert gas (hereinafter referred to as cover gas) is supplied to the shielding chamber 8 at a predetermined pressure as will be described later.

このような対向ビスコシールにおいては、タービンケー
シングIA側から被密封流体であるカリウム蒸気が軸2
に沿って漏洩しようとするのに対し対向ビスコシールの
ポンプ作用によって、左側のビスコシール3および右側
のビスコシール4に気液界面9および10が保たれるよ
うにするもので、この場合、左側の気液界面9は、液槽
6の水頭りとカバーガス圧力との和が、カリウム蒸気の
圧力と左側のビスコシール3におけるポンプ圧力との和
と均合う位置に発生し、また、右側の気液間とを連通管
11によって連通させるようになすと共に、遮蔽室8と
タービンケーシングIAとの圧力差を検知する差圧検知
センサ12を設け、更に連通管11には図示しないカバ
ーガス供給用のタンク等の供給源から電磁弁13を介し
てカバーガスが補充されるようになして、この電磁弁1
3をコンピュータ機能を有する圧力制御器14によって
開閉動作させるようにする。
In such an opposed visco seal, potassium vapor, which is the fluid to be sealed, flows from the turbine casing IA side to the shaft 2.
In this case, the air-liquid interfaces 9 and 10 are maintained between the left side visco seal 3 and the right side visco seal 4 by the pumping action of the opposing visco seals. The gas-liquid interface 9 occurs at a position where the sum of the water head in the liquid tank 6 and the cover gas pressure is balanced with the sum of the potassium vapor pressure and the pump pressure in the left visco seal 3, and A communication pipe 11 is used to communicate between gas and liquid, and a differential pressure detection sensor 12 is provided to detect the pressure difference between the shielding chamber 8 and the turbine casing IA. Cover gas is replenished via the solenoid valve 13 from a supply source such as a tank of the solenoid valve 1.
3 is opened and closed by a pressure controller 14 having a computer function.

かくして、被密封流体であるカリウム蒸気の圧力とカバ
ーガスの圧力との差が常に所定の条件に保たれるように
圧力制御器14を介して電磁弁13の開閉動作を制御す
る。15はニーI−ル弁などの手動弁であり、手動弁1
5によって電磁弁13を開弁したときの流量の調整を可
能とする。16はガス供給源からのガスの圧力を予め供
給に必要な圧にまで減圧しておくための減圧弁である。
In this way, the opening and closing operations of the electromagnetic valve 13 are controlled via the pressure controller 14 so that the difference between the pressure of potassium vapor, which is the fluid to be sealed, and the pressure of the cover gas is always maintained at a predetermined condition. 15 is a manual valve such as a knee valve, and manual valve 1
5 makes it possible to adjust the flow rate when the solenoid valve 13 is opened. Reference numeral 16 denotes a pressure reducing valve for previously reducing the pressure of gas from the gas supply source to the pressure required for supply.

また、遮蔽室8にはカバーガスの圧力を低める1制御の
ためにドレン溜り17を介して不図示の低圧タンクにガ
スを導く通路に電磁弁18および手動調、整弁19が設
けられて0゛る・20および21は遮蔽室8の側と発電
機側との間に設けたメカニカルシールであり、更にこの
間には図示しない軸受が設けられるが、メカニカルシー
ル20と21との間には潤滑油22を循環させるように
しである。
In addition, in the shielding chamber 8, a solenoid valve 18 and a manual adjustment valve 19 are provided in a passage that leads gas to a low pressure tank (not shown) through a drain reservoir 17 for one control of lowering the pressure of the cover gas. 20 and 21 are mechanical seals provided between the shielded chamber 8 side and the generator side, and a bearing (not shown) is further provided between them, but there is no lubrication between the mechanical seals 20 and 21. It is designed to circulate oil 22.

なお、ここで、シーラント7夜4曹6においては、その
水頭りがタービンケーシングIA内の蒸気圧の変動のい
かんにかかわらず常に一定に保たれるようにするために
、できるだり液(1!6の内径を大きくしておくと共に
、例えば本例で示したように補給槽23等を設けて液面
の調整が可能なようにするのが好適である。
In addition, here, in the sealant 7, 4, and 6, in order to ensure that the water head is always kept constant regardless of fluctuations in the steam pressure in the turbine casing IA, the liquid (1! It is preferable to make the inner diameter of the tank 6 large and to provide a replenishment tank 23 or the like as shown in this example so that the liquid level can be adjusted.

このようにビスコシールを用いて構成した軸封装置にお
いては、タービン1側の蒸気圧力の変動に応じて左側の
気液界面9が移動するが、この移動の許容される範囲は
左側のビスコシール3のケーシングIA側端部から対向
部5までの間であり、この間に気液界面9が保たれるよ
うにするにはポンプ圧力分がその変動範囲を越えないよ
うに遮蔽室8内のカバーガスの圧力を、タービン1側−
H゛ニア’いま、第1図において、何らかの原因でター
ビン1側の蒸気圧力が上肩−シたとすると、差圧検知セ
ンサ12によって、遮蔽室8内のカバーガス圧力とター
ビンケーシング1内の蒸気圧力との圧力差が検知され、
電気信号として圧力制御器14に供給される。よ)て、
圧力制御器14ではその信号により圧力差とその変動の
速さに対応して電磁弁I3を動作させる。この動作によ
ってカバーガスが遮蔽室8および液M6の空間に供給さ
れ、圧力が高められるので、タービンケーシング1側の
蒸気圧と平衡が保たれたところで電磁弁13を閉成する
In the shaft seal device configured using the Visco seal in this way, the left gas-liquid interface 9 moves in response to fluctuations in the steam pressure on the turbine 1 side, but the permissible range of this movement is limited to the left side Visco seal. 3 from the casing IA side end to the opposing part 5, and in order to maintain the gas-liquid interface 9 during this period, a cover in the shielding chamber 8 is installed so that the pump pressure does not exceed its fluctuation range. Gas pressure on the turbine 1 side -
Now, in FIG. 1, if the steam pressure on the turbine 1 side drops to the upper level for some reason, the differential pressure detection sensor 12 detects the cover gas pressure in the shielding chamber 8 and the steam in the turbine casing 1. The pressure difference between the pressure and
It is supplied to the pressure controller 14 as an electrical signal. Yo)
The pressure controller 14 uses the signal to operate the solenoid valve I3 in accordance with the pressure difference and the speed of its fluctuation. By this operation, the cover gas is supplied to the shielding chamber 8 and the space of the liquid M6, and the pressure is increased, so the electromagnetic valve 13 is closed when equilibrium with the steam pressure on the turbine casing 1 side is maintained.

また、タービン1側の蒸気圧力が遮蔽室8におけるカバ
ーガス圧力よりも低くなると、差圧検知センサ12から
圧力制御器14に負の差圧信号が供給されることによっ
て、圧力制御器14では減圧側の電磁弁18に動作信号
を出力し、遮蔽室8および液槽6の空間を減圧し、蒸気
圧との間に平衡が得られるようにする。なおここで、不
図示の低圧タンク側は、タービン1側の予想される最低
蒸気圧力より低い圧力が得られるようにするもので、タ
ーf↓・ ビン蒸気およびシーラントがカリウムである場合は、真
空タンクと真空ポンプの組合わせが予想される。
Further, when the steam pressure on the turbine 1 side becomes lower than the cover gas pressure in the shielded chamber 8, a negative differential pressure signal is supplied from the differential pressure detection sensor 12 to the pressure controller 14, and the pressure controller 14 reduces the pressure. An operating signal is output to the side electromagnetic valve 18 to reduce the pressure in the space of the shielding chamber 8 and the liquid tank 6, so that an equilibrium can be obtained between the pressure and the vapor pressure. Note that the low-pressure tank side (not shown) is designed to obtain a pressure lower than the expected minimum steam pressure on the turbine 1 side, and if the turbine steam and sealant are potassium, the vacuum A combination of tank and vacuum pump is expected.

また、電磁弁13お」:び1Bは複数個の電磁弁を使っ
たオン・オフ動作のものや連続可変動作のもののいずれ
であってもよい。更にまた、以上は蒸気タービンの場合
の例てあったか、本発明の適用はこれに限らず、例えは
タービンケーシングIA内が流体で満たされることによ
って気液界面9が発生しないような場合にあっても同様
にして圧力制御を実施することができるもので、この場
合はシーラントには被密封流体と同室の流体を使用する
Further, the solenoid valves 13 and 1B may be either one that operates on and off using a plurality of solenoid valves, or one that operates continuously and variablely. Furthermore, although the above is an example of a steam turbine, the application of the present invention is not limited to this, but for example, the present invention may be applied to a case where the gas-liquid interface 9 is not generated due to the inside of the turbine casing IA being filled with fluid. Pressure control can also be carried out in a similar manner, and in this case, the fluid in the same chamber as the fluid to be sealed is used as the sealant.

更にまた、被密封流体の圧力を直接に検出するセンサと
カバーガスの圧力検知センサとを設り、双方のセンサか
らの情報から差圧を検知するようにすれば、更に一層適
切な制御を実施することも可能である。
Furthermore, by installing a sensor that directly detects the pressure of the sealed fluid and a sensor that detects the pressure of the cover gas, and detecting the differential pressure from the information from both sensors, even more appropriate control can be achieved. It is also possible to do so.

[発明の効果] 以」二説明してきたように、本発明によれば、被密封流
体の圧力が大きく対向ビスコシールのポンプ圧力のみで
は密封できないような場合に適用できるのみならず、非
接触式のためにメカニカルシールに比べてその摩擦損失
がはるかに小さくてすむ。その構造上、化学的に活性な
被密封流体に適用できるのはいうまでもなく、また、カ
バーガスの圧力を電気的に制御するので応答性が速く、
かつその制御にコンピュータか使用できるのでこまやか
に制御することができる。
[Effects of the Invention] As explained above, the present invention is not only applicable to cases where the pressure of the fluid to be sealed is large and cannot be sealed only by the pump pressure of the opposed visco seal, but also a non-contact seal. Therefore, the friction loss is much smaller than that of mechanical seals. Due to its structure, it goes without saying that it can be applied to chemically active sealed fluids, and since the pressure of the cover gas is electrically controlled, the response is fast.
Moreover, since a computer can be used for the control, it can be precisely controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明ビスコシールを用いた軸封装置の構成
の一例を示す模式図である。 1・・・タービン、 IA・・・タービンケーシング、 2・・・回転軸、 3.4・・・ビスコシール、 5・・・対向部、 6 ・・・t&4曹、 7・・・シーラント、 8・・・遮蔽室、 9、lO・・・気液界面、 ll・・・連通管、 12・・・差圧検知センサ、 13.18・・・電磁弁、 14・・・圧力制御器、 15.19・・・手動弁、 16・・・減圧弁、 17・・・トレン溜り、 20.2+・・・メカニカルシール、 22・・・潤滑油、 23・・・補給槽。
FIG. 1 is a schematic diagram showing an example of the configuration of a shaft seal device using the Visco seal of the present invention. DESCRIPTION OF SYMBOLS 1... Turbine, IA... Turbine casing, 2... Rotating shaft, 3.4... Visco seal, 5... Opposing part, 6... T & 4th grade, 7... Sealant, 8 ... Shielding chamber, 9, lO... Gas-liquid interface, ll... Communication tube, 12... Differential pressure detection sensor, 13.18... Solenoid valve, 14... Pressure controller, 15 .19...Manual valve, 16...Pressure reducing valve, 17...Tren reservoir, 20.2+...Mechanical seal, 22...Lubricating oil, 23...Replenishment tank.

Claims (1)

【特許請求の範囲】 回転機器内の被密封流体が前記回転機器の回転軸に沿っ
て漏洩するのを防止するビスコシールを用いた軸封装置
において、 前記回転軸に沿って配設され、互いにねじの向きが反対
の前記ビスコシールと、 該ビスコシールの前記ねじの対向部に供給する一定水頭
の密封流体と、 前記ビスコシールの前記回転機器とは反対側の端部に供
給する不活性ガスと、 該不活性ガスの圧力を前記被密封流体の圧力に対応して
制御する手段と を備えたことを特徴とするビスコシールを用いた軸封装
置。
[Scope of Claims] A shaft sealing device using a visco seal that prevents sealed fluid in a rotating device from leaking along the rotating shaft of the rotating device, comprising: the visco seal with the threads in opposite directions; a sealing fluid with a constant water head supplied to the opposite part of the visco seal to the screw; and an inert gas supplied to the end of the visco seal opposite to the rotating equipment. A shaft sealing device using a visco seal, comprising: a means for controlling the pressure of the inert gas in accordance with the pressure of the fluid to be sealed.
JP6279186A 1986-03-20 1986-03-20 Shaft seal device using visco seal Granted JPS62220774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6279186A JPS62220774A (en) 1986-03-20 1986-03-20 Shaft seal device using visco seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6279186A JPS62220774A (en) 1986-03-20 1986-03-20 Shaft seal device using visco seal

Publications (2)

Publication Number Publication Date
JPS62220774A true JPS62220774A (en) 1987-09-28
JPH0474590B2 JPH0474590B2 (en) 1992-11-26

Family

ID=13210523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279186A Granted JPS62220774A (en) 1986-03-20 1986-03-20 Shaft seal device using visco seal

Country Status (1)

Country Link
JP (1) JPS62220774A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271175U (en) * 1988-11-16 1990-05-30
EP0791814A2 (en) * 1997-05-26 1997-08-27 Martin Lehmann Method for leak testing and leak testing apparatus
CN106383011A (en) * 2016-08-19 2017-02-08 上海科勒电子科技有限公司 Water leakage sensor
CN108915787A (en) * 2018-08-09 2018-11-30 中国船舶重工集团公司第七0三研究所 A kind of steam turbine helixseal structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185305U (en) * 1974-12-28 1976-07-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185305U (en) * 1974-12-28 1976-07-08

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271175U (en) * 1988-11-16 1990-05-30
EP0791814A2 (en) * 1997-05-26 1997-08-27 Martin Lehmann Method for leak testing and leak testing apparatus
EP0791814A3 (en) * 1997-05-26 1997-11-26 Martin Lehmann Method for leak testing and leak testing apparatus
WO1998054560A1 (en) * 1997-05-26 1998-12-03 Martin Lehmann Method and apparatus for leak testing
CN106383011A (en) * 2016-08-19 2017-02-08 上海科勒电子科技有限公司 Water leakage sensor
CN108915787A (en) * 2018-08-09 2018-11-30 中国船舶重工集团公司第七0三研究所 A kind of steam turbine helixseal structure

Also Published As

Publication number Publication date
JPH0474590B2 (en) 1992-11-26

Similar Documents

Publication Publication Date Title
US5769427A (en) Dual seal with clean barrier fluid and dynamic pressure control
US5636847A (en) Dual face seal clean barrier fluid and dynamic pressure control system
US5474303A (en) Actuator rod hermetic sealing apparatus employing concentric bellows and pressure compensating sealing liquid with liquid monitoring system
US2691773A (en) Valve leak detector
US3724861A (en) New trapped bushing seal
RU2094681C1 (en) Processing valve control system
JPS5825909B2 (en) Media leakage flow discharge device in gap packing
KR910008912A (en) Shaft sealing material cooling method and apparatus
US3679217A (en) Automatic shutdown seal
JPS62220774A (en) Shaft seal device using visco seal
US2769395A (en) Leak detector and pump control system
CN205780885U (en) From the Hydrodynamic-hydrostatic pressure combined liquid lubrication sealing device of drain
US4410187A (en) Sealing device for rotary hydraulic fluid machine
US20030122323A1 (en) Seal support systems-automatic re-fill device
CN103759016B (en) Upstream pumping magnetic-fluid sealing device
US4058320A (en) Generator seal oil supply system
CN103759015B (en) Micro-pump type upstream pumping magnetic-fluid sealing device
KR890001110A (en) Hydrostatic Sealing Assembly for Reactor Coolant Pump
US3587638A (en) Coolant coupling head
JPH0220803B2 (en)
CN104246131B (en) The operating method of sealing structure, the conveying device with sealing structure and sealing structure
US9978464B2 (en) System for regulating a liquid in a circuit
JPH0258506B2 (en)
GB2534226A (en) Rotary shaft sealing system
KR960015061B1 (en) Water trap valve for fail safe operation of an air inleakage monitoring system in a steam turbine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term