JPS60142274A - Comparing and measuring system - Google Patents

Comparing and measuring system

Info

Publication number
JPS60142274A
JPS60142274A JP58247476A JP24747683A JPS60142274A JP S60142274 A JPS60142274 A JP S60142274A JP 58247476 A JP58247476 A JP 58247476A JP 24747683 A JP24747683 A JP 24747683A JP S60142274 A JPS60142274 A JP S60142274A
Authority
JP
Japan
Prior art keywords
signal
transmission line
receiver
output
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58247476A
Other languages
Japanese (ja)
Inventor
Shigeki Matsumoto
重貴 松本
Shizuo Suzuki
鈴木 静雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP58247476A priority Critical patent/JPS60142274A/en
Publication of JPS60142274A publication Critical patent/JPS60142274A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a constitution of a measuring system, and also to improve a measuring accuracy and a stability by constituting so that an arrival time of a signal to a receiver from a transmission line to be measured and a reference transmission line, respectively is made different from each other. CONSTITUTION:A divider D divides an output signal of a signal source SG by a prescribed ratio, and outputs it simultaneously to a reference transmission line L0 and a transmission line LX to be measured. A variable attenuator VA is connected in series to the transmission line LD, and a passing signal is delayed by a signal from a signal processing control part SPC. A coupler C of a receiving side supplies signals from the transmission lines LD, LX, to a receiver REC. Subsequently, basing on a base band output signal from the receiver REC, the control part SPC forms a DC signal, and adjusts the attenuation quantity of the attenuator VA so that an absolute value of its level becomes the minimum.

Description

【発明の詳細な説明】 信号の伝送路等の伝送損失、伝送量と周波数特性、及び
これらの変動全比較して測定する方式第1図は従来の比
較測定方式の一例の測定系構成例である。この第1図に
おいては、信号源SG、分割器D、基準伝送路L。及び
可変減衰器VAと被測定伝送路LXとの並列体、スイツ
テSW,受信器RFC,検出器SWD,とSWD2 と
の並列体、比較器C OMP 、制御部CRLの順に信
号が伝送される測定系ケ示している。そして、スイッチ
SW,受信! REC 、検出器SWD1及びSWD2
は同期信号発生器TMからの信号にて切換制御される。
[Detailed Description of the Invention] A method of comparing and measuring the transmission loss of a signal transmission path, the amount of transmission, frequency characteristics, and all of their fluctuations. Figure 1 shows an example of a measurement system configuration as an example of a conventional comparative measurement method. be. In FIG. 1, a signal source SG, a divider D, and a reference transmission line L are shown. A measurement in which signals are transmitted in the following order: a parallel body of the variable attenuator VA and the transmission line under test LX, a parallel body of the suite SW, the receiver RFC, the detector SWD, and the SWD2, the comparator COMP, and the control unit CRL. It shows the system. And switch SW, receive! REC, detectors SWD1 and SWD2
is switched and controlled by a signal from a synchronizing signal generator TM.

更に、可変減衰器VAは制御部CRLからの信号にてそ
の減衰量が変えられる。
Furthermore, the amount of attenuation of the variable attenuator VA can be changed by a signal from the control unit CRL.

信号源SGの出力信号は分割器Dにて図中矢印方向に低
損失で伝達されると共に一定の比率で二方向に分割され
る。このうち、一方向の基準伝送路L。に送出された信
号は可変減衰器VAを介してスイッチSWの一入力端子
に入力される。他方向の被測定伝送路LXに送出された
信号は直接スイッチSWの個入力端子に入力される。ス
イッチSWでは同期信号発生器TMからの同期信号に従
ってそれぞれの伝送路L。、LXからの信号を交互に受
信器RFCに伝達する。受信器RFCからの出力信号は
、更に二方向に伝達され、それぞれに検出6 SWD□
,SWD2に伝えられる。この検出器SWD, 、 S
WD2は例えはスイッチと記憶回路から構成はれ同期信
号発生器TMからの同期信号に従ってスイッチSWと回
期して動作する。すなわち、例えばスイッチSWが基準
伝送路LO 側に投入されているときは検出bswD1
を動作させ、逆にスイッチSWが被測定伝送路LX側に
投入されているときは、検出器SWD2を動作させる。
The output signal of the signal source SG is transmitted by the divider D in the direction of the arrow in the figure with low loss and is divided into two directions at a constant ratio. Among these, the unidirectional reference transmission line L. The signal sent to is input to one input terminal of switch SW via variable attenuator VA. The signal sent to the transmission line under test LX in the other direction is directly input to the input terminal of the switch SW. In the switch SW, each transmission line L is connected in accordance with the synchronization signal from the synchronization signal generator TM. , LX alternately transmit signals from the receiver RFC. The output signal from the receiver RFC is further transmitted in two directions, and the detection 6 SWD□
, is transmitted to SWD2. This detector SWD, , S
The WD2 is composed of, for example, a switch and a memory circuit, and operates in synchronization with the switch SW in accordance with a synchronizing signal from a synchronizing signal generator TM. That is, for example, when the switch SW is connected to the reference transmission line LO side, the detection bswD1
On the other hand, when the switch SW is connected to the transmission line under test LX, the detector SWD2 is operated.

検出器swD; 、 SWD2それぞれの出力信号は比
較器COMPにて比較され、いずれの伝送路の信号レベ
ルが高いかが判定される。比較器COMPの出力は制御
装置CRLにて可変減衰器VAの減衰量を増減させ、最
終的に比較器COMPへの二つの入力信号レベルが等し
くなるように制御される。こうして、可変減表器の減衰
侶、と、基準伝送路り。その他の測定系である被測定伝
送路LX以外の測定系の既知の特性とから被測定伝送路
Lxの伝送特性を知ることができる。
The output signals of the detectors swD; and SWD2 are compared by a comparator COMP, and it is determined which transmission path has a higher signal level. The output of the comparator COMP is controlled by the control device CRL to increase or decrease the amount of attenuation of the variable attenuator VA, so that the two input signal levels to the comparator COMP are finally equalized. Thus, the attenuation of the variable reducer and the reference transmission line. The transmission characteristics of the transmission line under test Lx can be known from the known characteristics of other measurement systems other than the transmission line under test LX.

ところが、このような従来の比較測定方式においては、
受信器RECから更に分離して検出器5WD1,5WD
2を備え、その後比較器COMPにてレベルの判定を行
なっているために、これら測定糸の構成が複雑になって
しまい、また検出′gfSWD 1 、5WD2、比較
器COMP等はレベル検出や比較を直流信号として処理
しているので、これら信号処理を行なう要素の直流レベ
ルの変動が測定精度に直接影響を及はし、更にスイッチ
8Wのみならず検出器5WD1,5WD2などスイッチ
が多数必要となるので、nt++定精度や安定度の劣化
の原因となるという欠点がある。
However, in this conventional comparative measurement method,
Further separated from the receiver REC are detectors 5WD1 and 5WD.
2, and then the level is judged by the comparator COMP, which makes the configuration of these measuring threads complicated, and the detection 'gfSWD 1, 5WD2, comparator COMP, etc. are not used for level detection or comparison. Since it is processed as a DC signal, fluctuations in the DC level of these signal processing elements directly affect the measurement accuracy, and many switches are required, including not only the switch 8W but also the detectors 5WD1 and 5WD2. , nt++ has the disadvantage of causing deterioration in accuracy and stability.

そこで、本発明は上述の欠点に鑑み、測定系の構成を簡
単化し、測定精度を向上させ、安、定置を向上させた比
較測定方式の提供を目的とする。
Therefore, in view of the above-mentioned drawbacks, the present invention aims to provide a comparative measurement method that simplifies the configuration of the measurement system, improves measurement accuracy, and improves stability and placement.

かかる目的を達成する本発明は、信号源からの信号を被
61す定伝送路及び基準伝送路に送出し、これら伝送路
からの信号を1個の受信軍子を有しベースバント受信1
M @ k出力する受信器にて受け、この受信器からの
周期的信号に@まれる交流信号成分又は基本波1i号成
分の少なくとも一方の振幅又は電力に対比、1゛るレベ
ル葡刹する直流信号を出力する1g号処理系を胸する測
定糸において、上記被測定伝送路及び基準伝送路の少な
くとも一方に勇致減艮器を接続し、上6[ニ被測定伝送
路及び基準伝送路をそれぞれ刈る信号の上We受信器へ
の到達時間を異ならせて上記二つの伝送路からの信号を
単一の上記受信器で父互に尚期的に受信し、この単一の
受信器が出力する周期的イ]号に刻尾・して上記4b号
処理系にて得た直流信号のレベルの絶対値が最小となる
ように上記可変減衰器の減哀廿を調節し、この梯1節後
の減衰耐と上記被測定伝送路以外の測定系の特性とから
上記被測定伝送路を測定することを特徴とする。
The present invention, which achieves this object, sends a signal from a signal source to a fixed transmission path and a reference transmission path to which it is to be received, and receives the signals from these transmission paths by a base band receiving unit having one receiving unit.
A direct current whose level is 1° higher than the amplitude or power of at least one of the alternating current signal component or the fundamental wave 1i component received by the receiver that outputs M@k and included in the periodic signal from this receiver. In the measurement thread that connects the No. 1g processing system that outputs the signal, connect an interference reducer to at least one of the transmission line to be measured and the reference transmission line, and connect the transmission line to be measured and the reference transmission line to The signals from the two transmission paths are mutually received by the single receiver at different arrival times to the upper We receiver, and this single receiver outputs The attenuation of the variable attenuator is adjusted so that the absolute value of the level of the DC signal obtained by the processing system No. 4b becomes the minimum, and this step The method is characterized in that the transmission line to be measured is measured from the subsequent attenuation resistance and the characteristics of a measurement system other than the transmission line to be measured.

ここで、第2図以下を参照して本発明の実施例を説り」
する。第2図は一実施例を示し7.1g号源SG、分割
器り、基準伝送路り。及び町変減衰毘■Aと被測ボ伝送
路LX との並列体、結合器C1受信器RFC,信号処
理tlI制御部SPCの順に信号が伝送される測定糸t
yrくしている。そして、可変減衰器VAには信号処理
制御部SPCから制御信号が入力される。また、信号処
理制御部SPCと信号gJ1.SGとの10jには、信
号処理割引)部SPCから信′P−B12らisGに向
けて、又はその逆方向に同期信号が送られる。
Embodiments of the present invention will now be explained with reference to FIG.
do. FIG. 2 shows an embodiment of the 7.1g signal source SG, divider, and reference transmission path. and the measurement thread t, through which the signal is transmitted in the order of the parallel body of A and the measured transmission line LX, the coupler C1 receiver RFC, and the signal processing tlI control unit SPC.
It's been a long time. A control signal is input to the variable attenuator VA from the signal processing control section SPC. Further, the signal processing control unit SPC and the signal gJ1. A synchronization signal is sent from the signal processing discount unit SPC to the signal processing unit 10j connected to the SG from the signal P-B 12 to the isG, or in the opposite direction.

第2図におりる構成を詐祁1に説明する。信号源SGは
、矩形パルス状16号を周期的に発生する。この信号は
包絡線が矩形に近いものであ第1は充分で、IIJ月υ
1的矩形パルスで振幅変し、・Aした無変調あるいは仮
変調の交流信号とか、i′II−流1g号を周期的に切
り出したいわゆる矩形パルスなどである。このなかには
周期的矩形パルスで振幅変藺した無変−らあるいは被俟
・調の尤信号も含まれる。
The configuration shown in FIG. 2 will be explained in detail. The signal source SG periodically generates a rectangular pulse No. 16. The envelope of this signal is close to a rectangle, and the first one is sufficient, and IIJ month υ
These include an unmodulated or temporarily modulated alternating current signal whose amplitude is changed by a single rectangular pulse, and a so-called rectangular pulse obtained by periodically cutting out the i'II-flow No. 1g. This includes unchangeable or variable pitch signals whose amplitudes are varied by periodic rectangular pulses.

信号源SGが矩形パルス状情号を発生する時点は、信号
処理制御部SPCが出力する同期18号と同期している
。1B@源SGと信号処理制御部SPCとを相関させる
ためには矩形パルス状信号の周期的な発生と回1υ;シ
、て同期信号を信号処理制御部SPCに送るようにして
もよい。具体的な信号源SGとしては、ゲート発振又は
100パーセント払幅俊調が用層な正弦波発、Jか、オ
:ペゲー4発振と振幅変調が同時にできる正弦波発振器
などを箪;気信号用信号諒として使用でき、また短、気
信号用信号諒にて駆動部れたレーザタイオードや、同じ
信号源で駆動された外部変1句益で出力光を変調する各
柚1/−ザなどを元信号用信号源として使用できる。な
お、後者の(J、1.9の外部変調器としては消光比の
旨いものが請求され、跨響元学効果を利用し7たいわゆ
る超音波光変調器や、バルク1旌結晶中での′fli、
気元学効呆伯利用した光変調器などが使える。
The time point at which the signal source SG generates the rectangular pulse-like information is synchronized with the synchronization number 18 outputted by the signal processing control unit SPC. In order to correlate the 1B@ source SG and the signal processing control section SPC, a synchronization signal may be sent to the signal processing control section SPC every time a rectangular pulse-like signal is generated periodically. Specific signal sources SG include gate oscillation or sine wave oscillators with 100% amplitude control, sine wave oscillators that can simultaneously perform J or O: 4 oscillation and amplitude modulation; for air signals. It can also be used as a signal source, such as a laser diode driven by a short signal source, or a laser diode that modulates the output light with an external variable power source driven by the same signal source. can be used as a signal source for the original signal. In addition, the latter (J, 1.9 external modulator) is claimed to have a good extinction ratio, and there are so-called ultrasonic optical modulators that make use of the transsonant effect, and 'fli,
Optical modulators using Kegen Gakusei Kuhaku can be used.

分割5Dは第2図中矢印の方向に低損契で信号を伝達し
信伝源SGの出力借上を一定の比率で分割して基準伝送
路り。と被測定伝送路Lxとに同時に出力するものであ
る。第2図中矢印の方向以外の方向に通過する信号に高
損失を与える分割器りは測定系の各要素たとえば伝送路
、可変減衰器、結合器、受信器などからの反射が測定精
度に与える影響を減らすためである。電気信号用の分割
Ri Dとしては、低出力インピーダンス増幅器の出力
端子に接続した2個の適当な値の抵抗器のそれぞれを介
して信号を取出すようにした回路、各棟の方向性結合器
などがある。また、元信号用の分割器としては、ウォラ
ストンプリズム、ロツゾヨノプリズムなどの偏光プリズ
ム類、2個の分布屈折率レノズ間に誘電体膜の反透鏡を
挾んだ光分岐、@電体中又は誘′亀体表面に形成されだ
Y字形光導波路、同じく誘電体を基板として形成された
光導波路方向性結合器、半透鏡などがある。
The division 5D is a standard transmission path in which the signal is transmitted in the direction of the arrow in FIG. 2 with low loss and the output of the transmission source SG is divided at a fixed ratio. and the transmission line under test Lx at the same time. In a split device that causes high loss to signals passing in directions other than the direction of the arrow in Figure 2, reflections from each element of the measurement system, such as the transmission line, variable attenuator, coupler, receiver, etc., affect measurement accuracy. This is to reduce the impact. The splitter Ri D for electrical signals includes a circuit that extracts signals through two resistors of appropriate values connected to the output terminal of a low output impedance amplifier, a directional coupler in each building, etc. There is. In addition, as a splitter for the original signal, polarizing prisms such as Wollaston prism and Lotsuzoyono prism, optical branching with a dielectric film anti-transparent mirror sandwiched between two distributed index lenses, @electric material There are Y-shaped optical waveguides formed inside or on the surface of a dielectric body, optical waveguide directional couplers similarly formed using a dielectric substrate, and semi-transparent mirrors.

分割器りにつながる基準伝送路り。及び被測定伝送路L
Xは、導波管、同軸線路、ス) IJツブ線路、レツヘ
ル線などの電気信号用伝送路、又は単一モード元ファイ
バ、多モード元ファイバ、偏波面保存光ファイバ、空中
伝送路などの元伝送路である。なお、基準伝送路1.0
 と被測定伝送路LXは同じ独類の伝送路である必要は
ない。特に、基準伝送路り。は分割器りと可変減衰器V
Aとを結ぶ短距離の伝送路、場合によっては単なる空間
であってもよい。これら伝送路り。、LXで重賛なこと
は信号の伝送時間を異ならしめることであシ、軸合6 
Cに入力されるそれぞれの伝送路り。LXの信号が時間
的に重複しないように伝送の遅延をさせることである。
Standard transmission line connected to the divider. and transmission line under test L
X is a waveguide, a coaxial line, an electric signal transmission line such as an IJ tube line or a Retzchel line, or a source such as a single mode source fiber, a multimode source fiber, a polarization maintaining optical fiber, or an aerial transmission line. It is a transmission line. In addition, the standard transmission line 1.0
It is not necessary that the transmission line LX and the transmission line under test LX are the same and unique transmission line. Especially the reference transmission path. is the divider and variable attenuator V
It may be a short-distance transmission path connecting to A, or it may be a mere space depending on the case. These transmission routes. , What is highly praised about LX is that the signal transmission time is different, and the axis alignment is 6.
Each transmission path input to C. The goal is to delay transmission so that LX signals do not overlap in time.

基準伝送路り。に直列につながる可変減衰器VAは減衰
量を調節するもので、信号処理制御部SPCからの信号
や指示又は手動操作によって設定された葉だけ減衰を与
えて信号を通過させている。この減衰量盆状めるものは
信号処理制御部SPCによって作り出される直流信号の
レベルの絶対値を最小上するような値である。
Reference transmission path. The variable attenuator VA connected in series is used to adjust the amount of attenuation, and allows the signal to pass with attenuation set by a signal or instruction from the signal processing controller SPC or by manual operation. This attenuation level is a value that minimizes the absolute value of the level of the DC signal produced by the signal processing controller SPC.

この詳細な後述する。可変減衰器VAの具体例としては
、各棟の固定抵抗器を組合わせて減衰量を得るもの、ガ
ラス円板に円周方向に除徐に膜厚が変わるように金栖膜
を蒸着し円板の回転によってJ仄定の減衰量を得るもの
、光路に対して直列に配置した2個の偏光プリズムの一
方又は両方を回転して所定の減衰量を得るもの、固定減
衰鼠の数独の減衰器を組合わせて所定の減衰量を得るも
のを光信号用として用いることなどが存在する。この第
2図に示す例では基準伝送路LOに直列にn]変減衰表
器Aを配置したのであるが、被測定伝送路LX 側に配
置したシ、直伝送路り。LXに配置して伝送量の測定範
囲を広くすることができるとする応用も可能である。
This will be described in detail later. Specific examples of variable attenuators VA include one that obtains attenuation by combining fixed resistors in each building, and one that obtains the attenuation amount by combining fixed resistors in each building, and one that obtains the attenuation amount by combining fixed resistors in each building, and one that obtains the attenuation amount by combining fixed resistors in each building, and one that obtains the amount of attenuation by combining fixed resistors in each building. A fixed attenuation is obtained by rotating a plate, a fixed attenuation is obtained by rotating one or both of two polarizing prisms arranged in series with the optical path, and a fixed attenuation rat Sudoku. There are devices that combine attenuators to obtain a predetermined amount of attenuation and are used for optical signals. In the example shown in FIG. 2, the variable attenuation table device A is placed in series with the reference transmission line LO, but it is placed on the side of the transmission line to be measured LX. An application is also possible in which it is placed in the LX to widen the measurement range of the transmission amount.

なお、2個の伝送路り。LXの受端に達した信号のレベ
ルが略等しくなるよう分割器りの信号分割比を調整し、
可変減衰器VAは単に信号レベルの微調整を行なう程度
にとどめるのが測定4〆H度上は有利である。
In addition, there are two transmission paths. Adjust the signal division ratio of the divider so that the levels of the signals reaching the receiving end of the LX are approximately equal,
It is advantageous for measurement purposes that the variable attenuator VA be used only for fine adjustment of the signal level.

基準伝送路り。及び被測定伝送路Lx 双方の受端側に
配置された結合器Cは第2図中矢印の方向に低損失で信
号音伝達して分割器りと同様矢印以外の方向に通過する
信号に高損失を与え、21固の伝送路り。LXからの信
号を11b’r1の出力端子から出力するものである。
Reference transmission path. and the transmission line under test Lx.The coupler C placed on the receiving end side of both transmits the signal sound with low loss in the direction of the arrow in Fig. 2, and transmits the signal sound in the direction of the arrow in Fig. It causes loss and is a 21-strong transmission path. The signal from LX is output from the output terminal of 11b'r1.

′電気信号用の結合器Cとしては、低入力イノビーダン
ス増幅すの入力端子に接続した21β1の抵抗器のそれ
ぞれを介して信号を入力し出力端子から信号を取出すも
の、各批の方向性結合器などがある。また、光信号用の
結合器としては、元信号用の分割器りとしてあげたもの
を逆方向に使えばよい。
'Coupler C for electrical signals includes one that inputs the signal through each of the 21β1 resistors connected to the input terminal of the low input Innovidance amplifier and extracts the signal from the output terminal, and a directional coupler of each type. and so on. Furthermore, as a coupler for optical signals, the ones mentioned above as dividers for original signals may be used in the opposite direction.

結合器Cの後段には受信器RECが配置きれ、各伝送路
り。、Lxからの信号は両方共受倚される。
A receiver REC can be placed after the coupler C and each transmission path. , Lx are both received.

すなわち、基準伝送路り。の伝送時1ttlと被測定仕
送路のそれとは異ならせであるから、各伝送路を伝送さ
れた信号は時間的に完全には重複せずに受信器RF C
に達する。受信器RECは1個の受信素子、又は1個の
受信素子とその出力に増幅器の信号処理を施す回路系と
から構成されて、ベースバンドの受信信号を出力する。
In other words, the reference transmission path. Since the 1ttl during transmission is different from that of the transmission path to be measured, the signals transmitted through each transmission path do not overlap completely in time and are transmitted to the receiver RF C.
reach. The receiver REC is composed of one receiving element or one receiving element and a circuit system that performs signal processing of an amplifier on its output, and outputs a baseband received signal.

受信器RECとしては、3樵類の具体的構成がoj能で
ある。第1の構成としては、信号源SGの出力がベース
バンド信号で、入力信号と同じ同波数の出力信号を得る
受信素子を用い、し、たがって受信素子の出力信号は周
波数変換を施さなくてもベースバンド信号となる場合で
あシ、例工ばバイポーラトランジスタ、電界効果トラン
ジスタ、真空管などを受信素子として拒なる増幅を行な
う受信器である。第2の構成としては、周波数変換機能
のない受信素子と後段に周波数変換を行なう回路系とを
組合わせてベースバッド信号を出力するもので、上記第
1の構成例として列挙した受信素子の出力をバイポーラ
トランジスタ、電界効果トランジスタ、真空管、′51
変容量ダイオードなどを非線形な入出力関係を有する領
域で動作させた周波数変換器で、ベースバンド信号に変
換する受信器とか、上記第1の構成例の受信素子の出力
を同様に適当な帯域の信号に周波数変換し、この変換さ
れた信号を整流しさらに低域通過フィルタあるいは帯域
通過フィルタを通過させてベースバッド信号を得る受信
器などがある。この場合、直接ベースバンド(fN号に
変換する前者は、構成が簡単となるが、周波数変換器に
入力する局部発振詣の発振周波数を信号源SGの出力1
g号の周波数と正確に一致させると共にこれら画周波数
の信号間の位相差を一定に保つ必要がある。一旦整流後
フィルタを通してベースバッド信号を得る後者は、構成
がやや複雑になるが周波数と位相の変動の影響は受けに
くい。なお、後者の場合のフィルタは後述する信号処理
制御部5PCO栴成要素としてとらえることもできる。
As the receiver REC, three types of concrete configurations are possible. In the first configuration, the output of the signal source SG is a baseband signal, and a receiving element is used that obtains an output signal with the same wave number as the input signal. Therefore, the output signal of the receiving element does not undergo frequency conversion. This is also the case when the signal is a baseband signal, such as a receiver that performs amplification using a bipolar transistor, field effect transistor, vacuum tube, etc. as a receiving element. The second configuration outputs a basebad signal by combining a receiving element without a frequency conversion function and a circuit system that performs frequency conversion at a subsequent stage, and is the output of the receiving element listed as the first configuration example above. Bipolar transistor, field effect transistor, vacuum tube, '51
A frequency converter in which a variable capacitance diode or the like is operated in a region with a non-linear input/output relationship, such as a receiver that converts to a baseband signal, or a receiver that converts the output of the receiving element in the first configuration example above to an appropriate band. There are receivers that convert the frequency of a signal, rectify the converted signal, and pass it through a low-pass filter or a band-pass filter to obtain a baseband signal. In this case, the former method of converting directly to the baseband (fN) has a simple configuration, but the oscillation frequency of the local oscillator input to the frequency converter is converted to the output of the signal source SG.
It is necessary to accurately match the frequency of the image frequency and to keep the phase difference between the signals of these image frequencies constant. The latter method, in which a basebad signal is obtained through a filter after rectification, has a slightly more complicated configuration, but is less susceptible to frequency and phase fluctuations. Note that the filter in the latter case can also be regarded as a component of the signal processing control unit 5PCO, which will be described later.

第3の構成としては、上記第2の構成例の受信器から受
信素子を取除き周波数変換を行なう素子に直接信号を入
力するようにしだ受M器、PINホトダイオード、なだ
れホトダイオード、焦電素子、光導電素子、金属・酸化
物・金属接合素子などを受信素子とした元信号用の受信
器がある。
As a third configuration, the receiving element is removed from the receiver of the second configuration example, and the signal is input directly to the element that performs frequency conversion, and the receiver includes an M receiver, a PIN photodiode, an avalanche photodiode, a pyroelectric element, There are receivers for original signals that use photoconductive elements, metal/oxide/metal junction elements, etc. as receiving elements.

信号処理制御部SPCは、信号処理系と、この信号処理
系の出力する信号に従って可変減衰器の減衰量を調節す
る信号を発生する制御駆動部と、これらの動作を制御・
管理する部分とで構成されている。信号処理制御部SP
Cでは、受信’15REcのベースバンド出力信号をも
とにこの信号の交流信号成分又は直流信号成分の振幅又
は電力に対応したレベルを有する血流信号を作り出し、
この直流信号のレベルの絶対値が最小となるようにl1
lIJ変減衰器VAの減衰量を調節するだめの信号ある
いは指示等を出力する。
The signal processing control unit SPC includes a signal processing system, a control drive unit that generates a signal to adjust the attenuation amount of the variable attenuator according to the signal output from the signal processing system, and a control drive unit that controls and controls these operations.
It consists of a management part. Signal processing control unit SP
In C, a blood flow signal having a level corresponding to the amplitude or power of the AC signal component or DC signal component of this signal is created based on the baseband output signal of the received '15 REc,
l1 so that the absolute value of the level of this DC signal is the minimum.
It outputs a signal or instruction to adjust the attenuation amount of the lIJ variable attenuator VA.

ここで、1ぎ号処理制御部SPCにつき詳細に説明する
。ここではまず、イ百号処理制御部SPCにきまれる1
ぎ号処理系における信号処理法について鯖、明する。
Here, the 1st number processing control unit SPC will be explained in detail. Here, first, the 1
Saba will explain the signal processing method in the signal processing system.

(物号処理系における信号処理法の説明)ここでの信号
処理法は受信器RECの出力信号からi]変諷狭器の減
設量を調節するための指針となる1d号を作シ出す方法
である。第3図(a)は受信器の出力信号である周期的
な信号波形を示している。第3図(b)は第3図(a)
に示す信号中に言まれる交流信号波形を示している。こ
の第3図において、′rは受信器の出力信号(以下受1
g出力13号と称す)の周期、t1t3は、矩形パルス
状信号の持続時間、t2t4 は隣シ合う矩形パルス状
信号間の空き時間、a1a3は矩形パルス状1ば号のレ
ベル、ao は受信出力信号の平均レベルである。持続
時間t1 の矩形パルス状信号は基準伝送路と被側矩伝
送路とのいずれか一方に伝送された信号である。また、
空き時間ala3が正の値の場合には空きが存在し、負
の値の場合には隣シ合う矩形パルス状信号が時間的に重
複している。第3図(b)の交か1、波形は第3図(a
)に示した信号・からフィルタ等の手段で受信出力1g
号の平均レベルの直流を取除けは得られる。
(Explanation of the signal processing method in the object signal processing system) The signal processing method here is to create No. 1d from the output signal of the receiver REC, which serves as a guideline for adjusting the amount of reduction of the transducer. It's a method. FIG. 3(a) shows a periodic signal waveform that is the output signal of the receiver. Figure 3(b) is Figure 3(a)
This shows the AC signal waveform mentioned in the signal shown in . In this Figure 3, 'r is the output signal of the receiver (hereinafter receiver 1
t1t3 is the duration of the rectangular pulse-like signal, t2t4 is the idle time between adjacent rectangular pulse-like signals, a1a3 is the level of the rectangular pulse-like signal No. 1, ao is the reception output This is the average level of the signal. The rectangular pulse-like signal of duration t1 is a signal transmitted to either the reference transmission line or the to-be-receiving rectangular transmission line. Also,
When the free time ala3 is a positive value, there is a free space, and when the free time ala3 is a negative value, adjacent rectangular pulse signals overlap in time. Figure 3(b) crosses 1, the waveform is Figure 3(a)
) The reception output is 1g by using a filter or other means from the signal shown in
The average level of DC can be removed.

信号処理系としては、受信出力1ぎ暗中に會゛まれる交
流信号成分あるいは基本波信号成分いずれかの振幅ある
いは電力に対R:、、°fるレベルの血流信号を出力す
る機能が必要であることは、前述したと工・シであるが
、ここで第3図(a)に示した受信出力信号に対して四
柚駅の信号処理法につき述べる。
The signal processing system must have the function of outputting a blood flow signal at a level R: , °f relative to the amplitude or power of either the AC signal component or the fundamental wave signal component that is received in the dark. Although this has been described above, the signal processing method at Yotsuyu Station for the received output signal shown in FIG. 3(a) will now be described.

+l) 受信出力信号から正弦波信号成分をフィルタで
抽出し、この正弦波111成分の振幅に対応するレベル
を有する直流信号を得る信号処理法では、まず受信出力
信号から周ル」′1゛の正弦波(I号成分をフィルタに
より抽出し、つぎにこの正弦波信号成分會ダイオードを
用いて整i>iCL、更に低域通過フィルタを通過させ
るか又は最大値と最小値とを尖)値検出器を用いて検出
して差をとる・などし、正弦波信号成分の振幅に対応す
るレベルの直流信号を取シ出す。用液減衰器の減衰量は
この直流信号のレベルの絶対値が最小となるように調節
aれる。ここで、正弦波信号成分を得るフィルタとし、
ては、理想的に性周期T近傍のどく狭いI?11波数帯
の信号だけを低損失を通過させるものが良く、受信出力
信号中からこのフィルタによセ抽出された信号は、16
号レしルa0とa3がつi・しいとき零になりalとa
3とが異なるときなるべく大きくなることが望ましい。
+l) In the signal processing method of extracting the sine wave signal component from the received output signal using a filter and obtaining a DC signal having a level corresponding to the amplitude of the 111 components of this sine wave, first, the frequency of the received output signal is extracted from the received output signal. A sine wave (the I component is extracted by a filter, and then the sine wave signal component is set to i>iCL using a diode, and then passed through a low-pass filter, or the maximum value and minimum value are peaked). Then, a direct current signal with a level corresponding to the amplitude of the sine wave signal component is obtained. The amount of attenuation of the liquid attenuator is adjusted so that the absolute value of the level of this DC signal is minimized. Here, let's assume a filter that obtains a sine wave signal component,
What is the ideal narrow I near the sexual cycle T? A filter that allows only signals in the 11 wave number band to pass through with low loss is good, and the signal extracted by this filter from the received output signal is 16
When the number levels a0 and a3 are difficult, they become zero, and al and a
3, it is desirable that it be as large as possible.

したがって、信号レベルal−a3にて振幅零になるた
めには、t□−t3. t2=t4t1+t2=T72
なる’P FFが必要であ!l1倍号レベレベル笑a3
にて振幅T が最大となるためにはt1=t3−2. t2−=t4
=0なる条件が必要である。特に前者のa1=a3の関
係が満たされていない場合には、振幅が苓のとき信号レ
ベルa1−a3とならず、両省ala3の差分だけ測定
誤差が増加する。し、たがって、測定精度を高めるには
第4昭1(b)に示す波ルう−Tを満たす波形の受1ぎ
出力情号と斤るようにする必要がある。
Therefore, in order for the amplitude to become zero at signal level al-a3, t□-t3. t2=t4t1+t2=T72
Naru'P FF is necessary! L1 double issue level lol a3
In order for the amplitude T to be maximum at t1=t3-2. t2-=t4
= 0 is necessary. In particular, if the former relationship of a1=a3 is not satisfied, the signal level will not be a1-a3 when the amplitude is low, and the measurement error will increase by the difference between the two values ala3. Therefore, in order to improve the measurement accuracy, it is necessary to match the output information with the waveform satisfying the waveform T shown in Section 4, Sho 1(b).

(2)受信出力信号からフィルタ全相いて交流信号成分
を抽出し1、この交流信号成分の平均振幅に対比、する
レベルの直流信号を得る箔片処理法では、まず天啓b1
゛のコノテノサなど直流信号成分だけを除去するフィル
タを用いて第3図(b)に示す交流信号成分ケ抽出し、
つぎに(1)と同様ダイオードと低域通過フィルタ又は
尖頭値検出器などを用いてXj:流1h号成分の平均振
幅に対応したレベルの血流(iiij号を作4)出す。
(2) In the foil processing method, the AC signal component is extracted from the received output signal using all phases of the filter, and the DC signal at the level is compared to the average amplitude of this AC signal component.
Extract the AC signal components shown in Figure 3(b) using a filter that removes only the DC signal components, such as a conotenosa.
Next, as in (1), a diode, a low-pass filter, a peak value detector, etc. are used to generate a blood flow (3) at a level corresponding to the average amplitude of the Xj: flow 1h component (3).

そして、(1)と同様oJ変減衰器の減衰f=>、はこ
の面流、信号のレベルの絶対値が最lトとなるように調
節される。本信号処理法においても第4図(b)に示す
受信出力信号が好ましい。これは次の理由による。矩形
パルス状信号の存在しない時間帯、矩形パルス状信号が
重複する時間帯、矩形パルス状信号の立上シ又は立下シ
の波形ひずみの存在などによシ、たとえ信号レベルa□
とa3 とが尋しくなっても平均振幅は零にならない。
Then, as in (1), the attenuation f=> of the oJ variable attenuator is adjusted so that the absolute value of the level of this surface current and signal becomes the maximum. Also in this signal processing method, the received output signal shown in FIG. 4(b) is preferable. This is due to the following reason. Even if the signal level is a
Even if and a3 become small, the average amplitude does not become zero.

振幅の絶対値の平均は第3図に示した受信出力信号の信
号レベルa、a3が共に零のときにはもちろん零になっ
てしまうため、信号レベルa3を固定して考えると信号
レベルa1がa3に等しいとき最小となる。
Of course, the average absolute value of the amplitude becomes zero when the signal levels a and a3 of the received output signal shown in Figure 3 are both zero, so if we fix the signal level a3, the signal level a1 becomes a3. When they are equal, it is minimum.

このとき、信号レベルa□とa3との間にはa1/a3
=1+(t2+t4)/11 なる関係がある。振幅の
絶対値の平均が最小となるように可変減衰器の減衰蓋を
調節すると上式の第2項分だけ測定誤差が増加する。し
たがって、誤差を減らすためには空き時■1を少なくす
る必要があり、特に空き時間t2−t4=0という条件
下では、tl−t3=T/2ノとき信号レベルa1a3
ノ異なる場合の平均振幅が最大となる。よって第4図(
b)の信号が良い。
At this time, there is a1/a3 between signal levels a□ and a3.
There is a relationship as follows: =1+(t2+t4)/11. If the attenuation cover of the variable attenuator is adjusted so that the average absolute value of the amplitude is minimized, the measurement error will increase by the second term in the above equation. Therefore, in order to reduce the error, it is necessary to reduce the idle time ■1, and especially under the condition that the idle time t2-t4=0, the signal level a1a3 when tl-t3=T/2
The average amplitude for different cases is the maximum. Therefore, Figure 4 (
b) The signal is good.

(3)受信出力信号と同周期の正弦波信号とを掛算器に
入力して積をとり、受信出力信号に會まれる基本波信号
成分の振幅に比例するレベルの@流信号成分を、掛算器
の出力信号からフィルタで抽出する方法が、三番目の信
号処理法である。そして、前述の(1)、(2)と同様
可変減衰器の減衰量は直流信号のレベルの絶対値が最小
となるように調節される。本信号処理法についても第4
図(b)に示す信号が好ましい。これは次の理由による
。受信出力信号と正弦波信号との積に比例した低周波信
号のレベル、すなわち第3区の例ではt□==13.1
□+I T −(t2+t、1o)=Σ のとき極大となるのでこの
場合を考えると、受信出力信号中の空き時間t2または
t4 の中点の時刻と時間差t。とに相当する位相差を
持つ正弦波信号と、受信出力信号との積に含まれる低周
波信号レベルは、時間差t。が零 のとき2個の信号レ
ベルa□とa3が等しい楊合零となる。一般に、空き時
間t2t4、時間t。は周期Tに比べて短い方が有利で
ある。このような場合、低周波信号レベルカ;零のとき
、イぎ号レベルa 1 a 3 の間には近似的に次の
関係がある。
(3) Input the received output signal and a sine wave signal of the same period to a multiplier, take the product, and multiply by the @flow signal component with a level proportional to the amplitude of the fundamental signal component that meets the received output signal. The third signal processing method is to extract the signal from the output signal of the device using a filter. Then, as in (1) and (2) above, the attenuation amount of the variable attenuator is adjusted so that the absolute value of the level of the DC signal is minimized. This signal processing method is also explained in the 4th section.
The signal shown in Figure (b) is preferred. This is due to the following reason. The level of the low frequency signal is proportional to the product of the received output signal and the sine wave signal, that is, in the example of the third section, t□==13.1
□+I T -(t2+t, 1o)=Σ It becomes maximum, so considering this case, the time difference t between the time at the midpoint of idle time t2 or t4 in the received output signal. The low frequency signal level included in the product of the received output signal and a sine wave signal having a phase difference corresponding to the time difference t. When is zero, the two signal levels a□ and a3 are equal, and the sum is zero. Generally, free time t2t4, time t. It is advantageous for T to be shorter than the period T. In such a case, when the low frequency signal level is zero, there is approximately the following relationship between the key signal levels a 1 a 3 .

π(to−t2) 2πtO a1/B = l + 11− T この第2項は測定誤差となるがto−0でtl−t2の
場合、この第2項は消滅する。さらに仙骨レベルa1矢
a3の場合低周波レベルカニ最大となる条件は各時間に
刻してtl−t3−Σ、t2−t4=0、to=o な
る条件が成立することが望ましい、 (4) 受信出力信号からフィルタにて交流信号成分を
抽出し、この交流1′、!号成分を掛算器への2つの入
力信号として私奮取り、この掛算器の出力(i号からフ
ィルタによって交流信号成分の電力に比例するレベルの
血流信号を抽出する信号処理法が四番目である。この信
号処理法においても、可変減衰器の減衰量は、直流信号
のレベルの絶対値が最小となるように調節される。第3
図に示した受信出力信号中の交流成分の二乗に比例1゛
る信号の平」リレベルは、次の関係があるとき最小とな
る。
π(to-t2) 2πtO a1/B = l + 11-T This second term becomes a measurement error, but if to-0 and tl-t2, this second term disappears. Furthermore, in the case of sacrum level a1 and arrow a3, it is desirable that the conditions for the maximum low frequency level to be satisfied at each time are tl - t3 - Σ, t2 - t4 = 0, to = o, (4) The AC signal component is extracted from the received output signal using a filter, and the AC signal component is extracted from the received output signal. The fourth signal processing method is to input the signal component as two input signals to a multiplier, and extract a blood flow signal at a level proportional to the power of the AC signal component from the output of the multiplier (i) using a filter. Also in this signal processing method, the attenuation amount of the variable attenuator is adjusted so that the absolute value of the level of the DC signal is minimized.
The average relevel of the signal, which is proportional to the square of the alternating current component in the received output signal shown in the figure, is minimized when the following relationship exists.

al/a ==l + 02 ” tJ/11この式中
第2項はilll1足誤差となるので空き時間12.1
4ではできるたけ短いことが必要である。時間12=1
4=0であれは、13号レしルaINa3の場合の平均
レベルはt1=’a=T/2 Q)とき最大となる。
al/a ==l + 02 ” tJ/11 The second term in this equation is illll1 foot error, so the free time is 12.1
4 needs to be as short as possible. time 12=1
4=0, the average level in the case of level 13 aINa3 becomes maximum when t1='a=T/2Q).

以上のR3朱、四種類の信号処理法は第4図(b)に示
すように時間的に交互に繰返す二つの信号を一つの交流
信号としてとらえ、交btt、信号の有無によって二つ
の信号のレベル差ヲ検出しているものである。したがっ
て、交bh、信号の有無さえ判定できれは第1図に示す
ように二つの信号の分離および比較は必要なくなる。か
かる信号処理法では第4図(b)に示した波形に類似の
受信出力信号音用いることが測定誤差を減少させるのに
有効であることは前述したとおりである。第2図に示し
た実施例の回路測定にあたっては、基準伝送路L0を伝
送した矩形パルス信号とその直後に位置する被測定伝送
路LXを伝送した矩形パルス信号との間の空き時間と、
被測定伝送路LXを伝送した矩形パルス信号とこの次に
くる基準伝送路Lo を伝送した矩形パルス信号との間
の空き時間とを等しくするためには、信号源SGの出力
信号の周期を基準伝送路り。と被測定伝送路LX との
間の伝送遅延時間の2倍とすれば良い。また、空き時間
を無くすためには、矩形パルス信号の持続時間を上記周
期の172とすればよい。この結果第4図(b)に示す
受信出力信号を得ることができる。
The four types of signal processing methods described above treat two signals that repeat alternately in time as one alternating current signal, as shown in Figure 4(b). It detects level differences. Therefore, if it is possible to determine the presence or absence of the signal bh, there is no need to separate and compare the two signals as shown in FIG. As mentioned above, in such a signal processing method, using a received output signal sound similar to the waveform shown in FIG. 4(b) is effective in reducing measurement errors. When measuring the circuit of the embodiment shown in FIG. 2, the idle time between the rectangular pulse signal transmitted on the reference transmission line L0 and the rectangular pulse signal transmitted on the measured transmission line LX located immediately after it,
In order to equalize the idle time between the rectangular pulse signal transmitted through the transmission line under test LX and the rectangular pulse signal transmitted through the next reference transmission line Lo, the cycle of the output signal of the signal source SG is used as a reference. transmission path. It may be twice the transmission delay time between LX and the transmission line under test LX. Furthermore, in order to eliminate idle time, the duration of the rectangular pulse signal may be set to 172 of the above period. As a result, the received output signal shown in FIG. 4(b) can be obtained.

(信号処理制御部SPCの構成例) 信号処理制御s p cにおける信号処理法につき四つ
の例をあげて先に説明したが、とこではこの信号処理を
行なう回路例を説明する。第5図においては、第1図に
示す信号源SG、受信器1c 、可変減衰器VAおよび
信号処理ft1lf御部SPCを示しておシ、この信号
処理制御部SPCにあってに受信出力信号から基本周期
の正弦波信号成分をフィルタで抽出し、この正弦波信号
成分の振幅に対応するレベルの直流信号を作り出し、こ
の直流信号のレベルの絶対値が最小となるように可変減
衰器VAの減衰器を調節するための信号あるいは指示全
出力する例、すなわち前述した(1)の信号処理法にも
とづき構成したものである。
(Configuration Example of Signal Processing Control Unit SPC) Four examples of signal processing methods in the signal processing control SPC have been described above, and now an example of a circuit for performing this signal processing will be described. FIG. 5 shows the signal source SG, receiver 1c, variable attenuator VA, and signal processing ft1lf controller SPC shown in FIG. A sine wave signal component of the fundamental period is extracted with a filter, a DC signal with a level corresponding to the amplitude of this sine wave signal component is created, and the variable attenuator VA is attenuated so that the absolute value of the level of this DC signal is minimized. This is an example in which all signals or instructions for adjusting the device are output, that is, the configuration is based on the signal processing method (1) described above.

第5図において、受信器RFCの出力(illlは?B
域通過フィルタBPFの入力側に接続されると共に波形
監視部WFMの入力側に接続されている。帯域通過フィ
ルタBPFの出力(tillは増幅器A、に介して検波
器DETK筬続されると共に更に増幅器Ask介して判
定器DICK接続されている。検波器DETの出力側は
増幅器A2 k介して駆動部DRVに接続される。。
In FIG. 5, the output of the receiver RFC (ill?B
It is connected to the input side of the pass-pass filter BPF and also to the input side of the waveform monitoring unit WFM. The output of the band pass filter BPF (till) is connected to the detector DETK via the amplifier A, and is further connected to the determiner DICK via the amplifier Ask.The output side of the detector DET is connected to the drive unit via the amplifier A2k. Connected to DRV.

また、判定器DICの出力側は駆!1・h都DRYの制
岬端子に接続される。駆動部DRYの出力側は可変減衰
器VAに接続される。
Also, the output side of the determiner DIC is DRIVE! 1. Connected to the cape terminal of the h capital DRY. The output side of the drive unit DRY is connected to a variable attenuator VA.

波形監視部WFMは可変同期信号発生器VCGK相互に
接続され、可変1llii+/4′ルス発生器VWPG
および可変遅延回路VDCに接続されている。可変幅パ
ルス発生器VWPGは可変同期信号発生器VCGに接続
されると共に信号源SGに接続される1、また、司変遅
延回IA?r VDCは可変同期信号発生器VCGに接
続されると共に判定器DICに接続されるかかる回h゛
、1において 帯域通過フィルタBPFは受信出力信号
中からその同期幅の正弦波信号成分會取出すもので、被
測定伝送路Lxを種々取換えて測定すること全可能とす
べく基準伝送路り。との伝送遅延時間差が変化する場合
には。
The waveform monitoring unit WFM is connected to the variable synchronous signal generator VCGK, and the variable 1llii+/4' pulse generator VWPG.
and a variable delay circuit VDC. The variable width pulse generator VWPG is connected to the variable synchronizing signal generator VCG and to the signal source SG1, and also to the variable delay circuit IA? r VDC is connected to the variable synchronization signal generator VCG and also to the determiner DIC. At this time, the bandpass filter BPF extracts the sine wave signal component of the synchronization width from the received output signal. , the reference transmission line is designed to make it possible to perform measurements by replacing the transmission line Lx to be measured in various ways. If the transmission delay time difference between

抽出する信号成分の周期を変える必をがあるからこの帯
域1■過フイルタ】I4(過帯域を可変とするとか適当
な通過帯域を有するフィルタを蝮数個用忌してスイッチ
等で切換えて交換しながら用いる必四がある。増幅器A
、 A2A、は必輩に比・じて用いればよく、ハ゛J幅
器A、の出力の一部は(財)に増幅器A3 にて増幅さ
ノ1.ることになるがこの増1す41器A9の出力μ飼
料1してもか゛まわない5、検波器DETの帯域通過フ
ィルタBPFの出力を整bli L基本波成分の振幅に
対応する信号を出力するが、この出力信号は必ずしも基
本波の振幅に比例しなくともよく振幅の変1ヒに対し箆
触に変化すれば充分である。丑だ、判定器1) I C
は帯域通過フィルタBPFからの416号の正負を判定
するもので、後述する可変同期信号発生6VCGからの
同期信号を可変遅延回路VDCを介して受けた時刻につ
いての止負判輩結呆を駆動部LIRVに送出するもので
ある。すなわち、基準伝送路Lo および被測定伝送路
LXそれぞれを伝送して受信器RFCに達した2個の信
号にレベル差があると、判定器D I CI/(達する
受信出力(m号中における一周期の正弦波信号成分は苓
以外のある値をとシしかもいずれの信号レベルが高いか
により正弦波信号成分の位相は+80異なるため、判定
i!DIcの判定結果によりいずれの伝送路の信号レベ
ルが大きいのか判定できることとなる。駆動部D RV
は口j変減艮器VAの駆動部であって、増幅器A2によ
って増幅された検波器DETの低周波信号と−tlj定
器1) I Cの判定結果である出力信号とにしたがっ
て、減衰−の調節程[<1とその符舛を決定し、検波器
DETの出力が零になるようにh]変減衰表器Aの減衰
量を調節するものである。この駆動部DRVの例として
は、判定器DICと増幅器A2 との出力が表示され、
この表示に従い手動操作で可変減衰器VA(7)減衰量
を調節してもよい。また、この構歇例の変形として判定
器DICの出力のみで駆動部1) RVを動作させ、判
定器DICの出力が零になるように減衰量を調節するこ
とも口」能である。また、測定対象が元伝送路でめっで
、可変減衰器VAとしてガラスの円板に金頴薄膜′fc
蒸着したものを用いる場合には、ガラスの円板の回転を
判定器DICと増幅器A2 の出力にしたがってザーボ
機構を用いて行なうものも考えられ、′r11、気信号
用として可変抵抗を可変減衰器■Aとして利用する場合
も同様のことが考えられる。
Since it is necessary to change the period of the signal component to be extracted, it is necessary to change the frequency band 1, overpass filter, and I4 (variable overband, or use several filters with appropriate passbands, and replace them by switching them with switches, etc.). Amplifier A
, A2A, can be used as much as necessary, and a part of the output of the high-J amplifier A is amplified by the amplifier A3. However, it is acceptable to increase the output μ of the device A9 by 1.5, adjust the output of the bandpass filter BPF of the detector DET and output a signal corresponding to the amplitude of the L fundamental wave component. However, this output signal does not necessarily have to be proportional to the amplitude of the fundamental wave, and it is sufficient that it changes almost immediately in response to changes in the amplitude. Ushida, judge 1) I C
416 from the band pass filter BPF is determined by the drive unit, which determines whether the signal No. 416 is positive or negative from the band pass filter BPF. It is sent to LIRV. In other words, if there is a level difference between the two signals transmitted through the reference transmission line Lo and the measured transmission line LX and reaching the receiver RFC, the determiner D The sine wave signal component of the period has a certain value other than 0, and the phase of the sine wave signal component differs by +80 depending on which signal level is higher, so the signal level of which transmission line is determined by the judgment result of judgment i!DIc. It can be determined whether the drive unit D RV is large or not.
is the drive part of the variable attenuator VA, which attenuates the low frequency signal of the detector DET amplified by the amplifier A2 and the output signal which is the determination result of the -tlj regulator 1) IC. The attenuation amount of the variable attenuation table A is adjusted by the adjustment step [<1 and its sign is determined, h so that the output of the detector DET becomes zero]. As an example of this drive unit DRV, the outputs of the determiner DIC and the amplifier A2 are displayed,
The attenuation amount of the variable attenuator VA(7) may be adjusted manually according to this display. Furthermore, as a modification of this configuration example, it is also possible to operate the drive unit 1) RV only with the output of the determiner DIC and adjust the attenuation amount so that the output of the determiner DIC becomes zero. In addition, since the object to be measured is the original transmission line, a thin gold film 'fc' is applied to a glass disk as a variable attenuator VA.
In the case of using a vapor-deposited material, it is possible to use a servo mechanism to rotate the glass disk according to the output of the judge DIC and the amplifier A2. ■The same thing can be considered when using as A.

受信器RFCにつながる波形監視部WFMは伝送遅延時
間の界なる二つの伝送路り。、Lx を伝送したパルス
信号の受信時刻の差つまり伝送遅延時間の差をOT変同
期信号元発生VCGがらの同期信号を参考にして1il
ll駕する。したがって、波形監視部WFMは二つのパ
ルス情畦の到眉時間差を測定しその結釆奢信骨あるいは
指示として出力するものであわ、ば何でも良く、例えは
一定周波数で発振するパルス発生器の出力をディジタル
計数器を用いて、最初に到着するパルス信号で計数を開
始L 2 flW+目のパルス信号でlr数を終了する
ようにし、パルA発生器のパルスの−m期と計数したパ
ルス数とから伝送遅延時間差をめる例があけられる。波
形監技1部WFMの伝送遅延時間差の測定個は可変同期
信号発生器VCGに戻されでIUI M (5号の周期
を設定すると共に、受信器RE Cへの入力信号が第3
図(b)に下す波形となるよう=+B幅パルパルス器■
PGの出力パルス幅を設足し、史にだとえげ基準伝送路
を伝送したパルス信号が判定器DICに達する時刻ごと
に、可変同期信号発生器VCGの出力が判定器DICに
伝達されるととく可変遅延回路VDCの遅延時m」を調
節するものである。
The waveform monitoring unit WFM connected to the receiver RFC has two transmission paths with different transmission delay times. , Lx, the difference in reception time of the pulse signals transmitted, that is, the difference in transmission delay time, is calculated by referring to the synchronization signal from the OT variation synchronization signal source VCG.
I'll take it. Therefore, the waveform monitoring unit WFM measures the difference in arrival time between two pulse conditions and outputs it as a signal or an instruction.Anything can be used, for example, the output of a pulse generator that oscillates at a constant frequency. Using a digital counter, start counting with the first pulse signal that arrives, and end the lr number with the L 2 flW +th pulse signal, and compare the -m period of the pulse of the pulse A generator with the number of counted pulses. An example of calculating the transmission delay time difference is given below. The measurement piece of the transmission delay time difference of the waveform control part 1 WFM is returned to the variable synchronization signal generator VCG, and the period of IUI M (No. 5 is set), and the input signal to the receiver RE C is
So that the waveform shown in figure (b) is obtained = +B width pulse pulser ■
The output pulse width of the PG is set, and the output of the variable synchronizing signal generator VCG is transmitted to the discriminator DIC every time the pulse signal transmitted through the reference transmission line reaches the discriminator DIC. In particular, it is used to adjust the delay time m of the variable delay circuit VDC.

なお、可変遅延回路VDCの機能は、判定器DIC又は
可変同期信号発生器VCGの機能中に営ませることがで
きる。ここで、可変同期信号発生6VCGはいずれの伝
送路り。LXの伝送遅延時間よりも充分長い周期の同期
信号を発生するように動作され、アナログ信号あるいは
デジタル信号等を入力するかあるいは手動操作によって
発振周期を調節できる発振器であればどのようなもので
もかまわない。また、可変幅パルス発生器VWPGは、
DJ変同期信号発生器VCGからの信号に同期して二つ
の伝送路の伝送遅延時間差よりも充分短い幅のパルスを
発生するもので rsJ変同期信号発生器VCGと同様
の手段でパルス幅を調節できかつ入力した同期信号にし
たがってパルス信号を発生するものならば何でもよい。
Note that the function of the variable delay circuit VDC can be performed during the function of the determiner DIC or the variable synchronization signal generator VCG. Here, the variable synchronization signal generator 6VCG is connected to either transmission path. Any oscillator may be used as long as it is operated to generate a synchronizing signal with a cycle sufficiently longer than the transmission delay time of the LX, and the oscillation cycle can be adjusted by inputting an analog signal or digital signal, or by manual operation. do not have. In addition, the variable width pulse generator VWPG is
It synchronizes with the signal from the DJ variable sync signal generator VCG and generates a pulse with a width sufficiently shorter than the transmission delay time difference between the two transmission lines.The pulse width is adjusted by the same means as the rsJ variable sync signal generator VCG. Any device may be used as long as it can generate a pulse signal in accordance with the input synchronization signal.

可変遅延回路VDCは、発生器VCG。The variable delay circuit VDC is a generator VCG.

VWPGと同様のものでパルス信号の遅延時間を調節で
きるものであればよく、遅延線路のように都実信号を遅
延させるものでも、また二個の単安定マルチバイブレー
タを使用してパルス信号を再発生させるようなものでも
よい。
Any device similar to VWPG that can adjust the delay time of the pulse signal may be used, or it may be something like a delay line that delays the signal, or it may be possible to regenerate the pulse signal using two monostable multivibrators. It may be something that causes it to occur.

第6図は第5図と同様の信号処理を行なうための信号処
理制御部sPcの一例である。第6図において、CPは
中央制飴1部であり、これは例えば信号の授受を行なう
イノターフエースを備えたマイクロプロセツサ、ばニラ
/ピユータなどである。帯域通過フィルタBPF、検波
器DET、駆動部DRVは第5図に示すものと同じで良
い。波形監視部WFMは例えは計時器でデジタル計数器
と一定周波数で発振するパルス発生器を用いて実現でき
る。ここでは二つのパルス信号が到着する時刻間のパル
ス発生数を計数し適当な換算を行なえば良い。司変同ル
]信舛発生1fflVcGとしては、アナログ信号ある
いはデジタル信号等を入力することによって発振周期を
調節できる発振器であれはいかなるものでもよい。また
、可変幅パルス発生器VWPGは入力した同期信号に従
ってパルス信号を発生し、可変同期信号発生器VCGと
同様の信号を入力してパルス幅を設定できるものであれ
はなんでもUい。
FIG. 6 shows an example of a signal processing control section sPc for performing signal processing similar to that shown in FIG. In FIG. 6, CP is the central control unit 1, which is, for example, a microprocessor, vanilla/computer, etc. equipped with an innoturface for sending and receiving signals. The bandpass filter BPF, detector DET, and drive unit DRV may be the same as those shown in FIG. The waveform monitoring unit WFM can be realized, for example, in a timer using a digital counter and a pulse generator that oscillates at a constant frequency. Here, it is sufficient to count the number of pulses generated between the times when the two pulse signals arrive and perform an appropriate conversion. As the signal generator 1fflVcG, any oscillator whose oscillation period can be adjusted by inputting an analog signal or digital signal may be used. Further, the variable width pulse generator VWPG generates a pulse signal according to the input synchronization signal, and any device that can set the pulse width by inputting the same signal as the variable synchronization signal generator VCG is suitable.

受信器RECO受1g出力信号を帯域通過フィルタBP
Ii’と波形監視部WFMを入力すると、帯域通過フィ
ルタBPFでは受信出力信号中から基本波1g号成分が
抽出される。この基本波信号成分は増幅器A1 で増幅
され、更に検波6DETによシイd号成分の振幅に対応
する低周波信号紮待て、増幅器A2 を介してこの低周
波(i号は中央処理部CPに入力される。中央処理部C
Pではこの低周波1h号をもとに駆動部f)RVを介し
て可変減衰器VAの減衰付′f:調β白する。測定手順
としては、まず増幅器A2 の出力信号レベルがある一
定の判定基準以上の場合、可変減衰器VAの減衰量をわ
ずかに大キくシ、これに基づき増幅器A2 の出力信号
レベルが減少したとき増幅器A2 の出力信号レベルに
対応した適当針だけ減衰量を増し、逆に減衰量をわずか
に大きくしたとき増幅器A2 の信号レベルが増加する
と適当鼠減衰量會減らしており、こうして増幅6A2 
の出力信号レベルが判定基準以下になるまで同様の操作
を繰返す。このときの最終的な減衰量と被測定伝送路以
外の測定系の既知の特性とから被測定伝送路の特性を知
る。
Receiver RECO receiver 1g output signal band pass filter BP
When Ii' is input to the waveform monitoring unit WFM, the bandpass filter BPF extracts the fundamental wave 1g component from the received output signal. This fundamental wave signal component is amplified by the amplifier A1, and then a low frequency signal corresponding to the amplitude of the d component is detected by the detector 6DET. Central processing unit C
At P, the attenuation of the variable attenuator VA is adjusted based on this low frequency signal 1h via the drive unit f) RV. The measurement procedure is to first increase the attenuation of the variable attenuator VA slightly when the output signal level of amplifier A2 exceeds a certain criterion, and based on this, when the output signal level of amplifier A2 decreases. The attenuation amount is increased by an appropriate amount corresponding to the output signal level of amplifier A2, and conversely, when the attenuation amount is slightly increased, as the signal level of amplifier A2 increases, the attenuation amount is decreased by an appropriate amount.
The same operation is repeated until the output signal level of becomes below the determination standard. The characteristics of the transmission line to be measured are known from the final attenuation amount at this time and the known characteristics of the measurement system other than the transmission line to be measured.

一方、帯域通過フィルタBPFに接続された波形監視部
WF’Mは、受信出力信号中3図(b)に示した波形に
できるだけ近いものとして本減衰量調節法に適させるた
め補助動作をする。つまり、中央処理部CPは、まず両
伝送路の伝送遅延時間より充分長い周期の同期伯吟を発
生するように可変同期信号発生器VCGに命令を送る。
On the other hand, the waveform monitoring section WF'M connected to the bandpass filter BPF performs an auxiliary operation in order to make the received output signal as close as possible to the waveform shown in FIG. 3(b) to be suitable for this attenuation amount adjustment method. That is, the central processing unit CP first sends a command to the variable synchronization signal generator VCG to generate a synchronization signal having a cycle sufficiently longer than the transmission delay time of both transmission lines.

同時に中央処理部CPはi11変幅パルス発生g=vw
pcに指令し、ここでは幅の極めて狭いパルスを口]変
同期信号発生器V C: Gからの同期信号に同期して
発生する。可変幅パルス発生器VWPGが発生する長周
期の短パルスに従い、信号源SGは短パルス信号を発生
する。この信号はそれぞれの伝送路LXLo を伝送【
7てそれぞれの伝送遅延時間の差だけ離れた2個のパル
ス信号として受信器RFCで受信され、更に波形監視部
WFMに送られる。波形監視部WFMは中央処理部CP
の命令に従って二個のパルス信号の到達時間差を測定し
、中央処理部CPにその結果を送る。この結果に基づき
、中央処理部CPでは口1変量期信号発生器VCGと可
変幅パルス発生6 V W P Gに命令を送り、それ
ぞれ同期信号の周期を前記遅延時間差の2倍としてパル
ス幅を遅延時間差に等しく設定する。こうして、第4図
(b>に示す理想的な受信出力信号が得られる。
At the same time, the central processing unit CP generates an i11 variable width pulse g=vw
pc, here a pulse with an extremely narrow width] is generated in synchronization with the synchronization signal from the variable synchronization signal generator V C:G. The signal source SG generates a short pulse signal in accordance with the long period short pulse generated by the variable width pulse generator VWPG. This signal is transmitted through each transmission line LXLo [
7, the pulse signals are received by the receiver RFC as two pulse signals separated by the difference in their transmission delay times, and further sent to the waveform monitoring unit WFM. The waveform monitoring unit WFM is the central processing unit CP.
The arrival time difference between the two pulse signals is measured according to the command, and the result is sent to the central processing unit CP. Based on this result, the central processing unit CP sends a command to the univariate period signal generator VCG and the variable width pulse generator 6VWPG, respectively, to delay the pulse width by setting the period of the synchronization signal to twice the delay time difference. Set equal to the time difference. In this way, the ideal received output signal shown in FIG. 4(b>) is obtained.

先述した(2)に対応する信号処理法すなわち、受信出
力信号中からフィルタを用いて交流信号成分を抽出し、
同交流信号成分の平均振部に対応するレベルの直流信号
を得て、この血流信号のレベルの絶対値が最小となるよ
う可変減衰器VAの減衰器を調節するだめの信号処理制
御部につき船、明する。この信号処理制御部SPCとし
ては、第5図および第6図に示し7た構成例において帯
域通過フィルタBPFO代りに直流成分だけをしゃ断す
る高域フィルタあるいは直流成分と不必要な高域周波数
成分を除去する帯域通過フィルタ、に置換したものを例
示できる。7前述した(1)の信号処理法を実行する1
5号処理制御部spc <第5図、第6図)とこの(2
)の信号処理法を実行する信号処理11i1J御部SP
Cとの差違は、次の如くである。すなわちtl)の信号
処理法にあっては被測定伝送路と基準、伝送路の伝送遅
延時間の差で決まる受信出力信号の基本周波数の第2詞
波以上全しゃ断する必要があるため、1個の帯域通過フ
ィルタBPFで対応できる画伝送路長の差の範囲は高7
々1オクターブ未満である。したがって(1)では広範
囲の伝送路長差に対応させて測定するためには、通過帯
域の異なるフィルタを複数個用意してスイッチで切替え
て使用するか又は交換して使用する必狭がある。これに
対して、(2)の信号処理法にあっては原理的には1個
の帯域通過フィルタで任意の伝送路長差に対応できる。
A signal processing method corresponding to the above-mentioned (2), that is, extracting AC signal components from the received output signal using a filter,
The signal processing control unit obtains a DC signal at a level corresponding to the average amplitude part of the AC signal component and adjusts the attenuator of the variable attenuator VA so that the absolute value of the level of this blood flow signal is minimized. The ship is clear. As this signal processing control unit SPC, in the configuration example 7 shown in FIGS. 5 and 6, a high-pass filter that blocks only the DC component or a high-pass filter that blocks only the DC component or a high-pass filter that blocks the DC component and unnecessary high frequency components is used instead of the bandpass filter BPFO. An example may be a band-pass filter to remove the filter. 7 Executing the signal processing method of (1) mentioned above 1
No. 5 processing control unit spc <Fig. 5, Fig. 6) and this (2
) Signal processing 11i1J Obe SP that executes the signal processing method of
The differences from C are as follows. In other words, in the signal processing method of tl), it is necessary to completely cut off the second wave of the fundamental frequency of the received output signal, which is determined by the difference in transmission delay time between the transmission line under test, the reference, and the transmission line. The range of difference in image transmission path length that can be handled by the bandpass filter BPF is 7.
Each is less than one octave. Therefore, in (1), in order to make measurements that correspond to a wide range of transmission path length differences, it is necessary to prepare a plurality of filters with different passbands and use them by switching them with a switch or by replacing them. On the other hand, in the signal processing method (2), in principle, one band-pass filter can deal with any difference in transmission path length.

1だ、信号処理法+1+では受信出力信号に多少の空き
時間があってもその影響をフィルタで軽減できるのであ
るが、信号処理法(2)ではこの空き時間が測定精度に
直接影響する。
In signal processing method (1), even if there is some idle time in the received output signal, the effect of this can be reduced by a filter, but in signal processing method (2), this idle time directly affects measurement accuracy.

第7図は先述した信号処理法(3)である三番目の9!
l *示したものであシ、すなわち受信出力信号と同周
期の正弦波信号とを掛算器に入力して積を作り、受信出
力信号かパ含まれる基本波信号成分の振幅に比例するレ
ベルの直流信号成分を、tll ’p−器の出力からフ
ィルタで抽出し、この直流1g号のレベルの絶対値が最
小となるように可変減衰器VAの減衰量を調節する信号
処理制御部SPCを示している。第7図において、HP
Fは高域通過フィルタで受(g出力信号中の19.原信
号をしゃ断するものであp%PRDは二つの入力信号の
積に比例した信号を出力する掛算器である。また、LP
Fは低域通過フィルタ、CRLは可変減衰器VA用の減
衰量制御部である。s。
Figure 7 shows the third 9! which is the signal processing method (3) mentioned above.
l * In other words, input the received output signal and a sine wave signal of the same period to a multiplier to create a product, and calculate the received output signal and the level proportional to the amplitude of the included fundamental signal component. The signal processing control unit SPC extracts the DC signal component from the output of the tll 'p-device with a filter and adjusts the attenuation amount of the variable attenuator VA so that the absolute value of the level of this DC No. 1g becomes the minimum. ing. In Figure 7, HP
F is a high-pass filter that cuts off the 19. original signal in the output signal, and p%PRD is a multiplier that outputs a signal proportional to the product of two input signals.Also, LP
F is a low-pass filter, and CRL is an attenuation control section for the variable attenuator VA. s.

tま人力信号に同期して発振し正弦波信号を出力する1
iNJ期発振器、VPSは正弦波信号の位相を変える口
」変移相姦である。
Oscillates in synchronization with the human power signal and outputs a sine wave signal 1
The iNJ phase oscillator, VPS, is a "shifting incest" that changes the phase of the sine wave signal.

実除の111+1定の準備として、波形監視部WFM、
司変量ル11ぎ号発生器VCG、可変幅パルス発生器V
WPGを用いて二つの伝送路の伝送遅延時間差を測定し
、用度同期信号発生器VCGの出力信号の同期とり震幅
パルス発生器VWPGの出力パルス幅とをそれぞれ上記
時間差の2倍および1倍として第4図(b)と類似の1
ご号波形となるようにする。
In preparation for the actual division of 111+1, the waveform monitoring unit WFM,
Controller number generator VCG, variable width pulse generator V
The transmission delay time difference between the two transmission paths is measured using WPG, and the output pulse width of the synchronization signal generator VCG and the output pulse width of the vibration amplitude pulse generator VWPG is twice and once the above time difference, respectively. 1 similar to Figure 4(b) as
The waveform should be as follows.

つぎに、受信器RECの出力する受信出力信号から高域
通過フィルタl(P Fで直流成分を除去し、史に増幅
器A1 にて増幅して掛′Ji4.鴫PRDに入力する
。この掛n器PRDへの他の一力の入力は用度同期信号
発生器VCGの出力を同期発振R’i s o vc大
入力、この発振器80からの正弦波18号の位相を可変
移相器vPSにて調節したものを用いる。掛算器PRD
の出力から低域通過フィルタLPF會用いて直流成分全
抽出すると受信出力信号の基本波カン分の振幅に比例す
るレベルの1d号が得られる。可変移相器VPsの移相
量a、との移相器■PSの出力と増幅器A1 の出力と
が同相又は逆相となって、血流信号のレベルの絶対値が
最大となるように調節する。この信号処理法においては
、掛算器PRDの二つの入力の位相関係ヲー足に保って
おけは、iM流倍信号符号によっていずれの伝送路を伝
送された信号レベルが大きいかを判断できる。したがっ
て、増幅器A2 で増幅された直流1g号のレベルと符
号とを参考にして、この信号レベルの絶対仙が最小とな
るように減衰音制御部CRLにて可変減衰器VAの減衰
量を調節することができる。
Next, a high-pass filter l (PF) removes the DC component from the received output signal output from the receiver REC, and the amplifier A1 amplifies the signal and inputs it to the multiplier PRD. The other input to the oscillator PRD is the output of the synchronization signal generator VCG as the synchronous oscillation R'is o vc large input, and the phase of the sine wave No. 18 from this oscillator 80 is input to the variable phase shifter vPS. Multiplier PRD
When all DC components are extracted from the output using a low-pass filter LPF, a signal 1d having a level proportional to the amplitude of the fundamental wave can of the received output signal is obtained. The phase shift amount a of the variable phase shifter VPs is adjusted so that the output of the phase shifter PS and the output of the amplifier A1 are in phase or in opposite phases, and the absolute value of the level of the blood flow signal is maximized. do. In this signal processing method, if the phase relationship between the two inputs of the multiplier PRD is maintained, it can be determined which transmission path the signal level transmitted through is higher based on the iM multiplication signal code. Therefore, with reference to the level and sign of DC No. 1g amplified by amplifier A2, the attenuation amount of the variable attenuator VA is adjusted by the attenuation sound control unit CRL so that the absolute value of this signal level is minimized. be able to.

第8図ね第7図と同様信号処理法(3)を実行するだめ
の信号処理制御部SPCの構成例である。
FIG. 8 is a configuration example of a signal processing control unit SPC for executing the signal processing method (3), similar to FIG. 7.

第8図中、VDC、DRV、CP以外に:第7図の構成
例と同様の1ift 5V、を示す。ここで、DRVは
n1変減衰器VAの減衰量を調節する駆動部、VDCは
b]変変量悄峙発生器■CGの出力を適当に遅延して同
期発振器SOに伝達するpl変遅延回路、CPは各回路
間で情報の送受信を行ないこれらの動作を制御する中央
処理部である。
In FIG. 8, in addition to VDC, DRV, and CP: 1ift 5V, which is similar to the configuration example in FIG. 7, is shown. Here, DRV is a drive unit that adjusts the attenuation amount of the n1 variable attenuator VA, and VDC is a pl variable delay circuit that appropriately delays the output of CG and transmits it to the synchronous oscillator SO. CP is a central processing unit that transmits and receives information between each circuit and controls these operations.

第7図に示した例では、可変移相器■PSを用いていた
のに苅し、第8図に示した例では司変蹄延回路VDC’
c−用いており、これによって同期発振器SOを同期さ
せている。1だ、第8図の例では全ての操作を中央処理
部CPが行なっている。これらの点が第7図の例とは異
なるものの動作手順、各構成要素の機能は同じである。
In the example shown in FIG. 7, the variable phase shifter PS is used, but in the example shown in FIG.
c- is used to synchronize the synchronous oscillator SO. 1. In the example shown in FIG. 8, all operations are performed by the central processing unit CP. Although these points differ from the example shown in FIG. 7, the operating procedure and the functions of each component are the same.

こうして、第7図および第8図にて示1′信号処理制御
部SPCでは原理的に1個の高域通過フィルタRPFと
低域通過フィルタLPFとで基準伝送路との伝送遅延時
間差が$以外の被1Ii11足伝送路を対象としだ測定
に対応できる。また、尚域刈過フィルタH,P F k
適当な帯域を持つ帯域通過フィルタで直換し、掛算器P
RD−\の入力信号中から不要周波数I3シ1分を除く
ことも可能である。
In this way, in the 1' signal processing control unit SPC shown in FIGS. 7 and 8, in principle, one high-pass filter RPF and one low-pass filter LPF have a transmission delay time difference with respect to the reference transmission path other than $. It is possible to perform measurements on 1Ii11 transmission lines. Moreover, the area-cutting filter H, P F k
Direct conversion using a bandpass filter with an appropriate band, and multiplier P
It is also possible to remove the unnecessary frequency I3S1 from the input signal of RD-\.

前述した(4)の信号処理法を実行づ”る(6号処理制
伍11部SPCは、受信出力9丹からフィルタによって
交流信号成分を抽出し、この交流イb号成分の2乗に比
例する信号を掛算器で作り、この掛算器からの出力信号
からフィルタによって抽出した前記交流信号成分の電力
に比例するレベルの11流信号の絶対値が最小となるよ
うに可変減衰器VAの減衰量を調節する信号又は指示音
出力するものである。つまシ、信号処理部SPCの構成
例としては、第7図および第8図において可変移相器V
PS、OJ変遅延回路VDC1同期発振器SOを除去し
、高域通過フィルタHRFの出力信号を二つに分けて掛
5G6PRDの二人力信号とすれはよい。この場合、低
域通過フィルタLPFのJt−′7’ 出力信号だけで
は、いずれの伝送路を伝送aれた信号のレベルが太きい
かを判断できないので、手動操作又は中央処理部CPに
よる試行によって減衰量をいずれかの方向に変化させれ
ば、低域通過フィルタLPFの出力が減少するのかを判
断する必要がある。
The above-mentioned signal processing method (4) is executed. A signal is generated by a multiplier, and the attenuation amount of the variable attenuator VA is adjusted so that the absolute value of the 11 current signal at a level proportional to the power of the AC signal component extracted by a filter from the output signal from the multiplier is minimized. As an example of the configuration of the signal processing unit SPC, in FIGS. 7 and 8, the variable phase shifter V
It is better to remove the PS, OJ variable delay circuit VDC1 synchronous oscillator SO, and divide the output signal of the high-pass filter HRF into two to create a two-manufactured signal of 5G6PRD. In this case, it is not possible to determine which transmission line has the higher level of the signal transmitted through only the Jt-'7' output signal of the low-pass filter LPF. It is necessary to determine whether changing the attenuation amount in either direction will reduce the output of the low-pass filter LPF.

第5図から第8図までに(g号処理制御部SPCにおい
ては、最終的にはほぼ直流とみなせる低部波信号のレベ
ルによって可変減衰器の減衰量の調整又はその方向を判
断している。このため。
From Fig. 5 to Fig. 8 (in the g processing control unit SPC, the adjustment of the amount of attenuation of the variable attenuator or its direction is ultimately determined based on the level of the low frequency signal that can be regarded as almost direct current. .For this reason.

検波器DETあるいL拙1算器PROり後の直流信号処
理要素におけるオフセットとその変動は測定精度に影響
する。ところが、それ以前の処理段階ではオフセット及
びその変動共に全く問題とならないから、この段階にて
信号を充分増幅しておけは後段の直流レベルに関する問
題を緩和できる。同時に、これら交流信号を扱う部分で
は、ダイナミンクレンジの点でも直流レベルを扱う処理
法と比較して有オリとなる。更に、全ての信号処理制御
部において、増幅器の利得、フィルタの減衰量の変動、
及び掛算器の非線形性は、測定誤差に直接影響しない、
、また、上記実施例は比@1lil定法であるから信号
諒SG、受信器RECの特性変動は比較処理により軽減
される。
Offsets and fluctuations thereof in the DC signal processing elements after the detector DET or the LSI calculator PRO affect measurement accuracy. However, since neither the offset nor its fluctuation poses a problem at all in the processing stage before that, if the signal is sufficiently amplified in this stage, problems related to the DC level in the subsequent stage can be alleviated. At the same time, the parts that handle these AC signals have a superior dynamic range compared to processing methods that handle DC levels. Furthermore, in all signal processing control sections, variations in amplifier gain and filter attenuation,
and the nonlinearity of the multiplier does not directly affect the measurement error,
Furthermore, since the above embodiment uses the ratio @1lil constant method, the characteristic fluctuations of the signal SG and the receiver REC are reduced by the comparison process.

第9図は第2図に対応した例であるが、IsL、。FIG. 9 is an example corresponding to FIG. 2, but IsL.

l5L2はそれぞれアイソレータ、I、aは句加伝送路
である。アイソレータl5L1. l5L2は図中矢印
方向にのみ低損失で信号全伝達し、信号紅路上の各構成
要素からの反射、あるいは2個の伝送路間の信号の漏洩
による測定軸度の劣化を阻止するものである。−例とし
て、電気・光信号用共いわゆるファラテー回転全利用し
たアイソレータを用いればよい。付加伝送路La は特
性が既知であり、伝送遅延時間を調整する役割を果す。
15L2 are isolators, and I and a are adder transmission lines. Isolator l5L1. l5L2 transmits all signals with low loss only in the direction of the arrow in the figure, and prevents deterioration of measurement axis due to reflection from each component on the signal path or signal leakage between two transmission paths. . - As an example, an isolator that fully utilizes the so-called Faraday rotation may be used for both electrical and optical signals. The additional transmission line La has known characteristics and plays the role of adjusting the transmission delay time.

つまり、付加伝送路Laの伝送遅延時間を基準伝送路L
Oのそれよシ長くしておけば、任意の長さの被測定伝送
路LXの特性を測定できる。
In other words, the transmission delay time of the additional transmission line La is
By making it longer than that of O, it is possible to measure the characteristics of a transmission line LX to be measured of any length.

更に、伝送遅延目間の差を充分大きくしておけは、受信
出力信号の周期が長くなるから、信号処理制御部SPC
としては低周波信号を処理できるもので充分となる。句
加伝送路1.a としては、基準伝送路LO1被測定伝
送路LX と同様のもので足りるが、全く同じである必
要はない。
Furthermore, if the difference between the transmission delay intervals is made sufficiently large, the period of the received output signal will become longer, so the signal processing control unit SPC
As such, one that can process low frequency signals is sufficient. Phrasal addition transmission line 1. As a, it is sufficient that it is the same as that of the reference transmission line LO1 and the transmission line under test LX, but it is not necessary to be exactly the same.

被画定伝送路I、xが特に多モード元ファイノく伝送路
の場合、セ」加伝送路’laは遅延機能の外にモードス
クラノブラーとしての機能も持たせられる。また、付加
伝送路la とアイソレータl5L1. l5L2とは
同時に使用する必要はない。
In particular, when the defined transmission paths I and x are multimode transmission paths, the secondary transmission path 'la is provided with the function of a mode scrubber in addition to the delay function. Additionally, additional transmission line la and isolator l5L1. It is not necessary to use it at the same time as l5L2.

第10し1は元伝送路會対象とした実施例で、第2図に
示す分割器りを除りば他は同じである。
No. 10-1 is an embodiment targeted at the original transmission line, and the rest is the same except for the divider shown in FIG.

ここで、信号源SGは出力信号に関しては第2図の実施
例のものと同じであるが栴造と機能が一部異なる。この
信号源SGは第11図の破線部分である。第11図にお
いて、LAMはレーザ活性媒質、EXは励起部、MR1
MR2は半透鏡で、これらがレーザ発振器を構成する。
Here, the signal source SG has the same output signal as that of the embodiment shown in FIG. 2, but some functions are different from that of the signal source SG. This signal source SG is indicated by the broken line in FIG. In FIG. 11, LAM is the laser active medium, EX is the excitation part, and MR1
MR2 is a semi-transparent mirror, and these constitute a laser oscillator.

また。Also.

L1L2はレンズ系であり、半透疑、MR11VLR2
から出射するレーザ光をそれぞれ基準伝送路LOと被画
定伝送路I、x とに4人する。レーザとしては、半専
体レーザ、固体レーザ等いかなるものでもよく、また共
振器を構成する反射鏡は3餉は上でもよく、リノグレー
ザのようなものでもよい。
L1L2 is a lens system, semi-transparent, MR11VLR2
Four people direct the laser beams emitted from the reference transmission line LO and the defined transmission lines I and x, respectively. The laser may be of any kind, such as a semi-dedicated laser or a solid-state laser, and the reflecting mirror constituting the resonator may have three cylindrical tops, or may be of a type such as a lino laser.

第10図に示す結合器Cとしては、第2図における説明
中での偏光プリズム類等を使用しても良いが、第12図
に示す結合器を使用すれば要素数が少ない安定な測定糸
を構成できる。第12図において、L1L2は分布屈折
率レンズなどのレンズ系であシ、受光素子PDでは可変
減衰器VAと被測定伝送路Lxのそれぞれの出力光がレ
ンズ系り、L2を辿ってその受光面上に集光される。受
光面では受光面上に集光する各光線と受光面の法面とが
一平面上にならないように互いのなす角度を調整すれば
、二つの伝送路間の信号の漏洩を低減できる。また、結
合器Cとしてはレンズ系L1L2を使用せずに、例えば
元ファイバ端から出射する元を直接受光面に照射しても
よい。
As the coupler C shown in FIG. 10, polarizing prisms etc. described in FIG. 2 may be used, but if the coupler shown in FIG. can be configured. In Fig. 12, L1L2 is a lens system such as a distributed refractive index lens, and in the light receiving element PD, the output light from the variable attenuator VA and the transmission line under test Lx passes through the lens system and follows L2 to its light receiving surface. The light is focused on the top. On the light receiving surface, by adjusting the angles formed by each light beam condensed on the light receiving surface and the slope of the light receiving surface so that they are not on the same plane, leakage of signals between the two transmission paths can be reduced. Further, as the coupler C, the light emitted from the end of the original fiber may be directly irradiated onto the light receiving surface without using the lens system L1L2.

第13図は第9図に示す実施例と同様の機能を備えるも
のであるが、第10図に示す構成に付加伝送路La と
アイソレータISL、 、 l5L2を加えた構成を有
する。
13 has the same functions as the embodiment shown in FIG. 9, but has a configuration in which an additional transmission line La and isolators ISL, ISL, 15L2 are added to the configuration shown in FIG.

第14図は二つの伝送路それぞれを伝送した信号をスイ
ッチSWで切替えて交互に受信するようにした例を示す
。信号源SGは矩形パルス状の信号を発生するものでも
良いが連続信号を発生するのが望ましい。この連続信号
としては1自流、無変調あるいは被変調の交流信号、無
変調あるいは被変調の連続光信号等がある。スイッチS
Wは各伝送路を伝送された信号源SGの出力信号を信号
処理制御部SPCからの指令に従い交互に周期的に受信
器RECに伝達する。
FIG. 14 shows an example in which signals transmitted through two transmission paths are switched by a switch SW and received alternately. Although the signal source SG may generate a rectangular pulse-like signal, it is preferable that the signal source SG generates a continuous signal. This continuous signal includes a single current, an unmodulated or modulated alternating current signal, an unmodulated or modulated continuous optical signal, and the like. switch S
W alternately and periodically transmits the output signal of the signal source SG transmitted through each transmission path to the receiver REC in accordance with a command from the signal processing controller SPC.

このため、信号源SGの出力信号は連8信号か又はスイ
ッチSWと同期する同期的な矩形パルス状信号であり、
これらの信号は分割器りを介して被測定伝送路Lx と
基準伝送路Iio とに同時に送出される。信号処理制
御部SPCは、受信器RFCが出力する周期的受信信号
の交流信号成分及び基本波成分のうち少なくとも一方の
Therefore, the output signal of the signal source SG is a series of 8 signals or a synchronous rectangular pulse-like signal synchronized with the switch SW,
These signals are simultaneously sent to the transmission line under test Lx and the reference transmission line Iio via the divider. The signal processing control unit SPC controls at least one of the AC signal component and the fundamental wave component of the periodic reception signal output by the receiver RFC.

振幅又は電力に対応したレベルの直流信号を作り出し、
この血流信号レベルの絶対値が最小となるように可変減
衰器VAの減衰量を調節するための必要な信号又は指示
を出力する。こうして、可変減衰量と被測定伝送路Lx
 、51外の各構成要素の既知の特性により、被測定伝
送路の特性を得ることができる。信号処理制御部SPC
としては、第15図から第17図に示す(h成例のもの
をあけることができる。第15図は第5図に対応する構
成例で、CGFi、同期信号発生器、PGはパルス発生
器、DCは遅延回路である。
Creates a DC signal with a level corresponding to the amplitude or power,
A necessary signal or instruction for adjusting the amount of attenuation of the variable attenuator VA is output so that the absolute value of this blood flow signal level is minimized. In this way, the variable attenuation and the transmission line under test Lx
, 51, the characteristics of the transmission line to be measured can be obtained from the known characteristics of each component other than 51. Signal processing control unit SPC
As shown in Fig. 15 to Fig. 17 (h example can be opened. Fig. 15 is a configuration example corresponding to Fig. 5. , DC is a delay circuit.

第5図のものとは異なり可変同期信号発生器VCG%o
J変幅パルス震幅器VWP G、盲丁変遅延回路VDC
は固定機能のもので良くスイッチSWの切替えにより受
信出力信号を周期信号としている。第16図および第1
7図に示す回路にあっても第15図と同様移相器PS會
も含めて固定機能のもので良い外、第6図、第7図に示
す波形監視部WFMは必要なくなりこれに付随する動作
も不必要となる。スイッチSWとしてはそこを通る信号
が受ける損失に変動力よあるとき。
Variable synchronizing signal generator VCG%o, unlike the one in Figure 5.
J variable width pulse amplitude device VWP G, blind variable delay circuit VDC
may have a fixed function, and the reception output signal is made into a periodic signal by switching the switch SW. Figure 16 and 1
Even in the circuit shown in Fig. 7, it is sufficient to have a fixed function including the phase shifter PS, as in Fig. 15, and the waveform monitoring unit WFM shown in Figs. 6 and 7 is no longer necessary. The operation is also unnecessary. As for the switch SW, when there is a fluctuation in the loss that the signal passing through it receives.

d)11定精度に直接影響するから、この変動が少ない
ものを使用する必要がある。
d) 11 Since it directly affects the constant accuracy, it is necessary to use one with little variation.

第18図は第14図と同様受信側にスイッチを用いた例
であるが、第9図に示す例と同様アイソレータl5L1
. l5L2および付加伝送路Laを加えた構成を有す
る。
FIG. 18 is an example in which a switch is used on the receiving side like in FIG. 14, but like the example shown in FIG.
.. It has a configuration in which 15L2 and an additional transmission line La are added.

第19図は第14図と同様受信側にスイッチを用いた例
であるが、第14図に示す信号源SGと公印1器りとを
第10図に示す信号源で置き力為え、この信号源から直
接二つの伝送路に信号を送る構成とした例であり、動作
・機能は第16図のものと同様である。
Figure 19 is an example in which a switch is used on the receiving side as in Figure 14, but by placing the signal source SG shown in Figure 14 and official seal 1 with the signal source shown in Figure 10, This is an example of a configuration in which signals are sent directly from a signal source to two transmission lines, and the operation and function are similar to those in FIG. 16.

第20図は第19図に示した61)数例にアイル−タl
5L1. l5L2および伺加伝送路La を加えた例
を示しておシ、しかもここでは用f#:W器VAを被測
定伝送路LX側に配置している。
Figure 20 shows the 61) example shown in Figure 19.
5L1. An example is shown in which 15L2 and the transmission line La are added, and in this case, the f#:W device VA is placed on the side of the transmission line under test LX.

第21図は信号源SGの出力1a゛号をスイッチを用い
て基準伝送路LOと扱唄11定伝送路I、x とに交互
に周期的に送出するようにしだ例をホす。
FIG. 21 shows an example in which the output 1a' of the signal source SG is alternately and periodically sent to the reference transmission line LO and the constant transmission lines I and x using a switch.

この例ではスイッチSWが送信側に配置されていること
を除けば、第14図に示す例と同じである。1ぎ号処理
制御部SPCの出力する→i4令悟号に什いスイッチS
Wはイ=号源SGの出力信号を被測定伝送路Lx と基
準伝送路1.o とに交互に周期的に送出する。それぞ
れの伝送路を辿った1ぎ舛は結合器Cによシ両方共受信
器RECにて受信される。受1ぎ器RECの受信出力信
号中の交流信号成分又は基本波成分のうち少なくとも一
方の振幅又は車力に対応するレベルの血流信号を作り出
し、この向流信号のレベルの絶対flliを最小とする
ように司変減艮器VAの減衰音を調部する1菖号又は指
示を1H号処理制御部SPCが出力づ−る。調節後の可
変減衰器VAの減衰量と被測シiテ伝送路Lx 、IJ
外の既知の特性から被測定伝送路のも性を測定する。信
号源SGの出力信号は無変調あるいは被変調の交流信号
あるいは血流1ぎ号で、連続信号であることが望ましい
This example is the same as the example shown in FIG. 14, except that the switch SW is placed on the transmitting side. Output from the 1st number processing control unit SPC → Switch S for the i4 Reigo number
W is the output signal of the signal source SG to the transmission line under test Lx and the reference transmission line 1. o and periodically. The segments that have followed the respective transmission paths are received by the coupler C and both are received by the receiver REC. A blood flow signal with a level corresponding to the amplitude or vehicle force of at least one of the AC signal component or the fundamental wave component in the received output signal of the receiver REC is created, and the absolute fli of the level of this countercurrent signal is minimized. The 1H processing control unit SPC outputs the 1st number or instruction for adjusting the attenuation sound of the simulator VA to adjust the attenuation sound. Attenuation amount of variable attenuator VA after adjustment and transmission line Lx, IJ
Measures the strength of the transmission line under test from known characteristics. The output signal of the signal source SG is an unmodulated or modulated alternating current signal or blood flow signal, and is preferably a continuous signal.

信号処理制例部SPCとしては、第5図から第8図に示
した構成例において、波形監視部WFMとこれに付随す
る動作を除きかつn1変幅パルス発生器VWPGの出力
信号でスイッチSWを駆動する例があけられる。この場
合、可変幅パルス発生器VWPGと可変同期信号発生器
VCGは固定機能としてもよいが、可変移相器VPS、
可変遅延回路VDCは被測定伝送路LXの長さが種々変
ることを考えると可変機能としておくのが望ましい。
As for the signal processing control section SPC, in the configuration examples shown in FIGS. 5 to 8, the waveform monitoring section WFM and associated operations are excluded, and the switch SW is activated by the output signal of the n1 variable width pulse generator VWPG. A driving example is provided. In this case, the variable width pulse generator VWPG and the variable synchronizing signal generator VCG may have fixed functions, but the variable phase shifter VPS,
Considering that the length of the transmission line LX to be measured varies, it is desirable that the variable delay circuit VDC has a variable function.

第22図は第9図に示す例と同様に第21図の例に1加
伝送りJLa とアイソレータISI、□。
Similar to the example shown in FIG. 9, FIG. 22 shows the example of FIG. 21 with one addition JLa and isolator ISI, □.

ISし2を付加した例を示している。An example in which IS and 2 are added is shown.

上述した実施し11では、■スイッチを使用しない構成
、■受信側にスイッチを使用する(A成、■送信側にス
イッチを使用する拍数に分けられる。これ以外にも送1
B側、受1g側両方にスイッチを用いた構成も可能であ
る。■のh4成は受信出力信号が二つの伝送路の伝送連
列2時間差によって強く束縛され、通過缶板が可変フィ
ルタ又は異なる複叡のフィルタを必要とする。■ILD
栴成は構成f161のスイッチを必要とする代シに受イ
gイぎ号の周期がスイッチの切替動作によって任意に設
定でき固定のフィルタによって狂態の長さの被測定伝送
路Lxに対応できる。G)の忰゛f成はq)と■の構成
の中間的な特徴を不する。士1IjjLのどの構成を用
いるかは使用目的によつ°C決定すれば良い。例えば、
1個の被測定伝送路の特性を長期間又は繰返して測定す
る場合、フィルタの通過周波数帯域の変更は薄れるから
(J4の構1jkが良いのに対し、多独多様な伝送路k
 it’ll定対象とする場合他の■、■の構成が適し
ている。なお。
In the above-mentioned implementation 11, there are three configurations: ■ a configuration that does not use a switch, ■ a configuration that uses a switch on the receiving side (A configuration), and ■ a configuration that uses a switch on the transmitting side.
A configuration using switches on both the B side and the receiver 1g side is also possible. In the h4 configuration (2), the received output signal is strongly constrained by the two-time difference in the transmission series of the two transmission lines, and the passage plate requires a variable filter or a filter with a different complexity. ■ILD
Instead of requiring a switch of configuration f161, the period of the incoming key signal can be arbitrarily set by the switching operation of the switch, and a fixed filter can be used to cope with the transmission line Lx of abnormal length. The structure G) has an intermediate feature between the structures q) and ■. It is only necessary to decide which configuration of 1IjjL to use depending on the purpose of use. for example,
When measuring the characteristics of one transmission line under test over a long period of time or repeatedly, changes in the pass frequency band of the filter will be diminished.
When it'll be a fixed target, the other configurations (2) and (2) are suitable. In addition.

スイッチSWの特性を長期間にわたっであるいは周囲環
境の変化に対応して一定に維持するのは困離であるので
、スイッチの個数は少ない程良い。更に、q)の構成で
付加伝送路に対応する信号遅延機構を用意すれば種々な
物理量に対する比較測定方式として利用できる。
Since it is difficult to maintain the characteristics of the switch SW constant over a long period of time or in response to changes in the surrounding environment, the fewer the number of switches, the better. Furthermore, if a signal delay mechanism corresponding to the additional transmission path is prepared in the configuration q), it can be used as a comparative measurement method for various physical quantities.

以上説明したように本発明によれは、従来と比較して少
数のスイッチを用いるか又は全くスイッチを用いないの
で、より高精度で安定した測定を行なうことができ、ま
た交流として信号処理を行なっているので直流レベルの
変動の影響を受け易く、更に測定系の構成を簡単にでき
るなど多大な効果を奏する。
As explained above, the present invention uses fewer switches or no switches at all than the conventional method, so it is possible to perform more accurate and stable measurements, and it is possible to perform signal processing as an alternating current signal. Because of this, it is easily affected by fluctuations in the DC level, and it also has great effects such as simplifying the configuration of the measurement system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の比較測定方式の一例のブロック図、第2
図ないし第22図は本発明の比較測定方式の実施例で、
第2図はスイッチのない例のブロック図、第3図(a)
 (b)は受信出力信号波形の一例の波形図、第4図(
a) (b) (e)は実施に適する受1g出力信号の
波形図、第5図ないし第8図は信号処理制御部の四つの
例を示すブロック図、第9図はスイッチのない他の例の
ブロック図、第10図はスイッチのない別の実施例のブ
ロック図、第11図は第10図で用いる信号源の一例の
ブロック図、第12図は結合器の一例のブロック図、第
13図はスイッチのない更に他の実施例のブロック図、
第14図は受信側にスイッチを備えた一例のブロック図
、第15図ないし第17図は第14図に示す信号処理制
御部の三つの例のブロック図、第18図は受信側にスイ
ッチを備えた他の例のブロック図、第19図および第2
0図は受信側にスイッチを備えた二つの例を示すブロッ
ク図、第21図;夕よひ第22図は送信側にスイッチを
備えた二つの例を示すブロック図である。 図中、 AlA2A3は増1lIii8器。 BPFは帯域通過フィルタ。 Cは結合器。 ACG、CGは同期信号発生器。 COMPは比較器、 CPは中央処理部。 CRLはト」変域表器の制御部、 DDID2は分割器、 ADC,DCは遅延回路、 DETは検波器。 1) I Cは判定器。 DRVは駆動部。 Exは励起部、 l5L1. l5L2はアインレータ。 L1L2はレノズ糸、 Laは+1加伝送路、 LOは基準伝送路。 LXは被測定伝送路、 LDはレーザダイオード、 LPFは低域通過フィルタ。 MRI M R2は半透鏡。 PDは受光素子、 PGUパルス発生器。 PRDは掛算器。 PSは移相職。 RFCは営信器、 SGは信号源である。
Figure 1 is a block diagram of an example of a conventional comparative measurement method;
Figures 22 to 22 show examples of the comparative measurement method of the present invention,
Figure 2 is a block diagram of an example without a switch, Figure 3 (a)
(b) is a waveform diagram of an example of the received output signal waveform;
a) (b) (e) are waveform diagrams of the receiver 1g output signal suitable for implementation, Figures 5 to 8 are block diagrams showing four examples of the signal processing control section, and Figure 9 is a diagram showing other examples without a switch. FIG. 10 is a block diagram of another embodiment without a switch. FIG. 11 is a block diagram of an example of the signal source used in FIG. 10. FIG. 12 is a block diagram of an example of a coupler. FIG. 13 is a block diagram of yet another embodiment without a switch,
Fig. 14 is a block diagram of an example with a switch on the receiving side, Figs. 15 to 17 are block diagrams of three examples of the signal processing control section shown in Fig. 14, and Fig. 18 is a block diagram of an example with a switch on the receiving side. Block diagrams of other examples with FIGS. 19 and 2
FIG. 21 is a block diagram showing two examples in which a switch is provided on the receiving side; FIG. 22 is a block diagram showing two examples in which a switch is provided on the transmitting side. In the figure, AlA2A3 is an amplifier 1lIiii8. BPF is a band pass filter. C is a coupler. ACG and CG are synchronous signal generators. COMP is a comparator, and CP is a central processing unit. CRL is the control section of the range table, DDID2 is the divider, ADC and DC are the delay circuits, and DET is the detector. 1) IC is a judge. DRV is the drive unit. Ex is an excitation part, l5L1. l5L2 is Ainrater. L1L2 is the Reno's thread, La is the +1 addition transmission line, and LO is the reference transmission line. LX is the transmission line under test, LD is the laser diode, and LPF is the low-pass filter. MRI M R2 is a semi-transparent mirror. PD is a photodetector, PGU is a pulse generator. PRD is a multiplier. PS is a phase shifter. RFC is a transmission device, and SG is a signal source.

Claims (8)

【特許請求の範囲】[Claims] (1) 信号源からの信号を被測定伝送路及び基準伝送
路に送出し、これら伝送路からの信号を1個の受信素子
を有しベースバンド受信信号を出力する受信器にて受け
、この受信器からの周期的信号に含まれる交流信号成分
又は基本波信号成分の少なくとも一方の振幅又は電力に
対応するレベルを有する直流信号を出力する信号処理系
を有する測定系において、上記被測定伝送路及び基準伝
送路の少なくとも一方に再変減衰器を接続し、上記被測
定伝送路及び基準伝送路をそれぞれ通る信号の上記受信
器への到達時間を異ならせて上記二つの伝送路からの信
号を単一の上記受信器で交互に周期的に受信し、この単
一の受信器が出力する周期的信号に対応して上記信号処
理系にて得た直流信号のレベルの絶対値が最小となるよ
うに上記p」変減衰器の減衰量を調節し、この調節後の
減衰量と上記被測定伝送路以外の測定系の特性とから上
記被測定伝送路を測定することを特徴とする比較測定方
式。
(1) Send the signal from the signal source to the transmission line under test and the reference transmission line, and receive the signals from these transmission lines with a receiver that has one receiving element and outputs a baseband reception signal. In a measurement system having a signal processing system that outputs a DC signal having a level corresponding to the amplitude or power of at least one of an AC signal component or a fundamental wave signal component included in a periodic signal from a receiver, the above-mentioned transmission path to be measured. and a reference transmission line, and a re-variable attenuator is connected to at least one of the two transmission lines, and the signals from the two transmission lines are made different in arrival time to the receiver through the measurement target transmission line and the reference transmission line, respectively. The signal is received alternately and periodically by the single receiver, and the absolute value of the level of the DC signal obtained by the signal processing system corresponding to the periodic signal output by the single receiver is the minimum. A comparative measurement characterized in that the attenuation of the variable attenuator is adjusted as follows, and the transmission line under test is measured from the adjusted attenuation amount and the characteristics of the measurement system other than the transmission line under test. method.
(2) 信号源は周期的に矩形パルス状111号を発生
し、この矩形パルス状信号會基準伝送路と被測定伝送路
に送出し、上記矩形パルス状信号の持続時間と発生周期
とを調節すると共に上記二つの伝送路の信号伝送時間を
異ならせて時間的に重複しない上記矩形パルス状信号を
受信器にて受信し、この受信器の出力を周期的信号とし
たことを特徴とする特許請求の範囲第1項記載の比較測
定方式。
(2) The signal source periodically generates a rectangular pulse signal No. 111, sends this rectangular pulse signal to the reference transmission line and the measured transmission line, and adjusts the duration and generation cycle of the rectangular pulse signal. At the same time, the signal transmission times of the two transmission paths are different so that the rectangular pulse-like signals that do not overlap in time are received by a receiver, and the output of the receiver is made into a periodic signal. A comparative measurement method according to claim 1.
(3)信号源からの信号を基準伝送路と被測定伝送路と
に同時に送出し、これら二つの伝送路を通った信号は2
個の入力端子を七するスイッチの各入力端子にそれぞれ
入力され、このスイッチを動作部せてこのスイッチの1
個の出力端子から受信器に上記二つの伝送路からの信号
を交互に周期的に入力し、上記受信器の出力を周期的1
u号としたことを特徴とする特許請求の範囲第1項記載
の比較測定方式。
(3) The signal from the signal source is sent to the reference transmission line and the transmission line under test at the same time, and the signal passing through these two transmission lines is 2
Each input terminal is input to each input terminal of a switch that has seven input terminals, and when this switch is activated, one
The signals from the two transmission paths are alternately and periodically inputted to the receiver from the output terminals of the receiver, and the output of the receiver is periodically
The comparative measurement method according to claim 1, characterized in that it is No. u.
(4) 信号源からの信号をスイッチの1個の入力端子
に入力し、このスイッチを動作させて2個の出力端子に
つながる基準伝送路と被測定伝送路とに上記信号を交互
に周期的に送出し、これら二つの伝送路からの信号を1
個の受信器で受信し周期的出力信号を得ることを特徴と
する特t′F請求の範囲第1項記載の比較測定方式。
(4) Input the signal from the signal source into one input terminal of the switch, operate this switch, and periodically send the above signal alternately to the reference transmission line and the transmission line under test connected to the two output terminals. The signals from these two transmission lines are
The comparative measuring method according to claim 1, characterized in that a periodic output signal is obtained by receiving the signal with a plurality of receivers.
(5) 1*号処理系は受信器が出力する周期的信号か
らこの信号と同周期の正弦波信号成分會フィルタにて抽
出し、この正弦波信号成分の振幅に対応するレベルを有
する直流信号を出力することを特徴とする特許請求の範
囲第1項、第2項又は第3項記載の比較測定方式。
(5) The 1* processing system extracts a sine wave signal component having the same period as this signal from the periodic signal output by the receiver using a filter, and generates a DC signal having a level corresponding to the amplitude of this sine wave signal component. A comparative measurement method according to claim 1, 2, or 3, characterized in that the method outputs .
(6) 信号処理系は受信器が出力する周期的信号から
交流信号成分をフィルタにて抽出し、この交流信号成分
の平均振幅に対応するレベル會廟する直流信号を出力す
ることを特徴とする特許請求の範囲第1項、第2項、又
は第3項記載の比較測定方式。
(6) The signal processing system is characterized in that the AC signal component is extracted from the periodic signal output by the receiver using a filter, and a DC signal having a level corresponding to the average amplitude of this AC signal component is output. A comparative measurement method according to claim 1, 2, or 3.
(7)信号処理系は受信器が出力する周期的信号とこの
信号と同周期の正弦波信号とを掛算器に入力して積をと
シ、この掛り[器の出力信号から上記受信器の受信信号
に會まれる基本波1^−号成分の振幅に比例するレベル
の直流信号をフィルタにて抽出して出力することを特徴
とする特許請求の範囲第1項、第2項、又は第3項記載
の比較測定方式。
(7) The signal processing system inputs the periodic signal output by the receiver and the sine wave signal with the same period as this signal into a multiplier to calculate the product, and then calculates the product by [from the output signal of the receiver] Claims 1, 2, or 2, characterized in that a DC signal with a level proportional to the amplitude of the fundamental wave 1^- component encountered in the received signal is extracted and outputted using a filter. Comparative measurement method described in Section 3.
(8) 信号処理系は受信器が出力する周期的1g号か
らり流信号成分をフィルタにて抽出し、この交流信号成
分を掛算器への二つの入力信号として積をと9、この扛
1算器の出力信号からフィルタにて抽出した上記交流信
号成分の電力に比例するレベルを有する直流信号を出力
することを特徴とする特許請求の範囲第1頂、第2項、
又は第3項記載の比較測定方式。
(8) The signal processing system uses a filter to extract the current signal component from the periodic 1g signal output by the receiver, uses this AC signal component as two input signals to the multiplier, multiplies it by Claims 1 and 2 are characterized by outputting a DC signal having a level proportional to the power of the AC signal component extracted by a filter from the output signal of the calculator.
Or the comparative measurement method described in Section 3.
JP58247476A 1983-12-29 1983-12-29 Comparing and measuring system Pending JPS60142274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58247476A JPS60142274A (en) 1983-12-29 1983-12-29 Comparing and measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58247476A JPS60142274A (en) 1983-12-29 1983-12-29 Comparing and measuring system

Publications (1)

Publication Number Publication Date
JPS60142274A true JPS60142274A (en) 1985-07-27

Family

ID=17164019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58247476A Pending JPS60142274A (en) 1983-12-29 1983-12-29 Comparing and measuring system

Country Status (1)

Country Link
JP (1) JPS60142274A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115982A (en) * 1989-09-29 1991-05-16 Nippon Telegr & Teleph Corp <Ntt> Fault position locating method for communication cable
JPH0398545U (en) * 1990-01-30 1991-10-14
WO2002010705A3 (en) * 2000-08-01 2002-08-15 Wavecrest Corp Electromagnetic and optical analyzer
JP2019509473A (en) * 2016-01-27 2019-04-04 ライフ ディテクション テクノロジーズ,インコーポレーテッド System and method for detecting physical changes without physical contact
US11253163B2 (en) 2016-01-27 2022-02-22 Life Detection Technologies, Inc. Systems and methods for detecting physical changes without physical contact

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115982A (en) * 1989-09-29 1991-05-16 Nippon Telegr & Teleph Corp <Ntt> Fault position locating method for communication cable
JPH0398545U (en) * 1990-01-30 1991-10-14
WO2002010705A3 (en) * 2000-08-01 2002-08-15 Wavecrest Corp Electromagnetic and optical analyzer
JP2019509473A (en) * 2016-01-27 2019-04-04 ライフ ディテクション テクノロジーズ,インコーポレーテッド System and method for detecting physical changes without physical contact
US11253163B2 (en) 2016-01-27 2022-02-22 Life Detection Technologies, Inc. Systems and methods for detecting physical changes without physical contact
US11523745B2 (en) 2016-01-27 2022-12-13 Life Detection Technologies, Inc. Systems and methods for detecting physical changes without physical contact
US11684283B2 (en) 2016-01-27 2023-06-27 Life Detection Technologies, Inc. Systems and methods for detecting physical changes without physical contact
US11896357B2 (en) 2016-01-27 2024-02-13 Life Detection Technologies, Inc. Systems and methods for detecting physical changes without physical contact

Similar Documents

Publication Publication Date Title
JP3422913B2 (en) Optical sampling waveform measuring device
US6144450A (en) Apparatus and method for improving the accuracy of polarization mode dispersion measurements
JPH11237312A (en) Wavelength dispersion measuring instrument and polarization dispersion measuring instrument
US20200310220A1 (en) Laser beam output apparatus
US8242767B2 (en) Detection of changes in an interval of time between optical or electrical signals
JPS60142274A (en) Comparing and measuring system
US20070047970A1 (en) Multi-rate clock signal extracting method and multi-rate clock signal extracting device
US11476629B2 (en) Laser beam output apparatus
US4790655A (en) System for measuring laser spectrum
EP1241458B1 (en) Optical sampling waveform measuring apparatus with high bandwidth
US20070111111A1 (en) Light measurement apparatus and light measurement method
JPH0510879A (en) Gas detecting network
JPH05323029A (en) Distance measuring method by light wave range finder
CA2144552C (en) Optical fiber gyro
JPH06331495A (en) Device and method for measuring zero dispersion wavelength
JPH0682552A (en) Electrooptical distance measurement
JPS60111229A (en) Output stabilized optical switch
JPH10197350A (en) Apparatus for measuring light-sampling waveform
JPH10213412A (en) Interferometer measuring system using a plurality of synchronous light source
JPH11271179A (en) Measuring device of wavelength dispersion of optical fiber
JPH01212321A (en) Apparatus for measuring light sampling waveform
JP2648957B2 (en) Level calibration method for propagation delay time measuring device
JP2003232906A (en) Method and device for pulse multiplication and optical block
RU2080655C1 (en) Device which recognizes information signals
JPS6234020A (en) Apparatus for measuring spectral band width