JPS60142252A - Liquid chromatography - Google Patents

Liquid chromatography

Info

Publication number
JPS60142252A
JPS60142252A JP58247500A JP24750083A JPS60142252A JP S60142252 A JPS60142252 A JP S60142252A JP 58247500 A JP58247500 A JP 58247500A JP 24750083 A JP24750083 A JP 24750083A JP S60142252 A JPS60142252 A JP S60142252A
Authority
JP
Japan
Prior art keywords
sample
voltage
migrating
speed
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58247500A
Other languages
Japanese (ja)
Inventor
Toshibumi Kita
俊文 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP58247500A priority Critical patent/JPS60142252A/en
Publication of JPS60142252A publication Critical patent/JPS60142252A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N2030/285Control of physical parameters of the fluid carrier electrically driven carrier

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To reduce the time for analysis by providing electrode parts before and behind a separating column and migrating and separating a sample in the separating column. CONSTITUTION:When a sample is supplied to an introducing part 6, the sample is conveyed by a mobile phase to a separating column 7 where the sample is separated to respective components. DC voltage is impressed to electrode parts 3, 4 before and behind the column 7 and the sample is conveyed by the linear speed of the mobile phase plus the migrating speed. The migrating speed is proportional to the impressed voltage. The migrating speed is increased and the time for analyzing the sample is reduced by setting adequately the impressed voltage.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は1分析時間を大幅に短縮した液体クロマトグ
ラフィーに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to liquid chromatography that significantly reduces the time required for one analysis.

(ロ)従来技術 従来、液体クロマトグラフィーにおいて1分析時間を短
縮するには、短い分離カラムを使い、かつ充てん剤の粒
子径を小さくして移動相線速度を上げることにょシ行っ
ていた。しかし、この方法の場合検出器の応答速度も上
げなければならず、液体クロマドグシア全体の改善が必
要であった。
(b) Prior Art Conventionally, in order to shorten the time required for one analysis in liquid chromatography, it has been necessary to use a short separation column and reduce the particle size of the packing material to increase the linear velocity of the mobile phase. However, in this method, the response speed of the detector had to be increased, and the overall liquid chromatography needed to be improved.

(ハ)目 的 この発明は、上記の事情に鑑み0分断時間を短縮する方
法を提供することを目的とする。
(c) Purpose In view of the above-mentioned circumstances, it is an object of the present invention to provide a method for shortening the zero-cut time.

に)構成 この発明は、液体クロマトグラフの分離カラム前後に電
極部を設けて該電極よシ直流′電圧を印加することによ
り試料を分離カラム内で泳動分離させることを特徴とす
るものである。
B) Structure The present invention is characterized in that electrode sections are provided before and after a separation column of a liquid chromatograph, and a sample is electrophoretically separated within the separation column by applying a direct current voltage across the electrodes.

(ホ)実施例 この発明を図面に基づいて説明する。(e) Examples This invention will be explained based on the drawings.

第1図は、この発明に係る液体クロマトグラフの一実施
例である。図中1が移動相液溜。
FIG. 1 shows an embodiment of a liquid chromatograph according to the present invention. In the figure, 1 is the mobile phase reservoir.

2が送液ポンプ、3,4が電極部、5が直流′電源、6
が試料導入部、7が分Illカラム、8が検出器である
2 is a liquid pump, 3 and 4 are electrode parts, 5 is a direct current power supply, 6
7 is a sample introduction part, 7 is a minute column, and 8 is a detector.

これらの構成下で試料を試料導入部6より導入すれば試
料は移動相にて分離カラム7へ搬送され、そして各成分
に分離される。
When a sample is introduced from the sample introduction section 6 under these configurations, the sample is transported to the separation column 7 in the mobile phase and separated into each component.

この時1分離カラムの前後における′電極部3.4に直
流′電圧が印加されているので試料は移動相線速度に泳
動速度が加って搬送されることになる。
At this time, since a direct current voltage is applied to the 'electrode sections 3.4' before and after the first separation column, the sample is transported at the mobile phase linear velocity plus the electrophoretic velocity.

一般に、泳動速度は以下の式でめられる。Generally, the migration speed is calculated by the following formula.

U−ζD V/4πηl ただし、u:泳動速度、ζ:ζ′亀位、D:液の誘電率
、η:粘度、4:電極間距離、V:印加電圧である。
U-ζD V/4πηl where u: migration speed, ζ: ζ' position, D: dielectric constant of liquid, η: viscosity, 4: distance between electrodes, V: applied voltage.

この式よシ、泳動速度は印加電圧に比例することがわか
る。従って、印加′電圧を適当に増加させることによシ
、泳動速度をあげ、試料の分析時間を短縮することがで
きる。
According to this equation, it can be seen that the migration speed is proportional to the applied voltage. Therefore, by appropriately increasing the applied voltage, it is possible to increase the migration speed and shorten the sample analysis time.

また、この第1図では試料導入部6と分離カラム7まで
の間にも直流電圧がかかつているので導入された試料は
、泳動度の大きい順に分離カラムに入る。従って試料は
前分離されたこと罠なり分離カラム7中での分離も迅速
に行われることになる。
Furthermore, in FIG. 1, since a DC voltage is also applied between the sample introduction section 6 and the separation column 7, the introduced samples enter the separation column in the order of their electrophoretic mobility. Therefore, since the sample has been pre-separated, separation in the separation column 7 can also be carried out quickly.

なお、電極部3,4のどちらを正極又は負極にするかけ
1分析したい試料成分が正が負のどちらの電位にチャー
ジされているかにより決まるのは当然のことである。
It goes without saying that which of the electrode sections 3 and 4 is used as the positive electrode or the negative electrode is determined by whether the sample component to be analyzed is charged to either positive or negative potential.

また、この発明は、直流電圧を分離カラム短縮した液体
クロマトクラフ全得ることができるという効果がある。
Further, the present invention has the effect that a liquid chromatograph with a shortened DC voltage separation column can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に係る液体クロマトク′ラフの一実
施例である。 (31,(4,1・・・電極部 (51・・・直流電圧
(7)・・・分離力ラム
FIG. 1 shows an embodiment of a liquid chromatograph according to the present invention. (31, (4,1... Electrode part (51... DC voltage (7)... Separation force ram

Claims (1)

【特許請求の範囲】[Claims] 1、 液体クロマトグラフの分離カラムの前後に電極部
を設けて該電極よシ直流電圧を印加することによシ試料
を分離カラム内で泳動分離させること’e%徴とする液
体クロマトグラフィー。
1. Liquid chromatography, in which electrodes are provided before and after a separation column of the liquid chromatography, and a DC voltage is applied across the electrodes to electrophoretically separate the sample within the separation column.
JP58247500A 1983-12-29 1983-12-29 Liquid chromatography Pending JPS60142252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58247500A JPS60142252A (en) 1983-12-29 1983-12-29 Liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58247500A JPS60142252A (en) 1983-12-29 1983-12-29 Liquid chromatography

Publications (1)

Publication Number Publication Date
JPS60142252A true JPS60142252A (en) 1985-07-27

Family

ID=17164387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58247500A Pending JPS60142252A (en) 1983-12-29 1983-12-29 Liquid chromatography

Country Status (1)

Country Link
JP (1) JPS60142252A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256256A (en) * 1985-05-09 1986-11-13 Takao Tsuda Electric liquid chromatograph
WO1997033152A1 (en) * 1996-03-05 1997-09-12 Studiecentrum Voor Kernenergie, Instelling Van Openbaar Nut Method and device for determining the molecular diffusion coefficient in a porous medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421795A (en) * 1977-07-19 1979-02-19 Shimadzu Corp Electrophoresis analysis apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421795A (en) * 1977-07-19 1979-02-19 Shimadzu Corp Electrophoresis analysis apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256256A (en) * 1985-05-09 1986-11-13 Takao Tsuda Electric liquid chromatograph
WO1997033152A1 (en) * 1996-03-05 1997-09-12 Studiecentrum Voor Kernenergie, Instelling Van Openbaar Nut Method and device for determining the molecular diffusion coefficient in a porous medium
BE1010056A3 (en) * 1996-03-05 1997-12-02 Studiecentrum Kernenergi METHOD AND DEVICE FOR THE DETERMINATION OF THE MOLECULAR diffusion coefficient in a porous medium.

Similar Documents

Publication Publication Date Title
Chien et al. On-column sample concentration using field amplification in CZE
Otsuka et al. Enantiomeric resolution by micellar electrokinetic chromatography with chiral surfactants
Gordon et al. Capillary electrophoresis
Wallingford et al. Amperometric detection of catechols in capillary zone electrophoresis with normal and micellar solutions
Holland et al. Capillary electrophoresis in pharmaceutical analysis
Demorest et al. Factors influencing the resolution and quantitation of oligonucleotides separated by capillary electrophoresis on a gel-filled capillary
EP0363398A1 (en) Combined electrophoresis-electrospray interface and method
JP2003532894A (en) Electrophoretic separation of compounds
Beckers et al. Isotachophoresis with two leading ions and migration behaviour in capillary zone electrophoresis: II. Migration behaviour in capillary zone electrophoresis
Huang et al. Separation of tryptic digests using a modified buffer in pressurized capillary electrochromatography with an ion trap storage/reflectron time-of-flight mass spectrometer
US8986530B2 (en) Sample analysis systems, devices, and associated methods of operation
EP0838029B1 (en) Electrophoresis capillary tube with a conductive tip
Zhang et al. Stepwise mobilization of focused proteins in capillary isoelectric focusing mass spectrometry
Nesbitt et al. Over 1000-fold protein preconcentration for microliter-volume samples at a pH junction using capillary electrophoresis
JPH01158342A (en) On-column type electric conductivity detector for electrodynamic separation with microcolumn
Rodriguez-Diaz et al. Strategies to improve performance of capillary isoelectric focusing
JPH07505721A (en) Method and apparatus for separating and mobilizing solutes in solute mixtures
JPS60142252A (en) Liquid chromatography
Fan et al. Determinations of zidovudine/didanosine/nevirapine and zidovudine/didanosine/ritonavir in human serum by micellar electrokinetic chromatography
Jeong et al. Transient isotachophoresis of highly saline samples using a microchip
JPH0760145B2 (en) Device for detecting components in samples
Zhang et al. Selective enrichment of low-abundance compounds in a mixture by capillary electrophoresis
Chartogne et al. Capillary electrophoretic separations of proteins using carrier ampholytes
PT1341806E (en) Method and apparatus for separating biological molecules
Tang et al. Effects of electroosmotic flow on zone mobilization in capillary isoelectric focusing